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The Functional Law of the Iterated Logarithm 
for Dependent Random Variables 

I. Berkes 

1. Introduction 

Let X i, X 2 ,  . . .  be a sequence of random variables, S, = X 1 + . - .  + X, (S O = 0) 
and let )C,(t) denote the random function in 0-< t < 1 which is linear in every interval 

[ (k-1) /n ,k /n]  ( l < k < n )  and )~.(k/n)=S k (O<k<n).  

Put further ~0,=n-~)~,, 0 ,=(2nloglogn)- �89 By a well-known theorem of 
Prohorov the sequence X 1, X2, ... obeys the functional central limit theorem 
(invariance principle) if and only if (i) the finite dimensional distributions of the 
process (0, converge, as n~oo ,  to the corresponding finite dimensional distri- 
butions of the Wiener-process, (ii) lim lim su p P (  sup [(o.(t)-~on(t')[>~)=O 

h - * O  n ~ o D  ]t_t,l<h 
for every ~ > 0. The purpose of the present paper is to prove that under similar 
but slightly more restrictive conditions the sequence X1, X2, ... obeys the function- 
al (Strassen-type) law of the iterated logarithm, i.e. the sequence 0,  is equi- 
continuous with probability one and the set of its norm-limit points (in the norm 
C [0, 1]) coincides with the set 

{x 1 t K =  : x is absolutely continuous in [0, 1], x (0 )=0  and ~(2(t)) 2 dt<= 1 . (1.1) 
o 

This is the case, e.g., if we assume that (i) the finite dimensional distributions of the 
process q~, converge to the finite dimensional distributions of the Wiener-process 

in a certain rate, ( i i ) P ( m a x l S ~ + i - S ~ [ > C l ~ ) < C z e  - z l ~ 1 7 6  (iii) 

sup E IX, 12 +0< oo (Theorem 3). In certain situations (ii) can be omitted or can be 

replaced by an inequality of a simpler type (Theorems 1 and 2). Our results seem 
to be of wide applicability and we shall give some applications in a series of 
forthcoming papers. 

2. Results 

First we introduce some notations that we shall use throughout this paper. 
Given a sequence X1, X2, ... of random variables, let S,, )~,, (0,, 0 ,  denote the 

same as in the Introduction; let us also introduce the sums S}, ~) = X,, + ~ + . . .  + X,, +, 
- -  - -  - � 8 9  (m>O,n>_l )and thep iecewisecons tan t randomfunc t ion~ , ( t ) -n  St, q ( 0 < t < l  ). 

For  every fixed 0<= t i < t' 1 < . . . <  t ,< t'r<_ 1 (r = 1, 2 .. . .  ) let F, (t'' '~ ..... '~' ~;)(xl, x2, . . . ,  Xr) 
denote the distribution function of the random vector 

( ~Pn(t'i)--c~n(tl) ~n(t'r)--~Pn(tr) ~ 
(2.1) 



246 I. Berkes:  

On the other hand, let 4~ (t'' tl ..... t, t~.) (X1, X2 ' " " ,  Xr ) denote the distribution function 
of the random vector 

(~( t ' l ) -~ ( t l )  ~(f , ) -  ( ( t , ) )  (2.2) 
~ 1  ' " "  ~ ,  

where ( is a standard Wiener-process. If F (xl, . . . ,  x,) is an r-dimensional distri- 
bution function and B c R "  is a Borel-set, define F(B)= ~dF (x l ,  . . . ,  x,) i.e. let 

B 
F(B) denote the probability of the event that a random vector with distribution 
F belongs to B. Let us also introduce the characteristic functions of the random 
vectors appearing in (2.1) and (2.2): 

f~t ...... t~)(21,...,2~)=E exp - t~l /~_t  j (qS,(t l)-0.(h))  �9 

+ . . .  - e . ( O  

( i2 i 
fo (t' ..... t;)(2~ . . . . .  2 , )=E  \exp - t~l/~_h (~(t l )-~(q))  

+- . .  -~ ~ (~ (t ' ,)- ff (t,)) . 

Let Y be a metric space and H c Y. For  every e > 0 let Htc ) denote the neigh- 
bourhood of H of radius c, i.e. the set of those points of Y, which have a distance 
< c  from H. Let us further agree that if f is a real function in [0, 1] and m > 2  is an 
integer, then //,, f denotes the function which coincides with f at the points 
k/m (O<k<m)  and is linear in every interval [ (k-1) /m,  k/m] ( l < k < m ) .  For  
every r-dimensional vector 2=(21, ..., 2,) let 11211 stand for the number (22 + . . .  +22) -i. 
Finally, let the Lebesgue-measure of a Borel-set B c R' be denoted by p(B). 

