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On Entropy and Information Gain in Random Fields 

Hans F611mer 

0. Introduction 

By a random field we mean a stochastic process (Xt)t~ r which assumes values 
in some finite set S and whose parameter  set T is the d-dimensional lattice. Alter- 
natively we may say that a random field is a probabili ty measure # on S r. A random 
field is called a Markov field if the conditional distribution of Xt, given the states 
(Xs)s,t, depends only on the nearest neighbor states (Xs)II ~-t II = 1. For  d = 1 station- 
ary Markov  fields reduce to Markov  chains (cf. [11]). 

For  the classical case d = 1 Spitzer has shown that, among stationary random 
fields, a Markov  field is characterized by the fact that it minimizes a suitable 
free energy (cf. [12]). His method does not seem to carry over to higher dimensions. 
The purpose of this paper is to present a different approach which does two 
things: (a) it works for arbitrary dimension d=> 1 and (b) it shows that the varia- 
tional characterization of the Markov property is intimately related to the theorem 
of McMillan in the sense that both can be based on essentially the same argument. 

The key is formula (2.5) for the entropy of a stationary random field. Its proof 
yields the d-dimensional version of McMillan's theorem, first published by 
Thouvenot  in [13], as an aside. In Section 3 we introduce the information gain 
of a random field # with respect to a random field v. Here (2.5) implies that the 
above conditional distributions are the same for # and v as soon as the information 
gain is zero. Section 4 explains why this amounts to a variational principle. 

Markov  fields are known to be examples of Gibbs fields in the sense of D obrugin 
[3] and Lanford and Ruelle [8] where the conditional distributions above are 
given in terms of a potential function (cf. [1, 11, 2]). Thus Spitzer's characterization 
of the Markov  property is contained in the variational principle for Gibbs fields 
due to Lanford and Ruelle [8]. Our translation of the information theoretic result 
of Section 3 into the thermodynamics of Section 4 is made such that it covers 
Lanford and Ruelle's result. As a by-product we obtain, in the case of Gibbs fields, 
the d-dimensional version of Breiman's theorem that there is almost sure conver- 
gence behind the theorem of McMillan. 

1. Definitions 
Let S be a finite set. We set 

T= {t = (tl, . . . ,  td)it i integer} 

and denote by f2 the set of all maps ~o: T--*S. For  Vc__T let o~ v be the a-field 
generated by the projections co--* e)(t) (t~V); o~ 0 is meant to be the trivial a-field 

o}. 
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(1.1) Definition. A random field is a probability measure # on (Q, O~T). 

Let # be a random field and let us use the notation 

tt,(a[ V)(. )= ~(c~(t)=a[~v)(. ) 

for conditional probabilities. 

(1.2) Definition. The conditional probabilities 

# , ( . I T -  {t}) (teT) 

are called the local characteristics of the random field #. If the local characteristics 
are positive and depend only on nearest neighbors, i.e. if 

(1.3) #t(.lT-{t})=#t(.IN(t))>O (teT) 

where N(t)-- {s e Till s -  t ll-- 1}, then # is called a Markov field. Replacing N(t) by 
N~(t)-- {se T]0 < tl s -  t ll _-< r} we obtain the notion of a Markov field of order r. 

For each lattice point t eT  we denote by 0 t the corresponding shift, i.e. the map 
on ~ defined through 

[Ot(o~)](s)=(o(t + s ) (seT). 

The random field # is called stationary if it is invariant under all shifts: #Or= # 
(teT). In this case the local characteristics of # are stationary in the sense that 
#o (alT- {0}) o 0; -1 is a version of #t (a ir -  {t}) for any t e T. 

(1.4) Remark. It is well known that a random field is in general not determined 
by its local characteristics (possibility of phase transition), and that stationarity 
of the local characteristics does not imply that the random field is stationary 
(possibility of symmetry breakdown). Cf. [11]. 

