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The Square of Shot Noise  

F. Alberto Gr i inbaum* 

1. Introduction 

We consider the stochastic process of shot noise. This is usually taken as a 
model for the fluctuating part  of the plate current in a vacuum-tube (diode, triode) 
due to the random emission of electrons from the cathode. 

For  a formal definition of the process s(O we put 

oO 

sz(t)= ~ f ( t - s ) d N ~ ( s ) .  
- - o 0  

Here N~ (s) stands for the Poisson process with a fixed rate 2 andf i s  a (non random) 
function giving the "current  pulse" due to a single electron. We assume tha t f i s  a 
function decreasing at infinity faster than any power, although less stringent 
conditions would suffice. In practicefhas compact  support but otherwise is quite 
arbitrary. For a variety of examples see [-8] and its references. 

For each 2, s~(t) turns out to be a stationary process of a well known kind, see 
for instance [-2] or [3]. 

We are interested in identifying the functionf(t)  from observations relating to 
the shot noise process. In the case when sl (t) itself is available it is not hard to see 
tha t f i s  (essentially) determined by the moments  of s 1 (t). Here we consider the case 
when only the modulus, but not the signature of the process is available. 

Imagine that we have the means to speed up the Poisson process by choosing 
different values of the rate 2, 2 ~ A. This will give us a family of stochastic processes 

Xz(t)=s2(t)  ) teA. 

We take A to be an arbitrary infinite set. The Poisson process being a nice point 
process one can easily write down expressions for the moments  

(tl)... (t.)) 
of the process Xx (t). We are now in a position to describe the main result of this 
paper. 

Theorem. The moments of the processes X z (t), 2~ A, are enough to determine the 
function f up to a translation and a fixed signature.1 
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i A complete proof is presented under the technical condition Sf~:0. 
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2. Preliminaries 

We start recalling some well known facts which are going to be used below. 
The  Poisson process with rate 2 is a par t icular  case of a point  process with nice 
"p roduc t  density functi0ns",  see [2, 3, 7]. If  we set 

N~ (s 1 , s23 = N~ (s2) - N,~ (s 1), 

we get a s ta t ionary  additive interval function such that  if A1, . . . ,  Ak are disjoint 
intervals and s f iA3  we have 

lim [Al1-1 ... IAkl -~ Prob  { N ( A 1 ) =  1, . . . ,  N ( A k ) =  1} = 2  k 
lajl~O 

uniformly in s~, . . . ,  Sk. 
Using T h e o r e m  3.1 in [3] we can write down for arbi t rary  intervals A i 

(i---1, . . . ,  n) 
n 

E(N2(A1) "'" N~(An)) = E 21~ .., ~ [ H )~Aj ( 'cl)] "'" [ H  )~Aj (T'I)] dT1 "'" dTl" 
1=1 jevl j~vz 

Here the sum extends over  all par t i t ions (Vl, . . . ,  v~) of the set (1, 2, . . . ,  n) and Z~ 
denotes the characterist ic function of the interval A. 

It is clear that  we have  

E ( s z ( t l ) . , . S z ( t n ) ) :  ~ 2 z j . . . J [ 1 - l f ( t j - z l ) ] . . . [ [ I f ( t s - z r  (1) 
1=1 j~vl jevl 

This formula  is valid if f has compac t  support ,  and an appl icat ion of Fubini ' s  
theorem shows that  it is true a lmost  everywhere ( t l , . . .  , tn) as soon a s f ~ E ( R ) .  

Par t icular  cases of (1) include: 

E (s z ( q ) )=  2 ~ f ( t - z  1 )dz  1 = 2 ~ f ( z ) d z ,  

E (s z (t,) sz (t2)) = 2 2 (~f(z) d z) 2 + 2 ~f ( t ,  - z ) f ( t  2 - z) dz ,  

E (sa (tl) sz (t2) s~ (t3)) = 2 3 (j f ( z )  dz)  3 

+ 2 2 (~f(z) dz)  [j  [ f ( t  1 - ' c ) f ( t  2 - z) + f ( t  2 - z ) f ( t  3 - z) + f ( t  3 - z ) f ( t ,  - z)] dz] 

+ 2 ~ f ( t  I - z) f ( t 2  - z ) f ( t  3 - z) dz .  

