Some Remarks on a Class of Semi-Groups of Operators. I

Vasile I. Istrățescu

0. In [1, 2] some results are given about the class of all semi-groups of operators $(T_t, t \ge 0)$ on a Banach space which have the property that for some t > 0, $T_t - I$ is compact. Since there exist some important generalizations of the notion of compact operators, our purpose in this note is to obtain some results about semi-groups such that for some t > 0, $T_t - I$ is in some class of operators which generalizes the class of compact operators, namely the class of α -contractions, densifying operators and Riesz operators.

1. First we recall some definitions for the reader's convenience. Let X be a Banach space and A be a bounded set in X. We define $\alpha(A)$, the Kuratowski number of the set A, as the infimum of all $\varepsilon > 0$ such that there exists a decomposition of A into a finite number of subsets of diameter less than ε . It is easy to see that the following assertions hold:

1) if A, B are bounded sets in X; then $A \subseteq B$ implies $\alpha(A) \leq \alpha(B)$;

2) if A is relatively compact; then $\alpha(A) = 0$;

3) if $A + B = \{a + b, a \in A, b \in B\}$, then

 $\alpha(A+B) \leq \alpha(A) + \alpha(B).$

The notion of an α -contraction was introduced by G. Darbo.

Definition 1.1. A function $f: X \to X$ is called an α -contraction if there exists $k \in (0, 1)$ such that for every bounded set A we have $\alpha(fA) \leq k \alpha(A)$ where $fA = \{y, y = f(x), x \in A\}$.

Definition 1.2. A function $f: X \to X$ is called densifying if for each bounded set A we have $\alpha(fA) < \alpha(A)$ if $\alpha(A) > 0$.

Remark. It is easy to see that every operator of the form $T_1 + T_2$ where T_1 is a contraction map and T_2 is compact, is an α -contraction.

2. Let $\{T_t\}_{t\geq 0}$ be a semi-group of class C_0 on X and define the set C as

{ $t, t > 0, T_t - I$ is an α -contraction}.

Clearly these semi-groups include the semi-groups studied by Cuthbert. Our first result is a generalization of Theorem 1 in [1].

We suppose that the semi-group $\{T_t\}_{t\geq 0}$ satisfies $||T_t|| \leq M e^{\omega t}$ for all $t\geq 0$ with constants M, ω .

Theorem 2.1. If $C \neq \emptyset$, then T_t is invertible for all t.

Proof. Suppose that the assertion is false. Then $0 \in \sigma(T)$ for some t (and thus for all t > 0). Since $T_t - I$ is α -contraction it is easy to see that the subspace $N(T_t)$

is finite-dimensional. We can show that $0 \in \sigma_p(T)$, the point spectrum of T_t . Indeed, we find a sequence of unit vectors $\{x_n\}$ such that $Tx_n \to 0$. But the set $\{x_n\}$ is relatively compact because we have, if $\alpha(\{x_n\}) > 0$,

$$\alpha(\{x_n\}) > \alpha((T_t - I(\{x_n\}))) = \alpha(\{x_n\})$$

since $\alpha(\{Tx_n\})=0$. From this it is clear that $0 \in \sigma_p(T_t)$.

We can now follow the arguments in [1] to obtain the assertion of the theorem. Next we define the following set:

$$C_R = \{t > 0, T_t - I \text{ is of Riesz type}\}.$$

It is well known that every compact operator is also of Riesz type. Our aim in this section is to give some equivalent conditions on the semi-group T_t such that $C_R =]0, \infty[$.

Theorem 2.2. The following conditions are equivalent for a strongly continuous semi-group $\{T_t\}, t \ge 0$.

- 1) $C_R =]0, \infty[;$
- 2) S is of Riesz type;
- 3) $\lambda R_{\lambda} I$ is of Riesz type for some $\lambda \ge \omega$.