Now we introduce some conditions concerning sequences of random variables. 
Given a sequence Xi,  X 2 . . . .  , we say that it satisfies 

Condition A, if for every n>  1, t > 0  and every a~, a 2 . . . .  we have 

P(I aa X1 + " "  + a, X, I>  t ] /a  2 + . . .  + a 2) < C a e -c ,  t2 (2.3) 

where C3, C4 are positive constants depending only on the sequence X~, X z, ... ; 

Condition B~, if for every O < q < t ' l < . . . < t , < t ' , < l  ( r=  l, 2, ...) and for 
every open rectangle B = R'  

lim F~ t ...... ';) (B ) -  ~ '  ...... r (B) ; (2.4) 
n~oo 

Condition B 2, if for every 0 < q < t' i <- . .  < t, < t', < 1, n > 1 and for every 
open rectangle B = R', furthermore for every open sphere B = R'  centered in the 
origin we have 1 

IF, (t~ ..... ';) ( B ) -  O(t~ ..... r (B) I_- < C s (1 + # (B o))) (n t) a (2.5) 

where t=min( t '~ -  t 1 . . . . .  t',-t~), C s and fl are positive constants which depend 
only on r and the sequence X1, X2, ... (and are independent of n, B and t 1 . . . . .  t',); 
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Condition B3, if for every O<=tl<t'l<...<=t,<t',<-_l, n > l  and for every 
2 = (21, ..., 2,) satisfying 11211 < c 6  (n t) ~ we  have 

1 
If," ...... t;)(21, ..., 2r)-fo Ct' ..... r ..., 2,)1 < C7 (nt) a (2.6) 

where t = m i n ( t ' x - t  1 . . . .  , t'r-t,), C6, C7, 7, 6 are positive constants depending 
only on r and the sequence X1, X2, .... 

It is evident that condition B 2 implies condition B 1 but it is not clear what the 
connection is between conditions B z and B 3 . We shall see later (in Lemma 3) 
that the situation is simple: condition B 3 implies condition Bz; the proof of this 
fact depends on a multidimensional analogue of Esseen's inequality obtained 
recently by von Bahr. As we already mentioned in the Introduction, condition B~ 
and the tightness of the sequence q~,(t) are necessary and sufficient conditions 
that the sequence X,,  X 2 , . . .  obey the functional central limit theorem. 

We are now ready to formulate our first two theorems. 

Theorem 1. I f  the sequence X1, X2, ... is uniformly bounded and satisfies 
condition B 2 (or condition B3), then it obeys the functional law of the iterated 
logarithm. 

Theorem 2. I f  the sequence XI, X 2 , ... satisfies conditions A and B 2 (or A and 
B3), then it obeys the functional law of the iterated logarithm. 

Applications for some classes of dependent random variables, e.g. for multi- 
plicative systems, lacunary orthogonal series, mixing sequences e.t.c, will be 
given elsewhere. 

Condition A may be superfluous in Theorem 2 (at least under the assumption 
supE [Xn[2+6< o0) but we can not prove this. 

n 

3. Proofs 

Lemma 1. I f  a sequence X1, X 2  , . . .  satisfies condition A, then there exist positive 
constants B, C8, depending only on the sequence X1, X2, ... such that for every 
m >__ 0, n-> 1 we have 

P( max IS(~"~ I > B ]//n log log n)--- C 8 e-  2 log log,. (3.1) 
l < v <  n - -  

Proof Let p > 0  be an even number, then we obtain from condition A for 
every al, a 2 . . . .  and n > 1 : 

E(la 1 X 1 + . . . + a ,  X,I p) 

_-< ~ [(k + 1) l//a 2 + . . .  + a#]" P (lal X1 + ' "  + a, X,[ _-> k l / a  2 + . . .  + a 2) 
k = O  

<=(a 2 +.. .  +a2) p/2 ~ (k + 1) v C a e -c4k2 
k = O  

~C3(a2+'"+a2) p/2 1 2k)Pe -c4k2 . 

