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Determination of All Additive Quasiarithmetic 
Mean Codeword Lengths 

J. Acz61 

o 

Campbell, 1966, has introduced quasiarithmetic mean codeword lengths in the 
following manner. 

Let Y= {th, t/2 . . . .  , t/K } be a finite set of messages and let Q = {ql, qz . . . . .  qg} 
be an associated distribution of probabilities, so that the probability of t/k is qk 
(k = 1, 2 . . . . .  K) and 

K 

~ q k = l ;  qk=0 (k= 1, 2, ..., K). (1) 
k=l 

Suppose that we wish to represent the messages in Y by codewords, i.e. by finite 
sequences of elements of the set {0, 1, ..., D -  1} where D >  1. There is a uniquely 
decipherable code (see, e.g., Reza, 1961) which represents t/k by a codeword of 
length (number of elements) n k (k= 1, 2 . . . .  , K) if and only if the set of positive 
integer codeword lengths N = {nl, n2, ..., nK} satisfies the Kraft inequality 

K 

D-n~< 1. (2) 
k = l  

Let now ~b: [1, o o [ ~ R  be a continuous strictly increasing function. It has an 
inverse q5 -a which is also continuous and strictly increasing. This defines a 
quasiarithmetic mean codeword length 

L(Q,N;  q~)=r a~__lqkO(nk) (3) 

for all N satisfying (2). The reason for calling L a mean length is that, for 
N = {n, n . . . .  , n}, i.e. when all codewords are of equal length n, then L(Q, N; 4)) = n. 
Moreover, if ~b (x) = r (x) = x (xe [1, m D, then 

K 

L(Q, N; q~)= ~ qknk, (4) 
k = l  

the ordinary or arithmetic mean codeword length. Campbell 1965, 1966 has also 
introduced the exponential mean codeword length, for which r 1 6 2  tx 
(xe[1,  c~[; t+0),  

1 
L(Q, N; Ct)=~-  lOgD ~ qkD '"~. (5) 

k = l  

It is easy to see that lim L(Q, N; dpt)=L(Q, N; r 
t---~ 0 
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Important inequalities are known for the mean codeword lengths (4) and (5) 
(see, e.g., Reza, 1961; Campbell, 1965; Acz61, 1974, and Section 4 of the present 
paper). These give essentially the Shannon and R6nyi entropies as lower bounds 
of (4) and (5), respectively, and show also that there exist uniquely decipherable 
codes for which these mean codeword lengths come within a unit (bit) from their 
lower bounds. The proof of the latter facts use a translativity property of (4) and (5), 
the generalizations of which we will examine in Section 3. The inequalities, 
mentioned above, can also be translated into optimal coding statements with 
respect to certain cost functions, related to ~b in (3). This we will see in Section 4, 
in modification of results by Campbell, partly published (Campbell, 1965; 1966) 
and partly unpublished. 

The question arises, why the mean codeword lengths (4) and (5) have been 
chosen, say, among the quasiarithmetic mean codeword lengths (3). In our main 
result, in Section 2, we will show that the following rather natural additivity 

condition characterizes them. 
Consider two independent sets of messages X={~1,r  / . . . . .  ~a} and 

Y= {~/1, ~/2, ..., F/g} with associated probability distributions P = {Pl, P2, ..., P J} 
and Q = {qi, q2, ..., qg}. Since X and Y are independent, the probability of the 
pair (~j, qk) is Pjqk (J= 1, 2 . . . . .  J ;  k=  1, 2 . . . . .  K). We denote by PQ the probability 
distribution {Pl  qx ,  P l  q2 . . . .  , P l  qg, P2 ql, P2 q2 . . . .  , P2 qK, "",  PJ ql, PJ q2, "",  PJ qK}" 
Let ~j be represented by a codeword of length mj (j = 1, 2 . . . . .  J) and let t/k be 
represented by a codeword of length n k (k=1,2,  . . . ,K). Moreover, suppose 
that we use the same symbols {0, 1, ..., D -  1} in all these representations. The 
pair (~j, t/k ) may be represented by a codeword of length m j + n  k ( j =  1, 2 . . . . .  J;  
k = 1, 2, ..., K). Let us denote these three distributions of lengths by 

