Z.Wahrscheinlichkeitstheorie verw. Geb. 26, 207 —217 (1973)
© by Springer-Verlag 1973

On Entropy and Information Gain in Random Fields
Hans Follmer

0. Introduction

By a random field we mean a stochastic process (X,),. which assumes values
in some finite set S and whose parameter set T is the d-dimensional lattice. Alter-
natively we may say that a random field is a probability measure y on ST. A random
field is called a Markov field if the conditional distribution of X, given the states
(XJ)s+, depends only on the nearest neighbor states (X);;_, 1. For d=1 station-
ary Markov fields reduce to Markov chains (cf. [11]).

For the classical case d =1 Spitzer has shown that, among stationary random
fields, a Markov field is characterized by the fact that it minimizes a suitable
free energy (cf. [12]). His method does not seem to carry over to higher dimensions.
The purpose of this paper is to present a different approach which does two
things: (a) it works for arbitrary dimension d=1 and (b} it shows that the varia-
tional characterization of the Markov property is intimately related to the theorem
of McMillan in the sense that both can be based on essentially the same argument.

The key is formula (2.5) for the entropy of a stationary random field. Its proof
yields the d-dimensional version of McMillan’s theorem, first published by
Thouvenot in [13], as an aside. In Section 3 we introduce the information gain
of a random field p with respect to a random field v. Here (2.5) implies that the
above conditional distributions are the same for y and v as soon as the information
gain is zero. Section 4 explains why this amounts to a variational principle.

Markov fields are known to be examples of Gibbs fields in the sense of Dobrusin
[3] and Lanford and Ruelle [8] where the conditional distributions above are
given in terms of a potential function (cf. [ 1, 11, 2]). Thus Spitzer’s characterization
of the Markov property is contained in the variational principle for Gibbs fields
due to Lanford and Ruelle [8]. Our translation of the information theoretic result
of Section 3 into the thermodynamics of Section 4 is made such that it covers
Lanford and Ruelle’s result. As a by-product we obtain, in the case of Gibbs fields,
the d-dimensional version of Breiman’s theorem that there is almost sure conver-
gence behind the theorem of McMillan.

1. Definitions
Let S be a finite set. We set

T={t=(t,, ..., t,)|t; integer}

and denote by Q the set of all maps w: T— 8. For V< T let &, be the o-field
generated by the projections w — w(?) (t€V); £, is meant to be the trivial o-field

{9,2}.
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(1.1) Definition. A random field is a probability measure u on (22, %7).

Let u be a random field and let us use the notation

#(@V)()=plo®=d%)(.)
for conditional probabilities.
(1.2) Definition. The conditional probabilities

w(T={t})  (teT)

are called the local characteristics of the random field y. If the local characteristics
are positive and depend only on nearest neighbors, i.e. if

(1.3) (I T—{H=p (. IN@)>0  (teT)

where N(t)={seT||s—t| =1}, then u is called a Markov field. Replacing N (z) by
N,(t)={seT|0<|s—t| =r} we obtain the notion of a Markov field of orderr.
For each lattice point te T we denote by 0, the corresponding shift, i.e. the map
on Q defined through
[0, (w)](s)=wft+s) (seT).

The random field u is called stationary if it is invariant under all shifts: p0,=u
(teT). In this case the local characteristics of y are stationary in the sense that
tho(a|T—{0})0 67! is a version of y,(a| T— {¢}) forany teT.

(14) Remark. It is well known that a random field is in general not determined
by its local characteristics (possibility of phase transition), and that stationarity
of the local characteristics does not imply that the random field is stationary
(possibility of symmetry breakdown). Cf. [11].

2. Specific Entropy

Let u be a random field. For any V= T denote by p,, the restriction of y to 4,
If V is finite then %, is finite and we can define the entropy of y,, as

2.1 H(py)= —E,[log p(wy)]
where E, denotes expectation with respect to 4 and wy, is the restriction of w to ¥
. . . . 1

(which can be identified with an atom of %,). It is well known that ITI H(uy)
converges to some limit in the interval [0, H(u,)], the specific entropy h(u) of the
random field p, if u is stationary and if ¥ expands to infinity in a suitable way
(|V] is the cardinality of V). The aim of this section is to find a convenient formula
for that limit. Its existence as well as the d-dimensional version of McMillan’s
theorem will be by-products of the argument below.