(3.2) 
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It is easy to show (comparing the sum with the integral 

oo p + l  

I xp e-C'x2 d x = ( 2 C , ) - - - V -  1/rc/2 1 . 3  . . . . .  ( p -  1)) 
0 

that oo 

~, k p e-C4k2 <(Cgp)p/2 
k = l  

where C 9 depends only on C 4. This relation, together with (3.2), gives 

E( la  I X 1 +. . .+a .  X.[ p) 
< C 3 (a 2 + . . .  + aZ,) p/2 [1 + 2" (C 9 p)p/2"] ~ (Clo p)p/2 (a 2 + . . .  + a2)p/2 (3.3) 

but this implies (cf. [4], pp. 513-514) that there exists a positive constant A*, 
depending only on C 4 (i.e. only on the sequence X~, X 2 . . . .  ) such that the inequality 

E (exp {t max [a 1 X 1 + . . .  + a~ X v I})--< 2 exp (A* t 2 (a 2 + . . .  + a2)} 
a <_ v<_N 

holds for 0 < t < A *  and every N > I .  Let us now put here N = m + n ,  ak=O for 
1 < k < m, ag = 1 for m + 1 _ k < m + n and t = t o = 1/~ ( 2 1 ~ ) -  a (log log n/n) ~. The 
value of t o satisfies 0Nto<A* for n > n  o where n o depends only on A*. Thus we 
obtain from the Markov-inequality for n > no: 

P( max IS[")I ~ ]//8A* ]//n log logn) 
- l_<v_<n 

=< e x p ( -  t o ]/8]/8]/~ l//n log log n)- E (exp {t01max IS(m)[}) 

___<2 e x p ( -  t o ~ t / n  log logn+A* tg n)= 2 e x p ( -  2 log logn) 

which establishes (3.1) for n > n  o with B=I/SA*,  C8=2. On the other hand, 
by the appropriate choice of the constant C8>2 we can guarantee that 
C s e - 2 log ~og,o > 1 and then (3.1) is valid (with the same value of B) also for 1 _< n_< n o 
since the right side exceeds 1. This completes the proof of Lemma 1. 

Lemma 2. Let  A1, A 2 . . . .  , A , ,  ... be events satisfying the following condition: 
there exist constants Ca1 > O, C ~ 2 > O, # < 1, p > O, z > 0 such that 

Then 

1 
P ( A , ) >  Cll  nU (n> 1), (3.4) 

(3.5) 

P(lim sup A,)= 1.  (3.6) 

[P(A,, A,) - P (A,,) P(A,)I =< C12 np e-~m (1 <= m < n). 

Proof  We use the method of P. R6v6sz (cf. I-6,]). A well-known theorem of 
Erd6s and R6nyi (cf. [5,], p. 391) states that if the events A1, A2, ... satisfy the 
conditions 

P(An) = + oo, (3.7) 
n = l  



Functional Law of the Iterated Logarithm for Dependent Random Variables 249 

~ (P(A k A,)-  P(Ak) P(A,)) 
lira k=l /=1 ~---0 (3.8) 

n 2 

\ k = l  / 

then (3.6) holds. Now (3.7) follows immediately from (3.4), therefore it suffices 
to prove that (3.4) and (3.5) together imply (3.8). Let us write 

where 

n 

Z (P(Ak At)- P(Ak) P(A,))= 11 + 12 + 13 + 14, 
k = l  I=1 

[log2 n] [log2 n] 

I,= ~ ~" dk,, I2= ~ ~ dk,, 
k= [log2n] + 1 I=  [logZn]+ 1 k = l  1=1 

[log 2 n] [log 2 n] 

k=[logan]+l  /=1 k = l  l=[log2n]+l 

dkl = P(Ak At)-P(Ak) P(Az). 

Using (3.4) and (3.5), we obtain for sufficiently large n 

Illl =<n z. C12  n p e-~(OogZ.]+l)< C12 n 2+p e-~togZn=< C12 

[log2 n] [log2 n] 

1121 < ~, ~, 2<21og4n 
k = l  l=1 

n [log2n] n [log2n] 

[13+141 =< • ~, 2P(Ak)+ Z ~ 2P(Az)<=41~ 
k = l  l=1 I=1 k = l  r = l  

~, P(Ak)> V i a  n 1-u 
k = l  

and thus the absolute value of the fraction in (3.8) can be majorized by 

( e l 2  +2 log4 n) P(A k +4  log 2 n P(A k = 0(1). 
k = l  k = l  

Hence Lemma 2 is proved. 