2. Specific Entropy 
Let # be a random field. For  any V___ T denote by #v the restriction o f#  to -~-v. 

If V is finite then ffv is finite and we can define the entropy Of Pv as 

(2.1) H (try) = - E~ ,  [log # (~ov) ] 

where E u denotes expectation with respect to # and co v is the restriction of a) to V 
1 

(which can be identified with an atom of ~ ) .  It is well known that [ ~ -  H(#v) 

converges to some limit in the interval [0, H(#(o~)], the specific entropy h (#) of the 
random field #, if # is stationary and if V expands to infinity in a suitable way 
(I V I is the cardinality of V). The aim of this section is to find a convenient formula 
for that limit. Its existence as well as the d-dimensional version of McMillan's 
theorem will be by-products of the argument below. 

For  k=  1, 2 . . . .  , oo let T k be the set of all lattice points t=(t 1, ..., td)ET with 
t~ = n~ k for some integer n i and define 

(2.2) Tk*= {seTIs<O or s~Tk} 

where < denotes the lexicographical ordering on T. 
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(2.3) Examples. 1) T 1 = T, and Tl*is the past {sETis<O}. 

2) T 2 is the set of even lattice points, and T* is the union of the past and the 
uneven part of the future {ss T[s >O}. 

3) Too is meant to be {0} so that T* = T -  {0} = ~) Tfl. 
k=l 

For a=(al, ..., aa)eT we set 

V(a)= {t~T[O<ti<ai} 
and 

Vk (a) = V(a) c~ Tk, Vk* (a) = V(a) c~ Tk* = V(a) - Vk (a). 

We write a --+ oo if min a i ~ oe. 
l<_i~a 

(2.4) Theorem. Let # be stationary. Then the limits 

1 1 
h(# )=] im - ( V ~ -  H (#v (,)), h~(/,)=]i+m i V ,  (a)~ H (#v~(,)) 

exist and satisfy 

(2.5) h (#) = (1 - k-  d) h* (#) + k-  a E~, [H (#o (" I Tk*))] 

where H(# o (. ] Tk*)) (co) denotes the entropy of the probability measure/,o (" ]Tk*) (co) 
on S. 

(2.6) Remarks. 1) We may write 

Eu [H (#o (' ] T k*))] = -- Eu [ ~ #o (a I Tk*) (co) log #o (a IV)(co)] 
a~S 

= - E u [log #o (co (0) 1T k*) (CO)]. 

2) For k = 1 we obtain 

(2.7) h (/,)= Eu [H(# o (. [ T l*))]. 

Part 2) of the proof shows that there is a Ll-convergence behind the existence of 
specific entropy: 

(2.8) 
IV(a)l 
- -  log/, (coy(a)) --+ Eu [H(/,o (. IT**))1r 

in Lt,, where E# [. [ j ]  denotes conditional expectation with respect to the o--field 
J of stationary sets (all A s . ~  r with O;-I(A)=A (ter)). This is the d-dimensional 
version of McMillan's theorem (cf. [ 13]). For a d-dimensional version of Breiman's 
theorem on almost sure convergence see (4.28) below. 

Proof 1) For  V= V(a) and CO~D we write 

= II (o){ o o; 
t~Vk 
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where Vt = (Vk* W {SeVklS< t } ) -  t___ Tk* and where we identify o) w with an atom of 
o~ w (c% is identified with f2). Thus 

1 1 1 o 1 
(2.9) i ~ l o g p ( e ) v ) =  i~-log/~(COv~)+ i~]-,~ [logpo(O~(0)lv~)(o)] o;-. 

2) Part 5) below implies that for any e > 0 there is an integer M > 0 such that 

(2.10) tl log/~o (e) (0) l Vt)(. ) - log #o (e)(0)1Tk*)II. < 

as soon as V t ~ Tk* n N M (0) (N. II ~ denotes the L~-norm). Thus 

0;1 ~. [~l (2.11) ~ ~ [log /% (co (0) Wt) - log #o (CO (0) l Tk*)] o ~ -  i-~-k~ 2c(/~) 
�9 k t ~ V k  

where IVk'l is the number of those t~V k which have distance not greater than M 
from T -  Vk, and where 

(2.12) c(#)= sup Illog~o(O)(0)lW)(.)ll~< oo 
Wk =-T~ 

again by 5) below. Note that [Vk'(a)J [Vk(a)J -1 ~ 0  for a ~  ~ .  