For k=1, 2, ..., oo let T, be the set of all lattice points t=(¢,, ..., t,)eT with
t,=n;k for some integer n, and define

(2.2) T¥={seT|s<0 or s¢T;}

where < denotes the lexicographical ordering on T.
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(2.3) Examples. 1) T, =T, and T;*is the past {seT|s<0}.

2) T, is the set of even lattice points, and T3 is the union of the past and the
uneven part of the future {seT|s>0}.

3) T, is meant to be {0} so that T*=T—{0}= (] T;*.
k=1
Fora=(a,,...,a,)eT we set

V{a)={teT|0<t,<a;}
and
Vi@=V@nT, VFa=V@nT*=V(a)-Va).

We write a — oo if min a; — 0.
1<isd

(2.4) Theorem. Let u be stationary. Then the limits

h(w)= H (:uV(a))? hif ()= lim

1 1
lim - e H(uy,
L V@) 2 @) e

exist and satisfy
(25) B = (1 =k~ I () k= B, [H (1o (1 T)]

where H(uo(.|T¥))(w) denotes the entropy of the probability measure py (.| T¥)(w)
on S.

(2.6) Remarks. 1) We may write
Eu[H{po ([ TO)]= = E,[ X po @l ) (@) log o (@] ) )]
= —E, [log to (0 (0)| T*) (@)].
2) For k=1 we obtain
(2.7) h(w)=E, [H(uo (.| )]

Part 2) of the proof shows that there is a I'-convergence behind the existence of
specific entropy:

(2.8) log 4 (@y o) = E, [H(uo (.| T¥)|.7]

1
V(@)

in L, where E,[.|.#] denotes conditional expectation with respect to the o-field
F of stationary sets (all 4e#, with 0;'(4)=A4 (teT)). This is the d-dimensional
version of McMillan’s theorem (cf. [13]). For a d-dimensional version of Breiman’s
theorem on almost sure convergence see (4.28) below.

Proof. 1) For V=V {(a) and weQ we write

ulwy)=p(oy,) rV[ [Ho(@©@)]V)(@)] -6,
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where V,=(V;* U {seV,|s<t})—t<= T* and where we identify wy, with an atom of
Fy (@, is identified with Q). Thus

29 T | —— logu(wy)= T | ——logp(@yy) + 7 IVI Y [log o (w (O)|V)(@)]- 07
teVi

2) Part 5) below implies that for any >0 there is an integer M >0 such that
(2.10) J10g o (e @) V)(-) ~log o (@ (0) T, <

as soon as ¥, 2 T,* Ny, (0) (| . | , denotes the L, -norm). Thus

4Vl
A

@11) | b HoghofoO17) - logh 0 OITFL-6;”

'Vl tEVk
where || is the number of those teV; which have distance not greater than M
from T—V,, and where

(2.12) c(w= sup [logu,(@©@W)(.)], <

Wi c Ty

again by 5) below. Note that |V} (a)| |V;(a)|=* -0 for a— co.

3) Consider the case k=1 where V,(a)= V(a) and let us discuss I}-convergence
of the left side in (2.9) as g — co. The first term on the right vanishes, and so part 2)
shows that the question is reduced to the I'-convergence of

1 ) }
Tr/(T)[te;(a)[loguo (0 (0)| T#) ()] - 07

But here we can apply the d-dimensional ergodic theorem ([5], VIIL, 6.9) and this
yields (2.8). Taking expectations we obtain (2.7) and in particular the existence
of h{p).

4) Let us return to the general case and let us discuss convergence of the
expectation of the right side in (2.9) as a — 0. Since we have convergence on the
left side by part 3), it is enough to consider the second term on the right. But part
2) shows that, in the limit, we may replace its expectation by

1 )0 91 = Vl

(@ ©)T¥)],

and this converges to —k~* E,[H(u, (.| T;¥))]. Thus we have (2.5) and in particular
the existence of hf (u).