The results used above can be appropr ia te ly  modified to deal with point  processes 
not  having nice " p r o d u c t  densities". For  such a general case the reader can consult  
[6], especially T h e o r e m  4 and Corol la ry  2 to T h e o r e m  3. 

A look at (1), or a direct compu ta t ion  of the cumulants  instead of the momen t s  
of sz(t ), shows that  when sl (t) is available one knows all the integrals 

~ f ( t  I - z) f ( t  2 - z) ... f ( t  n -  z) dz  

a.e. in (t I . . . . .  tn). This allows for the de terminat ion  of a function f ~ E ( R )  unique 
up to a translation,  see [1] and [4]. 

Expression (1) will be used below to compute  the momen t s  of Xz (t) = s 2 (t). 

Not ice  that  

E (Xz  (t)) = 22 ( i f ( z )  dz) 2 + 2 (~f2 (z) dz) ,  
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and thus knowing E (Xz (t)) for enough many values of 2 allows one to decide if 
~f(r) dr vanishes or not. It is convenient to look at these two cases separately. 

3. Proof of the Theorem 

Case I. ~f(r)dz 4= O. Assume that ~ f ( z ) d r  > 0. From (1) one gets that the coef- 
ficient of 2 3 in E ( X z ( t l ) X ~ ( t 2 ) )  is 

(~f(r) dr) 2 (2 ~f2 (r) dr + 4  ~f ( t  1 - z)f(t  2 - r) dr). (2) 

The reader will easily see the relation between this expression and the six partitions 

(12) (3) (4), (34) (1) (2), (13) (2) (4), (14) (2) (3), (23) (1) (4), (24) (1)(3) 

of the set (1, 2, 3, 4). The first two partitions give the contribution 

(~f(z) dr) 2 ~f2 (r) dr (3) 

while the last four ones give 

(~f(z) dr) 2 ~f( t l  - z ) f ( t 2  - r )  dr. (4) 

Now (3) is already known from E (Xx (t)), thus so is (4), and therefore the integral 

~ f ( q  - z) f(t2 - r) dr 

becomes known once we have 

E(x~ (tl) x~ (t2) ... x~ (tn)) (5) 
for n_<2. 

We will proceed now by induction to show that the knowledge of expression (5) 
for 2_< n < N, 2e A, and arbitrary (t 1 ... t,), implies the knowledge of the integral 

~ f ( t  I - z) ... f ( t  N -  z) dr .  (6) 

The coefficient of 2 N+j in expression (5) with n = N  is in correspondence with 
the partitions of the set (1, 2 . . . . .  2 N) into N + 1 blocks. Among these we can restrict 
our attention, using the inductive hypothesis, to those partitions into a block of N 

elements and N blocks of a single element each. There are (2N N) such partitions. 
Examples of contributions from this partitions are 

(~ f ( z )  dr) N ~ f ( t  I - ' c )  ... f ( t  N -  z) dr  

from the partition 

(1 3 5 ... 2 N - 1 ) ( 2 ) ( 4 ) : . .  (2N) 
and 

(~f(r) dr) N ~f2 (t, - z ) f ( t  2 -  r ) . . .  f ( tN_ 1 - r) dr  

from the partition 

(l 23 5. . .  2 N - 2 )  ( 2 N - 1 )  (4) (6) ... (2N). 
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Each one of the (2N) partitions under consideration gives a contribution of 
the kind 

(~ftr) dr) re ~ I1 f2 (t i _ ~) [[ f ( t i _  r) dr (7) 
ir i~A1 

with A~ and A2 arbitrary disjoint subsets of (1 2 ... N) such that 

2 IA2] + IAll = N .  (8) 

The examples given above correspond to the cases 

A, =(1 2 ... N), A2 = {~b} 
and 

A1 =(2 ... N -  1), A2=(1) 
respectively. 

The total contribution can be split in blocks according to the value of ]A21 = 
0, 1, 2 . . . .  IN/2]. 

