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1. Introduction 

In this paper, we are dealing with two ftmctional equations arising in informa- 
tion theory. The first one concern with Shannon's entropy and the second one 
with directed divergence or information gain and inaccuracy. The Shannon's 
entropy [12], n 

H(Pl . . . . .  P,)= - ~ Pi log Pi, (1) 
i = l  

n 

where 0 < Pi < 1, ~ Pi = 1 was extensively studied and was characterized by many 
i=1 

authors. Detailed proofs can be found in the original papers [2, 3, 5, 8, 10] and 
a useful survey of known results in this field can be found in [-1]. In particular, 
in [3], it was studied as a problem of obtaining the most general real valued 
continuous function f, which for all positive integers m, n satisfies the functional 
equation 

n m n 

E f(xi Y j) = E f(xi) + E f(yj), (2) 
i = l  j = l  i = l  j = l  

where xi, yj=>0, ~ xi= 1= ~ yj. A new and simple proof of obtaining the solution 
i = 1  j = l  

of (2) is given in Section 2. 

Another quantity called directed-divergence [8] or information gain [11] 

tl 

in (P,,P2 . . . .  'P"] = E p i l o g  P-J-/, (3) 
\ql ,qE, . . . ,q , /  i=1 qi 

i " with Pi, qi > 0, Pi= 1-- ~ qj, was characterized among others in [5, 10]. Here 
i = 1  1 = 1  

a new characterization of (3) based on (2) is given through a functional equation 
in Section 3. 

One other quantity known as inaccuracy [7], 

( p.) . /4. Px, P2 . . . .  , = - ~ pl log ql (4) 
\ql,qz, "",qn i=1 

was characterized among others in [5]. This quantity (4) is characterized in 
Section 4 by the same functional equation appearing in Section 3 under different 
boundary conditions. 
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Remark 1. The usual convention with regard to (1), (3) and (4) are adhered to: 
there is a one-one correspondence between pi's and qi's given by their suffices; 

Pi qi=O implies the corresponding pi=O, 0 log 0=0 ;  Pi l o g - ~ .  =pz(log p i - log  q~) 

whenever Pz = O, qi = O; the logarithm is with respect to base 2. 

2. Shannon's Entropy 

Here we describe all the continuous solutions of (2) and prove the following 
theorem. 

Theorem 1. A necessary and sufficient condition that a continuous function f 
satisfies (2) is that, 

f (x)  = A x log x, 

for all x 6 I =  [0, 11, where A is an arbitrary constant. 

Proof The sufficient part is a mere verification. To prove the necessary part, 
define a function 

g ( x ) = x f ( ) ) ,  for all real x >  1. (5) 

Evidently g is continuous. Let rn, n be any integers > 1. Then putting xi = 1/m (i = 
1, 2 . . . . .  m) and yj = 1/n (j = 1, 2 . . . .  , n) in (2) and using (5), we get 

g(mn)=g(m)+g(n),  for positive integers m, n > l .  (6) 

It is known that g in (6) has a unique extension to the multiplicative group of 
positive rational numbers. The question is whether this extension is the same 
as g in (5). It is indeed the case is shown as follows. 

Taking any rational r~(0, 1) as m/n (re<n) and letting xl=m/n, x 2 . . . . .  
x ,_~+l=  1/n and Yl . . . . .  y,~= 1/m in (2), we obtain (by taking m as n - m +  1 
and n as m) 

m f ( 1 ) + ( n - m ) m f ( - ~ n ) = f ( ~ - ) + ( n - m ) f ( 1 ) + m f ( @ ) .  (7) 

Using (5), (6) and (7), we find that 

g ( @ ) = g ( n ) - g ( m ) ,  for m<n.  (8) 

From (6) and (8) results that 

g (x y) = g (x) + g (y), for all rationals x, y > 1. (9) 

The continuity of g implies that (9) holds for all real x, y >  1. From [2], it follows 
that g has a unique extension to all positive reals which is continuous and satisfies 
(9) for all real x, y>0 .  Thus g ( x ) = - A  log x, for some real constant A. This, 
together with (5) gives the required solution f of (2). 
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3. Directed-Divergence 

Now, we consider a functional equation connected with directed-divergence 
(3). Let F be a real valued, continuous function, defined on 

J= ]0 ,  1E • 30, 1[ u {(0, y)} • {(1, y')} 

with ye[0 ,  1) and y'e(0, 1] such that F, for all positive integers m and n satisfies 
the functional equation 

i=1  j = l  i=1  j ~ l  

m 

forxi,ui,yj, vj>Oand ~ x i = l =  ~ y , ,  ~ u i < l  and ~ vj=<l. Now, we determine 
i = l  j = l  i = l  j = l  

all the solutions of (10) under the boundary conditions 

F(1, ~ 1 3 ) -  , (11) 
and 

F(�89 �89 0. (12) 

As a matter of fact, we prove the following theorem. 

Theorem 2. The most general continuous solution F of the functional equation (10), 

satisfying further (11) and (12) is given by F(x, x y)= x log T ,  for (x, y)e J. 