5) Here we recall, in a form which is suitable for the application above, a
familiar step in the classical proof of McMiilan’s theorem. Let #” be a collection
of finite subsets %" = T— {0} filtering to the right with respect to inclusion. Then

log 11 (0 (0)| W)/(w) — log o (@ (0)| | ) W)

Wew
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in I, for each p= 1. To prove this, note that the functions

gw (@)= —log s (wO)|W)w) (We¥)

form a submartingale =0 with respect to the o-fields %y, =%, - Moreover,
(g%, is uniformly integrable for each p=1:

E,[gh;nSgl <n+11<IS| (n+1) e

(same proof as in [7], p.311) which is the tail of a convergent series. Thus (g,)
converges in I” to some limit g (same argument as in [9], V. 20). In order to identify
the limit note that puy(w(0)|W)(w)— iy (w )| W) in L, ([9], V.20) and use
almost sure convergence along increasing sequences (W,) plus continuity of log(.)
to conclude g(w)= —log iy (@ (0)| ) W)(w) p-a.s.

3. Specific Information Gain

Throughout this section u and v will be two stationary random fields. For any
finite V' = T we may define the information gain of u, with respect to v, as

(3.1) H(uy|vy)=E, [log lv‘((zjv)) ]

a number in [0, co] (cf. [107).

(3.2) Proposition. Suppose that v is Markov of order r. Then the specific infor-
mation gains

h(,u|v)—llm |V( )| (:uV(a)IVV(a))

and

i (ulv)= |V*( )l (MV;@)WV;;(«;))
exist and satisfy
(33)  h()=1~k Y B+, E[Huo (T o (ITH]  (k>1)
where the integrand on the right denotes the information gain of uy(.|T*)(w) with
respect 10 vo (.| T*) (@)= v, (.IN, (0))(w).
Proof. Write

1 1 1
S Bl =E, | logn(oy) — - logvoy)]

and split up the two integrands in the manner of (2.9).

Let k> r. Since v is Markov of order r we have v, (.|W)=v,(.IN,(0))= v, (.|T¥)
as soon as W=2N,(0). Thus we may certainly say that for any £>0 there is an
integer M >0 such that

(3.4)  |llogve(@w(0)1V,)—logve(w(0)|T*(||,<&  assoon as ¥,2 T;* N Ny, (0).
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Moreover we have

(3.5) c(u, v)= sup [log v (@ (0)IW)] < oo

since vo(.|T—{0})(.)>0, which depends only on the finitely many atoms of
P> 18 bounded away from 0 by some >0 so that

Vo (AW () =E,[vo (IT—{0})] £, ] ()

may be assumed to be =a for any W < T—{0}. Combining (3.4) and (3.5) with
(2.10) and (2.12), we can proceed as in the proof of (2.4) and approximate the terms

1 to (V) -1]
L1 g [ log ol g
i Bl 2 loe 5 iy
by

Wl o (| T)
log ———=2 21,
Vi £, |10g vo(-m*)]

Granting the existence of h(u|v) which will come out independently in (4.25)
below, and thereby the existence of i} (u|v), we obtain (3.3).

(3.2) was motivated by the following
(3.6) Remark. From (3.3) we get

(37 R(ulv) 2 E, [H(pto (-1 T) o (- IV, )]

for k>r. Now suppose that we have h(u|v)=0. Then (3.7) yields
H(pto (TN o (-IN@)()=0  p-as.
Ho (T () =vo (. IN,(0))(.) p-a.s.

(cf. [10]). Since | J T;* = T;f = T— {0}, the martingale convergence theorem implies
k

and thus

o (-1 T— (O} =1im o (1 T¥)=vo (N,(0))  p-as.

Thus ¢ and v have the same local characteristics as soon as the specific infor-
mation gain h(u|v) vanishes. In particular p is also Markov of order r.

We will show in the next section that this remark amounts to a variational
characterization of the Markov property. But let us first extend it to the general
case of this section where u and v just are stationary random fields.

(3.8) Theorem. If h(u|v)=0 then u and v have the same local characteristics.

Proof. 1) We may assume without loss of generality that u is absolutely con-
tinuous with respect to v with a bounded density. For if necessary take v/ =4 (u+v).
It is easy to check that h(u|v)=0 implies i (u|v')=0 and that u and v have the same
local characteristics as soon as u and v’ do.