M = { m l ,  m 2 . . . .  , m j}, N = {t / l ,  n 2 . . . . .  ng} 
and 

M + N = {m l + nl , m l + n2, ... , m l + ng , 

m2 + n l , m 2  + n  2 , . . . , m 2  + n  K, . . . , m s + n l , m s + n  2 , . . . , m s + n K } ,  

respectively. If M and N satisfy the Kraft inequality (2) then so does M + N  
because 

J K 

D- "*j-1 and ~D-"~=<I (6) 
j = l  k = l  

imply 
J K 
y, y 

j = l  k = l  

Thus there exists indeed a uniquely decipherable code with M + N  as set of 
codeword lengths for 

X • Y= {~1/~1, ~ l t / 2  . . . . .  ~1/~K'  ~ 2 ~ 1 '  ~2 t / 2  . . . . .  ~2/~K'  " ' ' '  ~ J t / l '  ~J~]2 . . . . .  ~JtlK}" 

If L is to be a measure of mean lengths, it is natural to require that 

L(PQ,  M + N ; ~b) =L(P, M; r  L(Q,  N ;  ~9), (7) 
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i.eo~ 

[ix ] [" 1 [K ] (9-1 ~pjqk(9(mj+ng ) =(9-1 Zpj(9(mj ) _~(9-1 ~=Sqk(9(nk). (8) 
j =  k= l  j=S 3 k -  

We call the properties (7) or (8) additivity. They are supposed for all positive 
integers m s and n k satisfying (6) and for all p j, qk (J= 1, 2 , . . . ,  J ;  k = 1, 2 , . . . ,  K) 
satisfying (1) and 

J 
~, Pi = 1 ; p; >-- 0 (j = 1, 2, . . . ,  J). (9) 

j=l 

The problem of finding all additive (7), quasiarithmetic mean codeword lengths 
(3) has not been solved before (cf. Campbell, 1966; Acz61, 1974). Instead, 
Campbell, 1966, has generalized the codeword lengths n k (k-- 1, 2 . . . . .  K) so that 
they become arbitrary real numbers satisfying (2), and has solved (8) in this case. 
In this paper we solve the original problem, with positive integer codeword lengths. 
We restrict ourselves to J = K = 2, thus making the result more general. This has 
also the advantage that, because of D > 2, m s > 1, m 2 ~ 1, /'/1 ~ 1, n 2 ~ 1, (6) is always 
satisfied. 

2. 

Theorem 1. The arithmetic and the exponential mean codeword lengths (4) 
and (5) are the only quasiarithmetic mean codeword lengths (3) which are additive 
(7) with J = K = 2  (for two-place distributions). 

Proof For  J = K = 2 ,  (7) or (8) can be written as 

(9-1 [Pl ql (9(ms + nl)+P~ q2 (9(ms +n2)+Pzql  (9(mz+ns)+P2q2 (9(m2 + n2)] 
(10) 

= ( 9 - i  [P l  (9 (ms)  q- P2 (9 (m2)]  q- (9 - 1 [-qs (9 (n l )  + q2 (9 (n2)]  

where 

PLY0, P2~0,  p sq -p2= l ,  q l > 0 ,  q2~0,  q l + q 2 = l ,  (11) 

ms, m2, ns, n 2 are positive integers. 

Put  into (10) m s = m  2 =m, ql -- 1 - q ,  q2 =q,  in order to get 

(9-s [(1 -q) (9(n  s +m)+q(9(n2 +m)] =(9-s  [(1 -q)(9(nl)+q(9(n2) ] +m (12) 

for all 
q~ [-0, 1]; nl, n2, m positive integers. (13) 

We need the following 

Lemma.  Let (9, ~ be continuous, strictly increasing functions defined on [1, ~ [. 
The equation 

(9-s[ (1-q) (9(n l )+q(9(nz )]=~-s[ (1-q)~(na)+q~b(nz)]  (14) 
holds for 

n I = 1, n z arbitrary integer greater than 1, (15) 

q~ [0, 1] arbitrary, if and only if there exist constants c~ > O, fi such that 

~(x)=~(9(x)+f i  foral l  x~ [1, oo[-. (16) 
24a Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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Proof of the Lemma. The " i f"  part  is obvious. In order  to prove the "only  if" 
part, put  into (14) n 1 = 1, n 2 > 1. Denote  

ax = q~(nl)= q~(1), a2=di)(n2)-~b(nl)>O, 

bl =O(n l )=O(1) ,  b2=6(n2)-6(nl)>O. 