3) Consider the case k = 1 where Vk(a ) = V(a) and let us discuss Ll-convergence 
of the left side in (2.9) as a ~ ~ .  The first term on the right vanishes, and so part 2) 
shows that the question is reduced to the Ll-convergence of 

1 
E [l~ (o~ (0)1T~*)(~o)] o 0:1 . 

{V(a)l t~V(a) 

But here we can apply the d-dimensional ergodic theorem ([5], VIII, 6.9) and this 
yields (2.8). Taking expectations we obtain (2.7) and in particular the existence 
ofh(p). 

4) Let us return to the general case and let us discuss convergence of the 
expectation of the right side in (2.9) as a ~ oo. Since we have convergence on the 
left side by part 3), it is enough to consider the second term on the right. But part 
2) shows that, in the limit, we may replace its expectation by 

1 Eu[t~log#o(c~(O)lTk,)oO;_l]=~ Eu[1og/~o(CO(0)lTk,)], IVl 
and this converges to - k -~ E,  [H(p o (. I Tk*))]. Thus we have (2.5) and in particular 
the existence of h* (#). 

5) Here we recall, in a form which is suitable for the application above, a 
familiar step in the classical proof of McMillan's theorem. Let ~ be a collection 
of finite subsets ~K ~ T -  {0} filtering to the right with respect to inclusion. Then 

l~176176176176 U W) 
Ws~q/" 
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in L~ for each p > 1. To prove this, note that the functions 

gw(co) = - log/~o (co (0)1W)(cn) (W~ ~/U) 

form a submartingale > 0  with respect to the a-fields f~w =~w~(o). Moreover, 
(g~v) is uniformly integrable for each p >  1: 

E~,[gP; n<=g~v<n+ 1] < IS[ (n+ 1) e -'1/~ 

(same proof as in [7], p. 311) which is the tail of a convergent series. Thus (gw) 
converges in L p to some limit g (same argument as in [9], V. 20). In order to identify 
the limit note that /Zo(co(0)lW)(oD~po(co(0)l ~ W ) i n  L~ ([9], V.20) and use 
almost sure convergence along increasing sequences (IV,) plus continuity of log(.) 
to conclude g (co) = - log #o (co (0)[U w)(co) #-a. s. 

3. Specific Information Gain 

Throughout this section # and v will be two stationary random fields. For any 
finite V _  T we may define the information gain Of#v with respect to v v as 

r, #(cov)-I 
(3.1) H (#v] Vv) = Eu /l~ m l ,  

t vtcov) _1 

a number in [0, oo3 (cf. [10]). 

(3.2) Proposition. Suppose that v is Markov of order r. Then the specific infor- 
mation gains 

1 
h (#l v) = a - ~ ~ l i m  H (~V (a) IVV (a) ) 

and 
1 

h~ < (#iv) = ]i+rn [Vk* (a)~ H(#vr<(.)lvv~(.)) 

exist and satisfy 

(3.3) h(p[v)=(1-k-a)h~(#lv)+k-dE,[H(#o(.tTk*))lVo(.lTk*)] (k>r)  

where the integrand on the right denotes the information gain of  #o (" I Tk*)(co) with 
respect to v o (. I Tk*) (co) = v o (. INr (0)) (co). 

Proof. Write 

1 1 1 
IV[ H(#vlVv)=Eu [ / l ~ - l ~  -l~ 

and split up the two integrands in the manner of (2.9). 