2) Part 2) of the proof of (2.4), applied to the random field v, shows that (3.4)
and (3.5) hold with respect to the I -norm. Now we use our assumption in 1) to
replace the L' -norm by the L‘”-norm. But (3.4) and (3.5) is all we needed in order
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to get (3.3). Thus A (u|v)=0 implies, as in the previous remark, that

Ho(ITH=vo(ITF) s,

for all k=1. Applying the martingale convergence theorem on both sides and
using absolute continuity of u with respect to v we obtain

o (IT={0)=v, (.IT—{0})  p-a.s.

4. Specific Energy
Let us denote by o the class of non-void finite subsets of T.
(4.1) Definition. A potential U is a collection of maps
U(4,.): S*>R (ded).

If U(4,.)=0 as soon as the diameter of A is greater than some fixed integer r
then U is said to be of finite range. If this is the case with r=1 then U is called
a nearest neighbor potential. We say that U is stationary if

4.2) Uld,0)=U(A+t,w,,)°0, (teT, Aest,weR).
Let us fix for the rest of the paper a stationary potential U such that

(4.3) U= Y 1UA,.)l<oo

Ocded

where |U(4,.)] is the supremum of |U(4,.)| on S4. If, for example, U is of finite
range then (4.3) is clearly satisfied.
For Ve, £eS7, peS™~" we define the energy of £ on V given the environment

@ as
4.4 E, (&)= AZ UA,o,)

=4
AnV+Q

where @& coincides with £ on V and with ¢ on T— V. Note that the sum on the
right is absolutely convergent due to (4.3). The probability measure 7, , on S
defined through

4.5) Ty, (O =2, e Fre®
is called the Gibbs distribution on V given ¢. The normalizing factor

(4.6) Zy,= Y e Be®

éeSV

is often called the (grand canonical) partition function on V given ¢.
(4.7) Definition. A random field yu is called a Gibbs field, and we write ueG (U), if

(4.8) 1@y =C| T ) @)=y 4, () pas.

whenever Ve and é€S”. G, (U) will denote the set of stationary Gibbs fields.
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(4.9) Remarks. 1) In general we have |G(U)|=|G,(U)|= 1. In other words: (4.3)
guarantees the existence but not the uniqueness of Gibbs fields resp. stationary
Gibbs fields corresponding to U (cf. [6]).

2) It is enough to require (4.8) for the one-point sets V= {t} with teT (cf. [4]).
Thus, in order to check if x is a Gibbs field, one has only to look at the local
characteristics of p.

3) Any Markov field is a Gibbs field with respect to some nearest neighbor
potential (cf. [1] and [11]). More generally: any Markov field of some finite order
corresponds to some potential of finite range (cf. [2]).

(4.10) Theorem. Let u be a stationary random field. For each acT choose a
@ (a)eSTV @, Then

. 1
(4.11) e(a))= lim WEVW),(P(“)((DV(“))

a— ®

exists, both p-a.s. and in If, (p2 1), and satisfies

U4,
4.12) e(.)=E, [0 zd—(—lfl“i

j] (.) pas.

In particular e(.) does not depend on the choice of the ¢ (a)’s.

(4.13) Definition. Let us call e(w) the specific energy of the configuration @
(under p) and the expectation

(4.14) e(w=E,[e(.)]
the specific energy of u. The specific free energy of p is defined as
(4.15) fwy=e(w)—h(y).
Proof. 1) Define
UA,w
go)= ¥ T2 (e
OcAesd IA|

The d-dimensional ergodic theorem says that
1
- o8
V@l "

eVa)

converges to the right side in (4.12), both p-a.s. and in IZ, ([S], VII], 6.9). It is
therefore enough to show

4.16) IEV,q,(a)V)—t;g 00 (w)|£24(V)
where A(V) does not depend on w and ¢ and satisfies
4.17) AV(@) V()| >0 as a—>c0.
2) Write
(4.18) Ey,o)= ¥ Udo)t Y  UMdy
et Prazt

An(T-V)*0
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where & coincides with @ on V and with ¢ on T—V, and

U A w U(4,0))
419) Ygobw)=Y ¥ ( A) —y ) —(Z“L‘
teV teV tedcV teV te Aesd | !
An(T-V)=*9

Now note that the first term on the right is the same in (4.18) and (4.19), and that
the second term on the right both in (4.18) and (4.19) is dominated in absolute
value by