Proof of Theorem 2. The statement of the theorem will be proved under 
conditions A and B2, the remaining part is an immediate consequence of this 
result and Lemma 3. In our proof we shall use the method first applied by Chover 
for i.i.d, random variables in [-2]; to avoid repetitions, we shall indicate only 
those steps where essential changes are necessary. 

a) The a.s. equicontinuity of the sequence ~,  is valid in the following form: 
Let e be a positive number, choose an integer q > 2 such that ~2 2q> 8B z (B is the 
constant appearing in Lemma 1) and let us define 

3~=2 -q. (3.9) 
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Then we have with probability one for sufficiently large n 

sup I~O. ( t ) -  ~O, (t')[ < e. 
It-t'l<_a~ 

We omit the proof because our statement can be derived from inequality 
(3.1) essentially in the same way as the analogous statement (8) in [2] was deduced 
from relation (4) of the same paper. 

b) To show that the set of all norm-limit points of the sequence ~, is = K 
with probability one, it suffices to prove the next two statements: 

1. For every e>0,  m > 2  we have (as n-~c~) 

P (m~ 1E~('/m)-~(( i -  1)/m)]2<rg) = T,.(rg)+O(n -~) 

where T,, denotes the d.f. of the X~ distribution, r o = (1 + e) 1/2 log log n, e and the 
constant implied by the 0 are positive numbers depending only on m, ~ and the 
sequence X 1 , X2 . . . . .  

2. We have 
sup [~'n (t) -- ~,  (t) l ~ 0 (3.10) 

0 <t<_.l 

with probability one for n ~ o% where ~.  (t)= (2 n log log n)- ~ S[.t]. 

Following Chover's method, we can deduce from statement 1 that / /~  I~nkEK(2 0 
with probability one for sufficiently large k, where n k = [ckl, c > 1. This relation 
and statement 2 imply //m ~,~EK(3~) for sufficiently large k and hence-us ing  
Chover's argument a g a i n -  we can obtain the desired result. 

To prove statement 1, let us observe that the event 

can be written as follows: 

D,,= {( (~,(1/m)- q3,(0) (p.(m/m)-_Co,((rn-1)/m)t~G} 
. . . . .  

where G ~ R ~ is an open sphere centered in the origin with radius r o . Let us now 
apply condition B 2 to obtain 

P(D, )=P( (  ~( l /m)-  ~(0) 

= 

where 

{(m/m)-{((m-1)/m) ) G) 
, . . . ,  ~ ~ + R  (3.11) 

1 1 
IRI ~ C14 (1 +/~ (Gr (n/m)~ 1 - C~ 4 (1 + C 15 (to -[- x)m) (/'//m) ~l 

1 (log log n) "/2 1 
< C17 _-< C17 <~ C16 (2ro)" (n/m),1 = n ~, n,i/2 

(3.12) 
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for sufficiently large n; here the constants C14 . . . .  , C17, el depend on m, e and the 
sequence X1, X 2 . . . . .  Comparing (3.11) and (3.12), we get the desired result. 

For the proof of statement 2 we remark that the moment condition E [X,] 2+a 
< C18 (n = 1, 2 . . . .  ) implies n -+ 12(,I--* 0 and therefore n - -  max IXkl --, 0 with 

l<k<_n 
probability one; on the other hand, we have 

1 lO,(t)-~,(t)l<(2nlog o g n ) - - m a x  ]Xkl ( 0 < t < l ) .  
l<_k<_n 

Applying (3.3) with p=4, we obtain the result. 

c) We turn now to the t h i r d -  and most difficult-  step of the proof of Theo- 
rem 3: we show that the set of all norm-limit points of the sequence 0,  is ~ K  
with probability one. The main problem arising here is a rather typical one: how 
to apply the Borel-Cantelli lemma for dependent events? In the present case the 
solution will be quite natural: it will be possible to show by means of condition B 2 
that the "critical" events are nearly independent (in some sense) and then we can 
apply Lemma 2. 