Then (14) goes over into 

dp-X(a2q+ax)=O-l(baq+bx) (qe [0, 1]). (17) 
Now denote  

y=b2q+b 1 

and notice (cf. (15)) that  y runs through [6  (1), lim ~ (n)[ when qs  [0, 1], n 2 = 2, 3 , . . .  
n ~ o o  

(6, being increasing, has a finite or infinite limit as n~oo) .  So (17) goes over into 

t~-l(y)=dp-l(A2y+ A,) (A2>0)  
o r  

O ( x ) = a  ~)(x)+fi for all xE[1,  eel,  (16) 

where e--- 1/A2=b2/a2>O, q.e.d. 

Continuation of the proof of Theorem 1. Denote  

Om(x)=~o(x+m) (xE[1, oo[; m =  1, 2 . . . .  ). 

Then  (12) goes over into 

~b- 1 [(1 - q) ~b (nl) + q q5 (n2)  ] = @~n 1 [(1 - q) Om(na) + q @m(n2)] 
for all 

q6 [0, 1]; n~, n 2 arbi t rary integers. 

Thus, by the Lemma  (the "cons tan t s "  a, fl in (16) will now depend upon m) 

4)(x+m)=Om(x)=e(m)(o(x)+fl(m ) (x~ [1, oo[; m =  1, 2, ...). (18) 

We distinguish two cases: 

(i) c~(m) = 1. Put  then into (18) x=n (n=  1, 2, ...), in order  to get 

4(m+n)=q)(n)+fi(m) for all m, n = l ,  2 . . . . .  (19) 

Since the left hand side of (19) is symmetric in m and n, the right hand side has to be 
symmetric too, 

q~ (n) + ~ (m) = ~ (m) +/~ (n) 

and thus (put a constant  for n) we have 

fl (rn) = q~ (m) + c for all m = 1, 2 . . . . .  

This transforms (18) into 

c~(x+m)=qS(x)+q)(m)+c (xe[1 ,  oo[; rn= 1, 2 . . . .  ). (20) 

(ii) If there exists an n o such that a(no)+ 1, then we derive from (18) 

q5 (x + m + n) = e (n) q5 (x + m) + fl (n) = ~ (m) c~ (n) ~b (x) + a (n) fi (m) + fl (n). 
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The left hand side is again symmetric in m and n, so the right hand side has to be 
symmetric too, 

a (n) fi (m) + fl (n) = a (m) fl (n) + fi (m) 

or, with n = n  o (a(n0)+ 1), we have 

fi (m) = B [a (m)-  1 ]. 
Putt ing this into (18) we get 

~b (x + m) = ~ (m) [~b (x) + B] - B (21) 

or, with x = n  (n= 1, 2, ...) and again by symmetry,  

4) (m + n) + B = c~ (m) [~b (n) + B] = a (n) [~b (m) + B]. (22) 

By supposition, ~b is strictly increasing, thus ~b (n)@ - B  and therefore (substitute 
into (22) n = n I with q~ (n 1) + - B) 

(m) = a [q~(m) + B ] .  

Putting this into (21), we finally get 

0 (x + m) = a 0 (x) c~ (m) + aB (o (x) + aB (o (m) + aB 2 - B. (23) 

Both (20) and (23) are of the form 

O (x + m ) = a  O (x) (a(m) + b O (x) + b O (m) + c (24) 
with 

a = 0, b = 1 in the case (i), (25) 

and (since ~b is not constant  on [2, oo [) 

a :4= O, b = aB, c = aB 2 - B in the case (ii). (26) 

So (10) goes over into 

q~-I (a[p I q~(ml) + p  2 ~b (ma) ] [ql q~(nl)+ q2 q~(n2)] + b[Pl q~(ml)+P2 ~b (m2)] 