Proof. Let us define a function G, 

G(x ,y )=xF( l~ ,  1~], fora l l rea l  x ,y>l ,  (13) 
\ x  y /  

(of course with the restriction that whenever y =  1, then x =  1). Obviously G is 
continuous. First, we note that, if we take u~ = xi (i= 1, 2, ..., m) and v j =  y~ ( j=  
1, 2 . . . .  , n) in (10), (10) is same as (2). Then from Theorem 1, it is easy to see that 

With the help of (12), we get A = 0  and hence 

(14) 

Let m, n, r, s be any integers for which 1 _< m_< r, 1 _< n < s. Then setting x i = 1/m (i = 
1, 2,..., m), yj= 1In (j= 1, 2 .... , n), u i= 1/r (i= 1, 2,..., m) and v j =  1Is (j= 1, 2,..., n) 
in (10) and utilizing (13), we have 

G(mn, rs)=G(m,r)+G(n,s), for l<m<r ,  l<n<_s. (15) 

For m=  1 and n = l, (15) reduces to 

G(1, rs)=G(1, r)+G(1, s), for integers r ,s>l .  (16) 
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For any rational x=p/q (O<p____q), allowing x1--~-1, y l = l ,  ul=p/q and Vl= lip 
in (10), we get 

from which and (13), that 

G(1 ,q l=G(1 ,  q)-G(1, p), for O<p<=q. (18) 
~ P /  

Now (16) and (18) yield 

G(1, xy)=G(1, x)+G(1, y), for all rationals x, y >  1. (19) 

As before, since G is continuous, it follows immediately using (11) that 

G(1, x)=logx, for all real x > l .  (20) 

Use (15) for s=n, m= 1, (14) and (20), to get 

G (n, r n) = log r, for all integers r, n >__ 1. (21) 

Now, (15) for s=mn and (21) imply 

that is, 

o r  

G(mn, rmn)=G(m,r)+G(n, mn), for m<=r, 

log r = G (rn, r) + log m, 

for 
m 

(22) 

Choose any two rationals x,y~(O, 1). Then for x=m/n (re<n), y=p/q (p<q), 
choose an integer k sufficiently large such that kp>m, kq>n and k>__q(n-m)/ 
n (q - p). Now, putting x 1 = re~n, 

1 
X 2 ~ . . .  ~ X n _ m +  1 ~ - - ~  

t l  

1 
U 2 ~ ' " ~ - U n - - r n + l - -  k F l  

(10) can be rewritten as, 

1 p 
Y l  = " ' "  ~ -  Y m -  , b l l  = - - ,  m q 

1 
and v l = v 2 = v m = - -  in(10), 

pk 

mF k n qk ] ran' pnk 2 

n kn +mF �9 ' m pk 

(23) 
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Thus, (22) and (23) yield 

that is, 
n n p  

X 
F(x, y)= x log - - ,  for all rationals x, ye(0, 1). (24) 

Y 

Now, use the continuity of F to get (24) for all (x, y)sJ. This completes the proof 
of this theorem. 

Remark2. Theorem2 is proved for the case ~ u i < l  and ivj__<l. The same 
i=1  j = l  

result can be obtained for the case ~ ui= 1 and v j =  1, provided we assume 
i = 1  j = l  

that F in addition to (10), (11) and (12) also satisfies the condition F(0, q)=0 for 
for qe [0, 1). This condition is needed to get the Eqs. (15), (16), (17) and (23). 

4. Inaccuracy 

In order to characterize the quantity inaccuracy given by (4), we use the func- 
tional equation (10) in Section 3, under the boundary conditions (11) and 

F~! ! ~ _ !  (25) ~,2~ 2!  - -  2 

and prove the following theorem. 

Theorem 3. I f  a real valued function F which is continuous in J satisfies the 
functional equation (10) and the conditions (11) and (25), then F ( x , y ) = - x  log y. 

Proof. The proof of this theorem runs parallel to that of Theorem 2. As in 
the proof of Theorem 2, we get 

G ( x , x ) = x F ( 1 , 1 ) = - A l o g x ,  for all real x>=l, 

which by using (25) gives A = - 1  and hence, 

for all real x > 1. (26) 

The Eqs. (15) and (20) also hold good in this case. 

Now (15) with s=n, m= 1, (26) and (20) give 

G (n, r n) = log r n, for all natural numbers r and n. (27) 

Thus (27) and (15) for s = m n  yield 

mF , - = G (m, r) = log r, 
m r 

for 1 _< m_< r. (28) 
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From (28) and (23), we find that 

F ( @ , q ) : @ l ~  q ,  

that is, 

for re<n,  p < q ;  

F(x,  y )= - x log y, for all rationals x, y~(0, 1). (29) 

With the help of continuity of F, it is easy to see that (29) is indeed true for all 
(x, y)6J.  The proof of the theorem is thus complete. 

Remark 3. Theorem3 remains true for the complete distributions ~.ui= 1 
i=1 

and vj= 1 also, provided F(0, q)=0 for qe [0, 1), in addition to F satisfying (10), 
j =  1 

(11) and (25). This condition is used to obtain (15), (16), (17) and (23). 
I express my thanks to the referee for his useful remarks. As is pointed out 

by the referee, it is highly probable that the solutions of the functional equations (2) 
and (10) are unique among Lebesgue measurable functions. 
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