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The Capacities of Certain Special Channels 
with Arbitrarily Varying Channel Probability Functions 

N.S. Kambo and Samar Singh 

In [-5] Ahlswede and Wolfowitz have obtained the capacities of a.v.ch, with binary output in a 
number of cases, essentially with the aid ofa  lemma which relates the capacity of the a.v.ch, to that of a 
suitable ("underlying") d.m.c. A generalization of this lemma to a special kind of a.v.ch, with output 
alphabet b>2,  has been given by Ahlswede (Lemma 1 of [1]) and used in [1] and I-2] to prove the 
existence of the weak capacities of various channels under different conditions. We give a detailed 
proof of a weakened version of Ahlswede's lemma and show, in passing, that his lemma is incorrect. 
We then define certain special types of a.v.ch and, on the basis of the detailed analysis given by us earlier, 
we prove lemmas of a similar type for these a.v.ch. We are thus able to extend certain results given for 
binary output a.v.ch, in [-4] and [5] to these special a.v.ch, for which b > 2. 

1. Preliminaries, Definitions and Introduction 

Let X =  {1, 2 . . . .  , a} and Y= {1, 2, ..., b} respectively be the input and output 
alphabets of the channel and let S be any non-empty set. Further, let X t =X,  

y t  = y and S t = S for all t = 1, 2, ..., and let X, = l~I X t and define Y, and S, simi- 
t= l  

larly. Any member of X, will be denoted by x , = ( x  1, x 2, . . . ,  x ' )  and similarly 
yn_ = (yl . . . . .  yn)~ i1, and s,  e S , .  Then, let 

be any set of a x b stochastic matrices. To avoid unnecessary complications we 
assume throughout this paper that S (and hence cg) is a finite set. However, all 
our results can be easily generalized to the cases where S is arbitrary. 

(1.1) We define the channel with arbitrarily varying channel probability functions 
(abbreviated a.v.ch.) determined by cs as the sequence {off, i n = l , 2  . . . .  } where 
for all n 

and for all x ,  e X , ,  y ,  e Y,, and s, e S  n we have 

P(Yn[ x,  Is,)-= lYI w(ytl x t Ist). 
t= l  

The channel {cg,} will also be referred to as the a.v.ch. 4, the sequence s, will be 
called the channel sequence and the abbreviation c.p.f, will be used for "channel 
probability function". 

(1.2) IfCg contains only one matrix w(. I'), we call the channel a discrete memory- 
less channel (d.m.c.) and denote it by the sequence {P,( ' l ' ) ]n= 1, 2, ...} where 
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n 

for each n P, (Y, I x,) = 1-[ w (yt[xt) 
t = l  

for all yn E Y,, x,  eX , .  We shall also say "the d.m.c, w(. I')" when we mean {P,(. I')}. 

The first study of a.v.ch, was made in [7] and then they were also studied in 
1-9, 4], and [5]. In [4] a thorough description of the problem was given and different 
types of communication situations were defined and discussed. Since, in the 
problem discussed here, side information available to the jammer and randomiza- 
tions performed by him (see [4]) are not explicitly of any importance, we shall 
not mention these. However, we shall adopt the rest of the notation developed in 
[4] for describing the different problems. Thus, (2a, S- ,  R - )  shall mean we are 
interested in the maximal error of '~ pure" codes (no randomizations in encoding 
or decoding) when neither the sender, nor the receiver have any side information 
regarding the channel sequence, and so on as in [4]. 

(1.3) A pure code, in the case (2a, S- ,  R-),  is a system 

{(ui, at)[i= 1, 2 . . . . .  N}, 

where ut~X . and A t ~ Y, for all i=  1, ..., N and A t ~ Aj=fJ for all i#:j. 

(1.4) A (n,N, 2) pure code for the a.v.ch, cr in the case ( 2 3 , S - , R - )  is a (n,N) 
code which satisfies 

P ( A i l u t l s , ) > l - 2  for all i = l , . . . , N ,  
and for all s, eS, .  

(1.5) A (n, N) code {(u t, At)l i= 1, ..., N} is a strict maximum likelihood code 
(s.m.l.c.) for the d.m.c, w( ' l ' )  iff 

Z i = {y, I P, (y, lut)> max P,(y, l uj)} 

for all i=  1, 2, ..., N. 

(1.6) We say that the d.m.c, w(" [.) underlies the a.v.ch, c~ if for every n = 1, 2, ..., 
a (n, N) s.m.l.c. {(utAt) } for the d.m.c, w(" I') satisfies 

P(atlut[s.)>P.(atlui) for all i = l , . . . , N  

and for all s, ES,. 

(1.7) The d.m.c, w( ' l ' )  is basic to the a.v.ch. ~ if w( ' l ' )  underlies cg and there 
exists s' e S such that w (. 1. I s') = w (. 1.). 