AV=) Y U@L

teV teAedd
An(T-V)*0

3) We have still to check that the terms A4(V) defined in 2) satisfy (4.17). For
N 21 let us denote by /" the class of those sets Ae./ which have diameter < N.
For £>0 we can choose N such that

Y IU@)l<e  (teT),

teded — AN

due to (4.3) and the stationarity of U. Then we have

AV)selVi+ ) Y UA)I
teV  tedetN
An(T-V)*0

=& [V|+ VY U]

where |V'¥| is the number of points te V which have distance not greater than N
from T—V. But for any N we have |V¥(a)| |V (a)|~! -0 as a— o0, and this shows
4.17).

Now let us take up again the notion of information gain discussed in Section 3.

(4.20) Lemma. If y is a random field and v a Gibbs field then

1
lim ——[H (:uV(a)IVV(a)) —H (luV(a)an(a) w(a))] =0
a-o [V(a)l
for any choice of the @(a)’s.

Proof. (4.16) implies |Ey, ,(8)—E,, , (§)|<4(V) for any ¢, ¢, ¥, and this yields

(4.21) e—24N< 7y, (6) <24

Ty (&)
via (4.5) and (4.6). Now consider

3 v(wy)
H{py|ny ,)—H(uy|vy)=E, [log m] '
Since

v (a)V) . Ty wr-v (a)V)
Ty o (@) B Ty, o (©0y)

dviws_y)
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is a mixture of terms such as in (4.21), we obtain

4.22) log V@) 224(V),
Ty, ¢(wv)
and by (4.17) the lemma follows.
For any random field x4 we can write
1
4.23) l | H(.“Van (p) V] 10gZV ot E [E Vq:( J1- H(py).

| | I |
Now assume that p is stationary. Then the last two terms on the right converge
for V=V(a) and a - oo to e(u)—h(y) (cf. (4.10), (2.4)). This yields the theorem of
Lee and Yang, i.e. the existence of

a— oo

. 1
(4.24) p=lim Tar 0g Zy ), p (@

and its independence of the ¢ (a)’s (use (4.20) with u=v so that the left side in
(4.23) converges to 0). Thus all the terms in (4.23) converge. Now take ve G(U).
Combining (4.20) and (4.23) we obtain the existence of the specific information
gain h(u|v) and the relations

(425) h ('ulv) lV( )| (ﬂV(a)an(a),(p(a))

=p+e(u)—h(w.

We may also write
(4.26) O<h(ulv)=fW—1)

(note that f(v)= —p as soon as ve G, (U) due to (4.25) with u=v, define f(v)= —p
if ve G(U)— G, (U), and recall that information gains are always non-negative).

We are now in a position to translate our result (3.8) on specific information
gain into Lanford and Ruelle’s characterization of Gibbs states by a variational
principle, that is, the equivalence (i) < (iv) below.

(4.27) Theorem. Let i be a stationary random field and ve Go(U). Then the follow-
ing statements are equivalent:

(@) ﬂeG(U)

(i1) hm H(py )|ty (), 0 y) =0 for any choice of the ¢ (a)’s.

IV( )|
(iil) A(u|v)=0.
(iv) The specific free energy f(.) assumes in u its minimum.

Proof. (iii) = (i), which is the crucial step, is contained in (3.8). (i) = (ii) =

(iii) < (iv) is a summary of this section.

Let us conclude with the d-dimensional version, in the case of Gibbs fields,
of Breiman’s theorem that there is almost sure convergence behind the existence
of specific entropy:
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(4.28) Remark. Let v be a stationary Gibbs field. Since

1 1 1
. ————I V(a)l log TCV(a),q;(a) =~———l V(a)] 10g ZV(a),(p(a) + W),— EV(a),(p(a) ((,UV)

converges v-a.s. to p+e(w) as a — oo (cf. (4.24), (4.10)), and since

1
lim ——— 1087, ) o (@p @) — 108 V(WY ) =0
s V(@) £y @, 0@ (Ov @ (@y )]

for any w by (4.22), we obtain the v-almost sure existence of

a—

h(w)=lim [ — ﬁﬁ log v(a)V(a))]

and the relation h(.)=p+e(.) v-a.s.
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