Let K* ~ K be the set of functions defined by 

K * =  x: x e K a n d  I(2(t))Zdt<l . 
o 

It is obvious that K* is dense in K (in the norm C [0, 1]) therefore it suffices to 
prove that the set of all norm-limit points of the sequence 0,  is ~ K* with proba- 
bility one. Let us fix g~K*, e> 0 and choose a large integer m such that 

sup Ig(t)-g(t')[ <~, 1/rn<6~ (3.13) 
I t -  t'l < 1/m 

where 6~ is defined by (3.9). Let us introduce the events 

E. = {I (~, (i/m)- ~. ( ( i -  1)/m))- A g,I < ~/m for i=  2, 3 . . . . .  m} 

E* = {I (0, (i/m)- 0, ((i- 1)/m))- A g,[ < 2 e/m for i=  2, 3, ..., m} 

H . =  { sup 10,(t)-g(t)l <6s} A gi=g(i/m)-g((i- 1)/m). 
o=<t=<t 

Using the a.s. equicontinuity of the sequence On (in the form as it was formulated 
in a)), statement 2, and relation (3.13), we can easily see that 

lim sup E n c lim sup E* ~ lim sup/4, 
n ~  o9 . ~  GO . ~  oo 

(apart from a set of probability zero), therefore it 'suffices to show that 

P(lim soou p E,)= 1. (3.14) 

In the proof of (3.14) we intend to apply Lemma 2, so first we estimate P(E.) 
from below. A trite calculation shows that the event E. can be written as follows: 

( ~5, (2/m)- q3, (l/m) 
E "  = ] / ~ / m  

Z. Wahrsche in l i chke i t s theor i e  verw. G e b .  Bd. 26 

~.(m/m)-~).((m-l/1/m 1)/m) ) eB} 
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where B c R m- 1 is an open rectangle (actually a cube), namely 

B={(x 1, ..., Xm_l): (Ag~+ t --e/m) lf2m log logn<x~ 

<(Ag~+ 1 +e/m)l/2m log logn, v= 1, 2, ..., m -  1}. 

Using condition B2, we obtain 

l  m/t 
P(E.)=P I/rim ' " "  ]fl/m ~ +R1 

(3.15) 
(ag~+~/m) ~ 1 

=- f i  ~ - - e - s Z / 2  ds + Rl = Vl + R1 
i=2 (Agi--e/m) 21/2mloglogn V ~ 

where 
1 

IRI[ < C19(1 +~t(B(1))) (n/m)~ 

[ ( 11 =<C19 1+ 2 + ~ l / 2 m l o g l o g n  ) (n/m)~ (3.16) 

(log logn) 2 1 
~_~ C20 n fl ~ C21 n~/2 

for sufficiently large n; the constants C19, C20, C21, fl depend only on m, e. (We 
used here the simple observation that if H, H' are open rectangles in R k of the form 

H='{(Xx,...,Xk): av<xv<b~, v = l , 2 , . . . , k }  

H'={(xl,...,Xk): a , - l < x v < b , + l ,  v = l , 2 , . . . , k }  

then Ha)cH'. ) The expression V 1 has already appeared in [7], p. 214, where the 
estimate 1 m - 1 

was deduced; C22 is a constant independent of n. Now the assumption g(t)~K* 
1 

implies that ~ 0 (t)) 2 d t = 1 - p where # > 0, thus we have for sufficiently large n 
0 

m-1 
Vl>C22exp{_(l_lJ) loglogn}.( loglogn ) 2 >C23(logn)-(1-,/2) 

and therefore we obtain from (3.15) and (3.16) 

P(E.) >= C23 (log n)-(1 - ~t/2) -- C21 n -  ~/2 > C2 4 (log n)-(a - u/z). 

Let us now put here n = m k, then we obtain for sufficiently large k 

1 (3.18) P(Em~)> C25 kt-U/2 

where C25 does not depend on k; we can also achieve (changing the constant C2s ) 
that (3.18) holds for every k > 1. 
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Our  next  goal is to es t imate  the difference 

tP(Emk Emz)- P(Em~ ) P(E~,)] 

for every k < 1. A trite calculat ion shows that  the events Emk, E m, and Em~ Era, can 
be wri t ten as follows: 

( q~'~ (2/m l-k+1) _ C~m~ (1/m l-k+1) 
grnk = ~ l  / m l _  k + 1 ~ . . .  