(1.8) A number, cr is called the (strong) capacity of the a.v.ch. (K in the case 
(J~3, S-,  R-), if for all n sufficiently large and all co>0, 2e[0, 1) there exists a 
(n, N, 2.) code for ~ with N > 2 "(c-r176 and there does not exist such a code with 
N > 2 "(c+'~ 

An easy consequence of these definitions is the following 

Theorem 1.1. I f  the d.m.c, w (" ].) is basic to the a.v.ch, oK, then the strong capacity 
of the a.v.ch, cg exists and is given by the strong capacity of the d.m.c, w (" I'). 

This theorem gives, in essence, the methods used in [5] to find the strong 
capacity of a.v.ch, with b = 2 (binary output) in a number of cases. Crucial to this 
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approach is the Lemma 1 of [5] Which determines a suitable underlying d.m.c. 
for the a.v.ch, in question. Hence we are interested in generalizations of that 
lemma to cases where b > 2  (see remarks following (1.4) in [5]). In [11 such a 
generalization has been given (Lemma 1 of [11) for a special type of a.v.ch. We 
need the following definitions. 

(1.9) If for any co~[0, 11 we have a a x a square matrix w('[.) defined by 

w01k)={1-co  i f j = k  
co/(a - 1) if j =I = k, 

then the d.m.c, w(. [') is called a (co, a)-symmetric d.m.c. (In [1] this is called simply 
a a-ary symmetric channel.) 

(1.10) If for any fixed toe[O, 11 and a=b 

cg= {w(. I')[w(kl k)= 1 -co for all k=  1 . . . . .  a}, 

then cg is called a (co, a)-symmetric a.v.ch. (In [11 this is called simply a a-ary 
symmetric a.v.ch.). 

Now we can state Lemma 1 of [1] in our terminology as 

Lemma 1.1. Let cg be a (co, a)-symmetric a.v.ch, and w(.[.) be a (2co, a)-sym- 
metric d.m.c. Then, the d.m.c, w(.J.) underlies the the a.v.ch. ~. 

This lemma has been used in [1] to prove the existence of the weak capacity 
of any a.v.ch, in the cases (23, S- ,  R- )  and (23, S-,  R +) (Theorems 2 and 3 in [1]). 
Again, in [21, this lemma has been used (as a special case where ~ is also a d.m.c.) 
to prove the existence of the "group code capacities" for d.m.c, and simultaneous 
channels (Theorems 1 and 2 in [2]). In view of these implications of this lemma, 
we shall spend some time in discussing it.We first give a detailed proof of a weaker 
version of this lemma. This proof enables one to see why the proof of Lemma 1.1, 
as given by Ahlswede in [11, is incorrect. We then make some remarks and briefly 
mention the impact of all this on the existence proofs given in [1] and [21. The 
detailed proof of the weakened lemma further allows us to merely sketch the proofs 
of similar lemmas which are proved later on. 

We then define certain special a.v.ch, for which useful generalizations of 
Lemma 1 of [5] can be proved. In all these a.v.ch, the "variation" of the c.p.f. 
is heavily constrained in some sense and we are therefore able to give strong capac- 
ities in the cases (23, S- ,  R-), (21, S- ,  R +) and (21, S +, R-). The results given in 
the last two cases include another interesting result for the case (23,S-,R+), 
where so far no capacities have been found, even for a.v.ch, with a binary output. 

2. The Weakened Lemma 

We give below a weakened version of Lemma 1.1 and a detailed proof, which 
serves to show why Lemma 1.1 is not correct. We shall assume in the rest of this 
paper that b > 2, unless the contrary is explicitly stated. 
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Lemma 2.1. For any given co~[0, 1], d>  1 and some alphabet size a, let ~ be a 
(o), a)-symmetric a.v.ch, and w(. I') a (do), a)-symmetric d.m.c. Further, let 

{(ui, Ai)[i= 1,...,  N} 

be a s.m.l.c, for the d.m.c, w(. [.). Then, provided 

(2.1) (i) d > a - 1  and 
(ii) co<(a-1) /ad ,  we have 

(2.2) P(Ail ui Is,) => P. (Ail u~) for all i-- 1 . . . . .  N and for all s, ~ S,. Note that because 
of (2.1)(ii) we have 1 - d o ) >  l / a > 0  so that the (do), a)-symmetric d.m.c, is always 
meaningful. 

Proof We closely follow the proofs of Lemma 1 of [5] and Lemma 1 of [1]. 
For convenience we denote w(.[.) by w('L'[s*) and P,(.[.) by P('l"ls*). Let 
S '=  S u {s*}. We prove (2.2) by the usual iterative argument. Let s',eS', and suppose 
that for some t the t-th component of s', is s* i.e. s't-= s*. Let s" be obtained from 
s', by replacing s*=s" by some seS. Then we prove that, for all i=  1 . . . . .  N, 

(2.3) P(Ail u i Is'~)> P(AiL u, Is;). 