+ b [ql q~ (nl) + q2 q~ (n2)] + c) (27) 

= 4 - I  [p, q~ (m,) +P2 q~(m/)] +4) - I  [ql q~(nl) + qa qb(n2)] 

with the variables restricted only by (11). If m 1 = n 1 = 1 and m2, n 2 = 2, 3 . . . . .  then, 
as P2 and qz run through [0, 1], 

u = p  1 q~(ml)+p 2 q~ (rn2), v=q~ qS(n~)+ q2 (a(nz) 

assume all values in [r lira q5 (n)[ (q5 being increasing, the finite or infinite limit 
n ~ c o  

lira ~b (n) exists). Therefore (27) goes over into 
n o o o  

( a - l ( a u v + b u + b v + c ) = d p - l ( u ) + O - l ( v )  for all u, vs[q~(1), limq~(n)[ 
n ~ o o  

and, with x = ~b- 1 (u), y = q5 - 1 (v), 

( ~ ( x + y ) = a ( ~ ( x ) 4 ) ( y ) + b O ( x ) + b 4 ) ( y ) + c  for all x, ye[1 ,  oe[. (28) 
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For the constants in (28) we have one of the two cases (25) or (26). In, the case (25), 
we get that f,  defined by 

f ( x )=4 ) ( x )+c  (x~ [1, oo[), (29) 

satisfies the functional equation 

f ( x + y ) = f ( x ) + f ( y )  for all x, ye[1,  oo[. (30) 

With ~b also f is increasing, and so, by Acz61, 1966 and Acz61 - Ba k e r -  Djokovi6 - 
K a n n a p p a n -  Rad6, 1971, f ( x )  = 7 x (~ > 0) and 

qb(x)=Tx+6 (7>0) for all xe[1,  oo[. (31) 

In the case (26), we get that g defined by 

g(x)=a[c~(x)+B] (xE[1, oo[; a=~0) (32) 

[g(m) = e(m); m = 1, 2 . . . .  ] satisfies 

g(x+y)=g(x )g (y )  for all x, ye[1,  oo[. (33) 

From (32) we see that g is strictly monotonic. On the other hand, as (33) shows, 
if there were an x 0 for which g(xo)=0 then g (xo+y)=0  for all y e l l ,  oo[ which 
would contradict the strict monotonicity of g. Thus g is (strictly monotonic and) 
nowhere zero and, according to the above references, 

g(x)=D rx (t=#0) for all x~[1, oo[ 
and 

(o(x)=TD'X+6 (Tt>0) for all x~[1, oo[. (34) 

Putting (31) or (34) into (3) we get (4) and (5), respectively, and this concludes 
the proof of our Theorem 1. 

On the other hand, the functions given by (31) and (34) satisfy (8) for all J >  1, 
K >  1 [-and all mj, n k, p~, qk (J= 1, 2 . . . .  , J;  k =  1, 2 . . . .  , K) satisfying (6), (9) and (1)], 
thus the arithmetic and exponential means (4) and (5) are always additive (7). 

~ 

The property (12) or its generalization, both called translativity, 

] [i 1 ~-1 q~-i (35) qk 4 (nk + m) = qk (0 (rig) + m 
k k = l  k = l  J 

whenever (1) and (2) are satisfied, is quite important in itself. It serves (cf. Acz61, 
1974) to prove certain uniqueness properties of the so called Shannon and R6nyi 
entropies which are the lower bounds of our mean codeword lengths (4) and (5). 
We will come back to this later briefly. On the other hand, after allowing non- 
integer codeword lengths, Campbell, 1966 has deduced (31) and (34) from the 
translativity (12) alone. Thus, in the case of those generalized codeword lengths, 
the translativity (12) and the additivity (8) are equivalent. This is not so anymore 
for the proper positive integer codeword lengths, not even (35) implies (8) or (10) 
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[of course, (8) does imply (35)3. We will give, however, the general solution of 
the translativity equation (12) and we will show that (35) and (12) are equivalent. 