O"~(m/mZ-k+l)--Omz((m--]/~/m~_k+l 1)/mI-k+l) ) ES} 

E,,, = { (  Om'(2/m)-Om'(1/m)ll~ ' " "  (Pm'(m/m)-Om'((m-1)/m)l/T/m ) ~S'} 

{(~m,(2/ml-k+l)--Om,(1/m z-k+1) 
Emk Em~ =- ] / / 1 / t t l l _  k + 1 ' . . .  , 

Om~(m/m '-~ + ~) - O ~ . ~ ( ( m -  1)/m *-k + ~ ) 

/ f / m ~ - ~  § ~ 

O~(2/m)-~m*(1/m)l/1/m ' " "  ~'~(m/m)-(Pm'((m-1)/m) ~S"} 

where S ~ R"- ~, S' c R"- ~, S" c R 2 m- 2 are open rectangles, namely  

S = {(x 1 . . . .  , Xm_l): (A g~+l -elm) l/2m log logm k 

< x. < (A g .+ l  + e/m) l/2m log logm k, v = 1, 2 . . . .  , m - 1} 

S ' =  {(x 1 . . . .  , x,._ 1): (Ag~+ 1 -e/m) l/2m log logm l 

< x ~ < ( d  g~+l +e/m) ]/2m log logm l, v =  1, 2 . . . .  , m -  1} 

St'={(XI,... ,X2m_2): (X1,.-.,Xm_I)eS, (Xm, . . .  , X 2 m _  2 ) E S '  } = S X S t . 

Let further ( be a s tandard  Wiener-process  (on an arb i t ra ry  probabi l i ty  space 
(f2', d' ,  P')) and let us consider  the events 

Kk' l= ]/ l /m '-a + l ' " "  ]/~/ml- k + l ' 

~(2/m)-~(l/m) ((m/m)-(((m--l)/m) )ES,, } 
' '  r  

18" 
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(which are the formal analogues of the events Emk , Era, , E,n~ Emz in the case when 
the process 0m' (t) is replaced by ((t)). We have evidently Kk, l = lk, l Jz, furthermore 
k<l  implies mira l-k+~< 1/m and therefore Ik, l and Jl are independent. We can 
now write 

P(E.,~ E~,)-P(Em,~ ) P(E.,,) 
= (P (Emk Era,) -- P (Kk, l)) 4- P (Ik, l) (P (dz) - p (Era')) 4- p (Emz) (P (Ik, l) -- P (E,,,,,)) 

and thus we obtain from condition B 2 for l>  k > 1 

]P(Em~ Em,)- P(E,.~) P(Em3[ 

<= ]P(Em~ Era,)--P(Kk. t)l + IP(E, .3-  P(4)I + IP(E..~)-P(Ik, ~)] 
1 1 

_-< C26(1 +#(SI;))) (mk-1)~, 4 C27(1 +#(S11))) (m,-ly= 

1 
+ 

<C26114-(2+ 2~m ]//2mloglogmk)m-J (2W~-] /2mlog logml )m-x  ] 
(3.19) 

1 [ ( ~ _ 1 / /  )m-l] 1 
(rnk_Xy ' 4-C27 1+ 2 +  2mlog logm z ~(ml_~)~2 

+ C 2 7 [ l + ( 2 + 2 ~  l//2mloglogmk)m-1] 1 

m - 1  m--1 m--1 m--1 

--<C28 (logk) 2 (log/) 2 (log/) 2 (logk) 2 
mk~l ~- C29 mlTa ~- C29 mk~2 

(log l) m- 1 i m - 1 
C30 mk~, ~C30 mk~ -C301 m-l e-~k 

where ~1, ~2, C26 .... , C30 are constants which do not depend on k, l; 7-- min(7~, 72), 
z = ?  logm. 

Having the estimates (3.18) and (3.19), the proof of Theorem 2 can be finished 
very shortly: we have only to observe that by (3.18) and (3.19) the events Em~ 
(k= 1, 2, ...) satisfy the conditions of Lemma 2, thus the lemma is applicable 
and we obtain 

P(lim sup E ~ ) =  1 
k---~ oo 

which evidently implies (3.14). 
Now we turn to the proof of the above mentioned fact that condition B a 

implies condition B 2. 

Lemma 3. If  a sequence X 1, X 2, ... satisfies condition B 3 then it satisfies also 
condition B 2. 

The statement of Lemma 3 is very typical: we assume the closeness of two 
characteristic functions and assert the closeness of the corresponding distri- 
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butions. The proofs of such statements in one dimension are usually based on 
Esseen's inequali ty (see [3], p. 512) and for the proof  of L e m m a  3 we need a multi- 
dimensional  analogue of this inequality. Such inequalities really exist, they have 
been obtained recently by von Bahr  (see [1]). We present here one of them which 
is not  the most  general one but  which is sufficient for our  purposes. 