Let k > r. Since v is Markov of order r we have v o (. I W) = Vo (. IN~ (0)) = Vo (. I Tk*) 
as soon as W_N,(0).  Thus we may certainly say that for any e > 0 there is an 
integer M > 0 such that 

(3.4) ][logvo(co(O)lV~)-logvo(co(O)lTk*(N,<e as soon as Vt___Tk*~N~(0 ). 
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Moreover we have 

(3.5) c(#, v)= sup Illogvo(CO(0)lW)[I,<~ 
W = TT, 

since Vo(.]T-{0})(.)>0,  which depends only on the finitely many atoms of 
~ , (o ) ,  is bounded away from 0 by some a > 0 so that 

Vo( . lW)( . )=Ev[vo( . l r -  {0})l~w] (.) 

may be assumed to be > a for any W ~_ T-{0}.  Combining (3.4) and (3.5) with 
(2.10) and (2.12), we can proceed as in the proof of (2.4) and approximate the terms 

1 E , [  Vo(.,Vt) ] IvY- ,Zlog ~ 
by 

IVkl E. [log m~ 
IVl Vo(.IT~*) ]" 

Granting the existence of h(p[v) which will come out independently in (4.25) 
below, and thereby the existence of h~ ~[v), we obtain (3.3). 

(3.2) was motivated by the following 

(3.6) Remark. From (3.3) we get 

(3.7) h ~]v) > E,  [n (p  o (. [ Tk*)) I v o (. IN, (0))] 

for k > r. Now suppose that we have h (#[v) = 0. Then (3.7) yields 

n(#o(.ITk*))lVo(.]Nr(O))(.)=O p-a.s. 
and thus 

po (. I Tk*) (.) = Vo (. IN,(0))(. ) ~-a.s. 

(cf. [10]). Since U * * Tk ---- T~ = T -  {0}, the martingale convergence theorem implies 
k 

#o(.]T--{O})=lim#o(.lTk*)=Vo(.lNr(O)) #-a.s. 

Thus/~ and v have the same local characteristics as soon as the specific infor- 
mation gain h (ply) vanishes. In particular # is also Markov of order r. 

We will show in the next section that this remark amounts to a variational 
characterization of the Markov property. But let us first extend it to the general 
case of this section where # and v just are stationary random fields. 

(3.8) Theorem. I f  h(p]v)= 0 then # and v have the same local characteristics. 

Proof 1) We may assume without loss of generality that # is absolutely con- 
tinuous with respect to v with a bounded density. For if necessary take v'--�89 v). 
It is easy to check that h (ply)--0 implies h (p[v')= 0 and that # and v have the same 
local characteristics as soon as # and v' do. 

2) Part 2) of the proof of (2.4), applied to the random field v, shows that (3.4) 
and (3.5) hold with respect to the L~v-norm. Now we use our assumption in 1) to 
replace the Ll,-norm by the L~-norm. But (3.4) and (3.5) is all we needed in order 
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to get (3.3). Thus h (#Iv)= 0 implies, as in the previous remark, that 

#o(.IT~*)=Vo(.ITk* ) #-a.s. 

for all k___ 1. Applying the martingale convergence theorem on both sides and 
using absolute continuity of/ t  with respect to v we obtain 

#o(.IT-{O})=Vo(.lT-{O}) ~-a.s. 

4. Specific Energy 
Let us denote by sr the class of non-void finite subsets of T. 

(4.1) Definition. A potential U is a collection of maps 

U(A, .): SA~ R (A~c~). 

If U(A,.)=O as soon as the diameter of A is greater than some fixed integer r 
then U is said to be of.finite range. If this is the case with r = 1 then U is called 
a nearest neighbor potential. We say that U is stationary if 

(4.2) U(A,  O)A) = U(A + t, OA+t) o Ot (tE T, A ~ x g ,  a)es 

Let us fix for the rest of the paper a stationary potential U such that 

(4.3) IIUII = ~ ]fU(A,.)]I<~ 
O~A~d 

where IIU(A, .)J] is the supremum of IU(A, .)l on S A. If, for example, U is of finite 
range then (4.3) is clearly satisfied. 