If we have (12) for (13), then we can proceed, as in the proof of Theorem 1, 
till (24) with (25) or (26). From (24) we get then 

O-l(auvm+bu+bvm+c)=(a-l(u)+O-l(vm) for all ue[-~b(1), limq~(n)[, 
"~ ~ (36) 

but only for all v~, = q5 (m), m = 1, 2 . . . . .  

However, (24) and (36) imply (35): 

K K K 

dp-l [ ~ qk (a(nk+m)] =q5 -1 [a q~(m)~ qk (o(nk)+ b ~ qk (a(nk)+ b 4)(m)+c] 
k = l  k = l  k = l  

=(~-1 ~)(nk) +m. 
Lk= 1 

Thus (12) indeed implies (35) and, since (12) is the special case K = 2  of (35), the 
equivalence of these two equations is established. 

In order to solve (35) or (12) or, equivalently, (24) in the cases (25) and (26), 
introduce again the functions f and g defined by (29) and (32), respectively. They 
will satisfy now the functional equations 

f ( x+m)=f (x )+f (m)  (xe[-1, oo[; m=  1, 2, ...) (37) 
and 

g(x+m)=g(x)g(m) (xe [-1, oo[-; m=  1, 2 . . . .  ), (38) 

respectively. Again q~ and thus g can be strictly monotonic only if g is nowhere 0 
[g(Xo) =0  would imply g (x o + m)= 0 for all m = 1, 2 . . . .  ]. 

It is easy to construct the general continuous strictly increasing solution of (37): 

~arbitrary continuous increasing on [-1, 2] but with f (2 )=  2f(1), 
f ( x ) = [ f ( x - k ) + k f ( 1 )  for x~]k+l , k+2]  (k= l ,  2 . . . .  ) 

(39) 

and the general continuous strictly monotonic (increasing, if a>0 ,  decreasing 
if a <0) solution of (38) 

j(arbitrary strictly monotonic continuous on [-1, 2] but with g(2)=g(1) 2, 
g(x)=)g(x--k)g(1)k for x e ] k + l , k + 2 ]  (k= l ,  2 . . . .  ). (40) 

So we have proved the following (the "if" part is easily checked). 

Theorem 2. The translativity equations (12) and (35) are equivalent. A function c~ 
is continuous, strictly increasing and satisfies (12) or (35)/f, and only if, 

o r  

c~(x)=f(x)--c (x~[1, oo D 

r (xeE1, ooE) 
a 

where a4=0, B, c are constants and f and g are given by (39) and (40) (g increasing 
if a > 0 and decreasing if a < 0). 
24b Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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. 

It is well known (Reza, 1961; Campbell, 1965, 1966; Acz61, 1974) that for all 
Q and N satisfying (1) and (2), respectively, 

K K 

L(Q, N; qSo)= ~ qknk>= -- y" qg logoqk, (0 logO, =0) (41) 
k ~ l  k = l  

and, for t> -1 ,  t #:O, 

~ t + l  K 
L(Q, N; ~bt)= l~ ~ qk Dr"k>- l~ ~ "~kn~/(~+:), (0~':=0). (42) 

k = l  t k = l  

The right hand side of (41) is the Shannon entropy while on the right hand side of 
(42) Rdnyi entropies [of order 1/(t+ 1)] stand. 

One advantage of allowing non-integer codeword lengths is (Campbell, 1966), 
that the lower bounds at the right hand sides of (41) and (42) are actually attained. 
But even if we restrict ourselves to integer codeword lengths, it is easy to prove 
(Reza, 1961; Campbell, 1965; Acz61, 1974) that 

K K 

L(Q, N*; 4o)= 2 qkn~ < -- Z qk 1ogoqk+ 1 (43) 
k = l  k = l  

if 
- l~ qa-<-- n* < - log o qk + 1 

and, for all t # -1 ,  t 4=O, 

/f 

(k = 1, 2 . . . .  , K) (44) 

1 : . t+ l  ~q~/tt+ 
qkDtnk< -log o :)+ 1, L(Q, N*; qbt)=~- log o t 

k = l  k = l  

(45) 

( ) ) _log  o q~/(t+i) q~/(,+l) < , {ql/tt+l) / V q /(t+l) nk < - l~  ~ / i =  a + 1 
/ i=  1 (46) 

(k = 1, 2, ..., K). 