Bahr's Formula.  Let  F and G be k-dimensional distribution functions, let G 
have a continuous density function ~ and suppose that on the sphere x21 + . . . _kX k=  R 2  2, 
0 satisfies the inequality ~ (xl, . . . ,  Xk) <= 01 (R) where ~1 (R) is differentiable, ~a (R).  

o o  

R k - 1 ~ 0 if e ~ Go and .[ [ Oi (e)[ e k- 1 dR = L < oe. Let  f(21 . . . . .  2k) and g (21, . . . ,  2k) 
0 

be the characteristic functions of  F and G, put h(21 . . . . .  2k)=f(21,  . . . ,  2k)-- 
g(21 . . . . .  2k) and let T be an arbitrary positive number. Then we have for every 
bounded convex Borel-set B ~ R k : 

L 
IF(B)-G(B)I  <=E 1 ~ - + e  2 #(B(E~/T) ) ~ [h(Xx . . . .  , J(k)l dJ~l . . .  d ) ~ k  (3.20) 

Flail __<7' 

where El,  E2, E 3 are positive constants depending only on k. 

For  further inequalities we refer to [1]. We also ment ion that inequality (3.20) 
is an easy consequence of formulas (5), (11), (12), (15) and Section 8 of [-1 ]. 

Proof  of  Lemma 3. Let  us fix 0 < t 1 < t' 1 < . - .  < t~ < t', < 1 and apply Bahr's ine- 
quali ty with k = r, F = F. (t ...... t;), G = ~(t ...... t;), T =  S (n t) ~, where F f  ...... t;), q~(t~ ..... t;) 
are the distribution functions defined in Section 2, t = m i n ( t '  l - q ,  . . . ,  t'~-t,), S 
and v are positive constants which we shall determine later. In this case we have 
evidently O(x I . . . .  , G)=(2rc)  -~/2 e -~(x~+''+~]) and therefore ~1 can be chosen as 

follows: Oa (R)=  (2re) -~/2 e -~R~. This function satisfies all the addit ional  require- 
oo 

ments and we also see that  in our  case L=(2~z) -*/2 ~ R ~ e -~R~ dR depends only 
on r. Let  us now assume that  o 

S(nt)~ <= C6 (nt) ~ (3.21) 

where C6, 7 are the constants appearing in condit ion Ba; then (2.6) holds for 
every 2=(21,  ...,2~) such that  IP2]] <S(n t )  ~ and thus we obtain from (3.20) for 
every bounded  convex Borel-set B ~ W: 

IF(, ...... tr)(B ) _ q~(t ...... t;) (B) [ 

< C31 
= S(nt)~ + C32 # ( B ( ~ ) )  �9 <=s(,t)v~ if(t1 ..... t;)_fo(tl ..... t;)[ d21 ... d2 r 

t~(n ( ))" C 7 d21 d2 r (3.22) C31 ~ (nt) ~ "'" 
<-- S(nt)" + C32 ~ IIXll<=s(,t)v 

S r 
- -  c32 / B  G4 

C31 

S(nt; 



256 I. Berkes: 

where C31 , ..., C34 (and, of course, C7, 6) depend only on r. Let us now choose S 
and v as follows: S = C33, v =rain(7/2, 6/1 + r). In this case relation (3.21) is obvi- 
ously satisfied for nt>C35 where C3s is a positive constant depending on r. 

Furthermore, this number v satisfies v>0, 6 - v r > 6 -  r r ~ - ~ > 0  thus tl= 

min(v, 6 - v r )  is a positive number depending on r. Finally, it is obvious that 
with this choice of S we have C33 <S(n t y  for n t>  1. Using these facts, we obtain 
from (3.22) for n t>max(1 ,  C35): 

< C36 C37 1 
IF~* ...... t~)(B)- 45" ...... t;)(B)l = - ~ - + ~  -#(B~l')-< C3s(1 +#(B(1))) (nt)" " 

On the other hand, it is possible to choose the number C3s so large that for n t < 
max(l, C35 ) we have C3s �9 1/(nt)">2 (this value of C3s depends only on C35 and t/, 
that is only on r and the sequence X1, X2, ...), but then the inequality 

1 
IF~" ..... t;)(B)- I~(1~ . . . . . .  ';)(B)I < C3s(1 +#(B(1))) (nt) ~ 

holds also for n t<max(1 ,  C35 ) since the left side is _<2 and the right side is >2. 
This completes the proof of Lemma 3. 