For  V~d ,  ~ES v, go~S T-v we define the energy of~ on V given the environment 
go a s  

(4.4) Ev, o(~)= ~ U(A, cSA) 
A~M 

AnVe~O 

where (5 coincides with ~ on V and with go on T-V.  Note that the sum on the 
right is absolutely convergent due to (4.3). The probability measure ~v,o on S v 
defined through 

(4.5) ~v,e (4) = Zv, 1 e -Ev' ~ (r 

is called the Gibbs distribution on V given go. The normalizing factor 

(4.6) Zv, o= ~ e-EV,~ (r 
~ S  v 

is often called the (grand canonical) partition function on V given go. 

(4.7) Definition. A random field # is called a Gibbs field, and we write I~eG(U), if 

(4.8) ~(c~=~l~r_v)(~o)=~v,o,~._~(~) ~-a.s. 

whenever V ~ d  and r v. Go(U ) will denote the set of stationary Gibbs fields. 
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(4.9) Remarks. 1) In general we have IG(U)I~}Go(U)I_~ 1. In other words: (4.3) 
guarantees the existence but not the uniqueness of Gibbs fields resp. stationary 
Gibbs fields corresponding to U (cf. [6]). 

2) It is enough to require (4.8) for the one-point sets V= {t} with t eT  (cf. [4]). 
Thus, in order to check if/~ is a Gibbs field, one has only to look at the local 
characteristics of/~. 

3) Any Markov field is a Gibbs field with respect to some nearest neighbor 
potential (cf. [1] and [11]). More generally: any Markov field of some finite order 
corresponds to some potential of finite range (cf. I-2]). 

(4.10) Theorem. Let # be a stationary random field. For each acT choose a 
~o (a)eS r-v("). Then 

1 
(4.1 i) e(o)) = ,~lim~ ~ EV(a),~o(a)(OgV(a)) 

exists, both #-a.s. and in L~(p~ 1), and satisfies 

U(A,IA[ c~A) I ] 

In particular e(.) does not depend on the choice of the q~ (a)'s. 

(4.13) Definition. Let us call e(og) the specific energy of the configuration ~o 
(under #) and the expectation 

(4.14) e(/l) = E,  [e (.)] 

the specific energy of#. The specific j~ee energy of/l is defined as 

f(#) = e (# ) -  h (/~). (4.15) 

Proof. 1) Define 
g(~o)= ~ U(A, O~A) (eoeQ). 

0~A~ [AI 

The d-dimensional ergodic theorem says that 

1 
goO, 

IV(a)[ t~v(,) 

converges to the right side in (4.12), both/~-a.s, and in L~ ([5], VIII, 6.9). It is 
therefore enough to show 

(4.16) ]Ev,o(COv)- Z g o  O,(co)l <2A (V) 
t~V 

where A(V) does not depend on e) and ~o and satisfies 

(4.17) 

2) Write 

(4.18) 

A(V(a))[V(a)l-l~O as a--+ oo. 

Ev,,(~ ~ U(A,o)A)+ ~ U(A, f79A) 
V ~ A ~ A ez~ 

A n V # O  
Ac~(T--V)~=O 
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where ~ coincides with co on V and with ~o on T -  V, and 

(4.19) Eg~  ~ U(A'C~ , U(A ,  o3 A) 

A n ( T - V ) * r  

Now note that the first term on the right is the same in (4.18) and (4.19), and that 
the second term on the right both in (4.18) and (4.19) is dominated in absolute 
value by 

A(V)= ~ y. ItU(A,.)L 
t ~ V  t e A e ~  

A n ( T - V ) *  0 

3) We have still to check that the terms A (V) defined in 2) satisfy (4.17). For 
N ~ 1 let us denote by d N the class of those sets A EM which have diameter < N. 
For  e > 0 we can choose N such that 

I I U ( A , , ) I I  < ~  (taT), 
t e A ~ r  -,9r ~r 

due to (4.3) and the stationarity of U. Then we have 

A(V)~ IVl+ ~ Z II U(A,.)II 
tEV t ~ A ~  N 

A r ~ ( T - - V ) # : O  

=~ IvI+IVNI Ilgll 

where IV N] is the number of points tE V which have distance not greater than N 
from T-V.  But for any N we have IVN(a)I IV(a)[ -1 4 0  as a--* ~ ,  and this shows 
(4.17). 