Proof. If $\mu \neq 1$, then $\mu \in \sigma(T_t)$ implies that $\mu - 1$ is a Riesz point and thus $\mu \in P_{\sigma(T_t)}$ and

$$\sigma(T_t) = \{e^{xt}, x \in P_{\sigma(S)} \text{ for all } t > 0\}.$$

By Dieudonné's result [Ch. 11, § 4, Ex. 5], $\{\lambda, \lambda \in \sigma(T_t), |\lambda - 1| \ge \varepsilon\}$ is finite for all t > 0.

Now it is easy to see that if $C_R \neq \emptyset$, then T_t is invertible for all t since the arguments in Theorem 1 of [1] or in our Theorem 2.1 work in this case. From this we obtain as in [1] that S is bounded and $T_t = e^{St}$. We show that S is of Riesz type. Since (see [1])

$$S = \left[\int_{0}^{t} T_s \, ds\right]^{-1} \left(T_t - I\right)$$

and T_t-I is of Riesz type, we have that the image of S in the Calkin algebra $\mathscr{C} = \mathscr{L}(X)/\mathscr{K}, \mathscr{K}$ the ideal of all compact operators on X, is quasi-nilpotent and this shows that S is of Riesz type.

In the same way, since

$$T_t - I = S \int_0^t T_s \, ds$$

we obtain that $2) \rightarrow 1$).

For the proof of $(2) \rightarrow (3)$ we use again the characterization of Riesz operators with the Calkin algebra. For an element $T \in \mathcal{L}(X)$, \hat{T} denotes its image in \mathscr{C} .

Since

$$\sigma(\lambda \hat{R}_{\lambda} - \hat{I}) = \{\sigma(\lambda(\lambda \hat{I} - \hat{S})^{-1} - 1) = \{\lambda(\lambda - \mu)^{-1} - 1, \mu \in \sigma(\hat{S})\} = \{0\}$$

the assertion is proved.

For the converse $3 \rightarrow 2$), we remark that

$$R_{\lambda}(T_t-I) = (\lambda R_{\lambda} - I) \int_{0}^{1} T_s \, ds$$

and thus

$$\hat{R}_{\lambda}(\hat{T}_t-\hat{I})=(\lambda\,\hat{R}_{\lambda}-\hat{I})\int_{0}^{t}\hat{T}_s\,ds$$

which gives that $T_t - I$ is of Riesz type for all t > 0. This implies that S is of Riesz type.

We remark that, from the relation

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\lambda} R_{\mu}$$

it is clear that if for some t_0 , R_{t_0} is of Riesz type, then R_t is of Riesz type for all t > 0. This follows from the use of the Calkin algebra and the result of Basterfield [3],

$$z_t = \frac{z_{t_0}}{1 - (t_0 - t) z_{t_0}}$$

for all $z_{t_0} \in \sigma(R_{t_0}), z_t \in \sigma(R_t)$.

We remark that our result gives rise to the following problem: if R_t is of meromorphic type, or if $T_t - I$ is of meromorphic type, do the results remain valid?

Acknowledgment. The author is grateful to the referee for a number of suggestions.

References

- 1. Cuthbert, J. R.: On semi-groups such that $T_t I$ is compact for some t > 0. Z. Wahrscheinlichkeitstheorie verw. Gebiete 18, 9-16 (1971).
- 2. Williams, D.: On operator semi-groups and Markov groups. Z. Wahrscheinlichkeitstheorie verw. Gebiete 13, 280-285 (1969).
- Basterfield, J. G.: On quasi-pseudo resolvents, Proc. 5th Berkeley Sympos. Math. Statist. Probab., Univ. Calif. 193-195, vol. II, part II.
- 4. Dieudonné, J.: Foundations of modern analysis. New York, 1960.

Vasile I. Istrățescu Institute of Mathematics Calea Griviței 21 Bucharest, Romania

(Received May 18, 1972 / in revised form March 19, 1973)