The next lemma will be used in the proof of Theorem 1. 

Lemma 4. Let X1, X 2 . . . .  be a uniformly bounded sequence of random variables 

such that for every m>_O, n>__l, 0 ~ t ~ C 3 9  l ]~n  w e  have P([ST)l>tlfn)<= 
C40 e -c41t2 where C39, C,o, C41 are independent of m, n, t. Then the conclusion of 

Lemma 1 holds, i.e. there exist positive constants B', C' 8 such that for every re>O, 
n > 1 we have 

P( max [S(~')[ >-_B' ~ ) <  C~ e - 21~gl~ 
l<v~<n 

This lemma is a simple variant of a lemma in Takahashi's paper 1-8] and it can 
be proved in the same manner. 

Proof of Theorem1. Let us apply condition B 2 with r = l ,  n = M + N ,  q =  
M/ (M + N), t' 1 = 1, B = ( -  h, h), then we obtain 

I P (IS~) I < h ~ )  - P([ ~ (1)1 < h) l 
< C42 [1 +(2h+2)]  N -c '3< C~2 N-c44~ C42 e -C4sh2 

provided that h< C46 1]/~gN; this relation shows that the sequence X,, X2, ... 
satisfies the conditions of Lemma 4. We can now observe that the equicontinuity 
statement in the proof of Theorem 2 was deduced only from relation (3.1), thus, 
in view of Lemma 4, it is valid also under the conditions of Theorem 1. Further- 
more, in steps b), and c), we used only the equicontinuity property and condition 
B2, except the proof of (3.10) where we needed the relation sup E IX.12+~< oo 

n 
for a suitable 6 > 0, and this was deduced from condition A. Our moment condition, 
however, is valid also under the conditions of Theorem 1, since in this case the 
sequence X~, X2, ... is uniformly bounded. 
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4. A More General Theorem 

It can be proved by calculations that a uniformly bounded sequence of inde- 
pendent random variables having mean 0 and variance 1 satisfies condition Ba, 
therefore, in view of Theorem 1, the functional law of the iterated logarithm 
holds for such a sequence. It can also be checked that if X1, X2, ... are independent 
random variables satisfying the conditions 

EX,=O, EX2= 1, P([Xn[>-t)< C47 e -c48t2 

where C4v and C4s are positive constants independent of n and t, then the con- 
ditions of Theorem 2 are satisfied, thus the functional law of the iterated logarithm 
holds also in this case. These remarks show that Theorems 1 and 2 imply certain 
results for independent random variables; these results, however, are not quite 
satisfactory, since their assumptions are too strong. Even the second, weaker 
condition P(lX, I >t)< C47 e -c"St2 implies the existence of the moments of all 
order of the variables X,; moreover it implies the existence of the moment gener- 
ating functions on the whole line. It does not follow either from Theorem 1 or 
from Theorem 2 that the functional law of the iterated logarithm holds if 3;1, X 2 . . . .  
are independent, identically distributed random variables with mean 0 and 
variance 1 (Strassen's result). The situation is not better even if we assume in 
addition that E IX II 2 +~< + oo. It is therefore worthwhile to formulate a common 
generalization of Theorem 1 and Theorem 2 which implies the latter result at 
least. The generalization is almost automatic from the proofs of Theorems 1 and 2. 

Theorem 3. I f  a sequence XI, X2, ... of random variables satisfies condition B2, 
E IX.12+a__< C49 (n = 1, 2, ...) and 

P( max [S~")I >B* l /nlog logn)< C5o e -21~176 (4.1) 

where C49 , C5o, B*, 6 are positive constants depending only on the sequence X1, 
X 2, ..., then the functional law of the iterated logarithm is valid for this sequence. 

Proof See the proof of Theorem 1. 

Let now X~, X 2, ... be a sequence of independent, identically distributed 
random variables such that EXI=0,  EX2=I ,  E [Xxl2+a< +oo. Using the fact 
that the components of the random vector in (2.1) are independent, we obtain 
by standard calculations that the sequence X~, X 2 . . . .  satisfies condition B3; on 
the other hand, the well-known inequality 

P maxS~m)>c <~P(S(m)>c-2 n) 

(which is valid for independent random variables having mean 0 and variance 1, 
cf. [5], p. 403) and the central limit theorem with remainder term O(n -a/z) yield 
(4.1) with B*= 3. We omit the details. 
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