One can further subdivide each block by grouping together the elements with 
the same A 1 u A 2 . In this fashion the contribution from the k-th blocks is 

(~f(r) dz) s Z ~ I(A1, A2)  (9) 
A l u A 2  

with the inner summation running over all pairs of disjoint subsets A~, A 2 in 
(1 2 ... N), [A2[ =k, ]AI[ = N - 2 k ,  and having a specified union A1 uA2.  I(A1, A2)  

is shorthand for the second factor in (7). 
To conclude the proof we need to show that if IAzl = k # O, each inner sum in (9) 

can be obtained from (5) with 2 < n < N ,  2~A. 
Indeed it is enough to look at (5) with n = N - k = ] A 1 u A 2 ] < N .  Pick ti, 

i~A~ w A 2 and look at expression (5) for these values of ti. We are dealing with a 
polynomial in 2 of degree 2(N-k)=2(IA1] + Mzl). The coefficient of 2 la'l +1 is the 
sum of 

(~f(r) dr) lAd s I(A 1 , A2) 

plus products of integrals each involving less than N factors and thus known by 
inductive hypothesis. 

Afortiori  (6) is known and we can invoke once more the result in [1] to con- 
clude tha t f i s  determined up to a translation, under the assumption ~f(z) dr >0. 

Had we started from ~f(z)dr <0  we would have another solution unique up 
to translation. A look at the proof above shows that this new class should be the 
class of translates of the negative of a function in the previous class. 

This concludes the proof under the assumption ~f(~)dr # 0. 

Case 2. ~f(r) dr =0. 

Now it is clear that any partition containing a block of a single element gives 
a vanishing contribution, in particular all the integrals considered above are of this 
type. 

As a matter of fact 
E(X2(tl) ... Xx(t.)) (10) 

is a polynomial of degree at most n. 
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Using the results conta ined in the previous section we get, for instance 

E(Xa (t)) = 2 ~f2 (z) dr 

E(Xz (q) Xx (t2)) = 22 [(~f2 (z) dz) 2 + 2 (I f ( q  - z) f(t2 - r) dr) 2 ] 

+ 2 yf2 (t 1 __ z)f2 (t 2 __ "r) dz.  

It is clear that  for each n the new contr ibut ion  to the coefficient of  2" in (10) is 
given by 

ER(t=I- - t~2) . . .R( t~n- - t=I)  
7t 

where R ( t )=  ~f( t  + z ) f ( z )dz  and the summat ion  extends to the group of pe rmuta -  
tions of n elements. 

N o w  this implies, see [5], that  the function R (t) itself can be obta ined f rom the 
knowledge of the m o m e n t s  of  the processes X~, 2~A. This amoun t s  to the knowl-  
edge of  the Four ier  t ransform f (2 )  o f f  up to an a rb i t ra ry  phase factor e i~ 0 real 
valued and measurable .  

On the other  hand,  the coefficient of 2 in E(X~(q ) . . .  X~(t,)) is 

~ f2  (t I _ s) ... f2  ( t , -  s) d s 

and using again the result in [1], we conclude t h a t f  2 is determined up to a trans- 
lation. 

Then  we could consider the p rob lem of determining a real valued rapidly 
decreasing f u n c t i o n f f o r  which we know both  its absolute  value and the modulus  
of its Four ie r  t ransform.  

It is not hard  to see that  these two condit ions alone do not give enough infor- 
mat ion  abou t  the function f 

If gl and g2 are even and odd functions respectively, and their suppor ts  are 
disjoint, the functions 

fl  = g l  + g 2 ,  f2 : g l  - g 2  
satisfy 

[f~[=lf2l a.e. and Ifl=lf~l a.e. 

but do not  stand in the desired relation f~ ( t )= +f2( t+a) .  But one should notice 
that  we've not  used all of the informat ion  contained in E(X2( t l ) . . .  X 2 (t,)). Only 
the coefficients of 2" and 2 have been looked at and they turn out to be useful by 
referring to the results contained in [1] and [5] respectively. This indicates that  
many  useful theorems ought  to lie between [1] and [5], and on this hopeful  note  
we close this paper.  

It is a pleasure to thank K. Krickeberg for bringing some references to my attention. 
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