Now let us take up again the notion of information gain discussed in Section 3. 

(4.20) Lemma. I f  # is a random field and v a Gibbs field then 

1 
lim ~ [H(#v~)[Vv~,) )-H(#v~.)l~v~),~,~.))] = 0  
a ~ o o  

for any choice of the ~o (a)'s. 

Proof (4.16) implies IEv, ~ (3)-Ev, ,  (Q[ < A (V) for any ~, q~, ~9, and this yields 

(4.21) e_ Zatv)< ~v,q,(~) <<_eZa~v) 
- ~ , ~ ( ~ )  - 

via (4.5) and (4.6). Now consider 

Since 

[log V(~v) ] H (#vJnv.+)- H (#vlVv)= E~ [ ~v,~(COv) J " 

v(O~v) ~v,.~_~(COv) dv(~or_v ) 
~v,~(o~v) ~ ~,~(o~) 
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is a mixture of terms such as in (4.21), we obtain 

(4.22) log v(e~v) <2A(V), 
~v, ~(c~ = 

and by (4.17) the lemma follows. 

For any random field # we can write 

1 
1 H 1 logZv~o+l~ ,  E t , [ E v ~ o ( . ) 3 - - ~ H ( i x v ) .  (4.23) ~ -  (Uv[rCv,~)=~VT , IVl , 

Now assume that IX is stationary. Then the last two terms on the right converge 
for V= V(a) and a ~ ~ to e(ix)-h(ix) (cf. (4.10), (2.4)). This yields the theorem of 
Lee and Yang, i.e. the existence of 

1 
(4.24) p = Jim ~ log Zv(,) ~(,) 

- I ( ) 1  ' 

and its independence of the ~o (a)'s (use (4.20)with IX = v so that the left side in 
(4.23) converges to 0). Thus all the terms in (4.23) converge. Now take vsG(U). 
Combining (4.20) and (4.23) we obtain the existence of the specific information 
gain h(ixlv) and the relations 

1 
(4.25) h(ix[v)= a~lim ~ -  H(ixv(a)l~v(~),,p(a) ) 

=P+e(IX)-h(IX). 

We may also write 

(4.26) 0 < h (ix I v) = f(ix) - f ( v )  

(note that f (v)= - p  as soon as v e G O (U) due to (4.25) with t~ = v, define f (v)= - p  
if v e G(U) -Go  (U), and recall that information gains are always non-negative). 

We are now in a position to translate our result (3.8) on specific information 
gain into Lanford and Ruelle's characterization of Gibbs states by a variational 
principle, that is, the equivalence (i) ~,  (iv) below. 

(4.27) Theorem. Let IX be a stationary random field and wGo(U).  Then the follow- 
ing statements are equivalent: 

(i) IX~G(U). 
1 

(ii) Jim ~ H(ixV(a) l~v(a), ~ (a)) = 0 for any choice of  the q~ (a)'s. 

(iii) h ~[v) = 0. 

(iv) The specific free energy f ( . )  assumes in IX its minimum. 

Proof. (iii) ~ (i), which is the crucial step, is contained in (3.8). (i) ~ (ii) ~,  
(iii) r (iv) is a summary of this section. 

Let us conclude with the d-dimensional version, in the case of Gibbs fields, 
of Breiman's theorem that there is almost sure convergence behind the existence 
of specific entropy: 
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(4.28) Remark. Let v be a stationary Gibbs field. Since 

1 1 1 
I V(a)i log~Zv(a)'~~ [V(a)l log Zv(.).or + ~  Ev(a),~o(a)(C_Ov) 

converges v-a.s, to p + e(og) as a ~ ~ (cf. (4.24), (4.10)), and since 

1 
J im  ~ [log ~z v (.), ~,(.)(co v (,o) - log v (r v(a))[ = 0 

for any co by (4.22), we obtain the v-almost sure existence of  

h ( w ) =  lim [ 1 Iogv(COV(a))] 
~ IV(a)l 

and the relation h (.) = p + e (.) v-a. s. 
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