We can get these from the transitivity of (4) and (5). 
As to t--- - 1, it is easy to show that 

l i m ( t + l  : ) t~-I  ~ - -  l~176 q~/tt+l) = _logomax(ql ,  q2, -.., qn). (47) 
k = l  

(Thus the right hand side of (47) is the R~nyi entropy of order oo.) So, by going 
over to the limit t ~  - 1 in (42), we get 

K 

L(Q, N; q ~ l ) =  - l o g  o ~ qkD-"~>= -- logo max (ql , q2 . . . . .  qK)" 
k=l 

More generally, Campbell has recently proved (communication by correspondance) 
that for all t<= - 1 

L(Q, N; ~bt)= T log o ~ qkDt"~> l~ q2 . . . . .  q~) (48) 
k = l  
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while (again for t=< - 1 )  

/f 

K 1 
L(Q, N*; 4)t)= l~ ~ qkDt"~<--l~ q2 . . . .  , q~:)+ 1 

k= l  t 
(49) 

D - 1  
nko-* - 1, n k* => 1ogD D ( K -  1) (k + ko) where qko =max  (ql, q2 . . . . .  qr). (50) 

(All these {n~, n~, ..., n~} do also satisfy (2).) 
On the right hand sides of (43), (45) and (49), + 1 can be replaced by arbitrarily 

small + e > 0 if we encode sequences of independent messages consecutively. 
The minimum or lower bound properties (41), (42) and (48) give interest to 

the following interpretation of quasiarithmetic mean codeword lengths, cf. 
Campbell, 1966. The function 4) in (3) can be understood as cost function, 4)(n) 
being the cost of using a codeword of length n. It is reasonable to suppose that 4) 
is (strictly) increasing on the set of positive integers and then it can always be 
extended to a function strictly increasing and continuous on [-1, oo[. This is 
suitable because then 4)-1 can be applied on more than a denumerable set. 

Now the average cost of encoding the messages Y= {?]1, ~2 . . . . .  /~k} (proba- 
bility distribution Q =  {ql, q2 . . . .  , qk}) by a distribution N =  {nl, n2, ..., rig} of 
codeword lengths is K 

c = ~ qk 4) (n~). 
k=l  

A coding problem of some interest is to minimize the cost C by an appropriate 
choice of the distribution N, subject to the costraint (2). Since L(Q, N; 4))= 4)-1 (C) 
and 4)-1 is (continuous and) strictly increasing, an equivalent problem is to 
minimize the mean codeword length L(Q, N; 4)). 

There are multiplicative and additive constants contained in the cost functions 
as given by (31) and (34). (They do not influence the mean codeword lengths 
(4) and (5).) For calculating the average costs it may be advisable to normalize 
them. A possible normalization would assign unit cost to encoding a codeword 
of length 1 and zero cost in the (idealized) case of a codeword of length 0. Then we 
still have 

4)o (n)=n (n=0, l, 2 . . . .  ) (51) 

but, instead of 4)t, we have 
D t n -  1 

4)• (n)= D ' - I  ( t . 0 ;  n=0,  1,2, ...). (52) 

(One of the advantages is that 4)o =lim~b; while 4)o+~imo 4),. ) The inequalities 

(41), (42) and (48) show that the average costs cannot be less than 

K 

- ~qklOgDqk (0log0. '=0) for t=0 ,  (53) 
k= l  

r \r+l 
K" q l / ( t+ l ) l  - -  1 

k ~ l  k ] 
D' - 1 for t =1= 0, t > - 1, (54) 
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and 
1 - max  (ql, q2, - . . ,  q~) 

1 - D  t for t<  - 1, (55) 

whenever the cost functions are ~)t, given by 

D t x -  1 
r  and ~b~(x)= D ' - I  for t+O ( x e [ 1 , ~ [ )  

[cf. (51), (52)] which, by T h e o r e m  1 and the above,  are the no rma l i zed  forms of  
the cost  functions in all cases of addi t ive  mean  c o d e w o r d  lengths (8). 

The inequal i t ies  (44), (46) and  (50) show with what  N we get near to the lower 
bounds (53), (54), and (55) of the average costs, respectively.  
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