Clearly (2.3) implies (2.2). As usual define for all i = 1, ..., N and for all j = 1 . . . . .  a, 

(2.4) jA~ = {Yn [Y, EAi and yt =j} 

jA*'= {(yl . . . . .  y,- l ,  y,+l . . . . .  y,)[ 

(yl, .... yt-l,j,, yt+l, . .., y,)ejAti}" 

Assume, without loss of generality (w.l.o.g.) that uti = 1. Then, 

(2.5) a . t ~  A.t for all j = l ,  a. 
1-,~i - - j z ' x  i . . . ,  

Note that a violation of (2.1)(ii) implies either that co=(a -1) /da  so that Ai=~ 
for all i, or that o )> (a -1 ) Ida  so that the reverse inclusion to (2.5) holds. Also, 
in general, 

(2.6) 2A*t#:k A*' for j . k .  

Again, w.l.o.g, take t = n and remember that the output alphabet is 

(2.7) Y= {1, 2, ..., a}. 

Denote the complement with respect to Y of any B ~_ Y by B c, and define for any 
B_~ Yand B=I=~, 

(2.8) BA*"={y,_I =(yl . . . . .  y"-l) iy ,_l~jA*" v j ~ e  and y,_lCk A*" VkEBC}. 

From (2.5) and (2.8) we see that if for some B~Y, B+r we have ICB, then, 
necessarily, 

(2.9) ,A*" =~.  

Therefore, define 

(2.10) ~r {B[B~_ Y,, B # O  and ~A*" 4@f}. 
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We remark here that if B, C_c y and B # C, then 

,A*" c~ c A*" = (2.11) 

and also that 

(2.12) (..) BA*'= ~J sA*'. 
all j =  l 

B e ~  

Then, remembering that u~-  " - 1 and s'" = s*, we can write 

(2.13) P(Ai[uils'~): ~ P(BA*"[(u~ .... u"-ail(s 'a , i , , \  , ' " ' s ' n - 1 ) ) ' ( E W ( j I l i s * ) ) "  
B6~en j eB  

Similarly, since s"" = seS, b u t s "  = s 't for t = 1, ..., n -  1, 

(2.14) P(A,I u~]s',;)= ~ P(BA*" I(u~, ..., u~'-l)l (s '1 . . . .  , s '"-t)) �9 (~,w(]l 1 Is)). 
Be,~g. j e B  

We prove below that 

(2.15) Y'w( j l l ]s )>~w(j l t l s*)  for all B e d , .  
j e B  j eB  

These last three equations imply (2.3) and hence (2.2). To prove (2.15), note that 
(2.9) implies that any B e d ,  contains 1 and m other members, m <_ a -  1. If m = a -  1, 
then B =  Yand (2.15) holds with both sides equal to one. I f m < a - 1 ,  

(2.15) ~ w(jl 1 Is*)= 1 -dco+mdco/(a- 1)__< 1 -co ,  
j eB  

the last step being true only if (2.1)(i) holds. Now, for any seS we have w(ll 1 Is)> 
1 -co  so that for any B e d ,  

(2.17) ~ w(]l 1 Is)> 1 -co .  
j eB  

Equality in (2.17) is possible, e.g. if B =  {1, 3, ..., a} and w(21 1 [s)=co. Hence the 
need for the last step in (2.16) and consequently for (2.1)(i). Now, (2.16) and (2.17) 
prove that (2.15) holds also when m < a -  1, and the lemma is proved. 

3. Miscellaneous Remarks 

Remark 1. For binary channels (a=b=2) Lemma 2.1 is true with d__>l. In 
particular, with d = 1 this lemma reduces to Lemma 1 of [5] for the special case of 
the binary symmetric a.v.ch. 

Remark 2. The inclusion (2.5) holds iff (2.1)(ii) holds. This is important for us 
later on (see Lemma 4.3). Using the remark following (2.5) it is easy to construct 
a counterexample to Theorem 1 of [1] (and hence to Lemma 1.1). According to 
Theorem 1 of Eli, the capacity of the (�89 a)-symmetric a.v.ch. _> the capacity 
of the (1, a)-symmetric d.m.c. > log(a/(a-1))>0. However, if we use the necessary 
and sufficient conditions for non-zero capacity for an a.v.ch, as given by Theorem 1 
of [9], we find that the capacity of the(�89 a)-symmetric a.v.ch, is zero. 
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Remark 3. Condition (2.1)(i) is needed if the last step in (2.16) is to hold for all 
possible re<a-1.  This arises because of (2.6). If we had ~A*t=A *t for all jq=k, 
j, k4:l (assuming u~=l), then Lemma 1.1 would be true for any a and any 
co<(a -1) /2a .  However, taking n = 4  and just the two code words ut-=(1, 1, 1, 1) 
and u 2 = (2, 2, 2, 2), we can construct the s.m.1, decoding region for u I and check 
that (2.6) is indeed true in this case. 

Remark 4. In [1] and [2] the existence of weak capacity in various cases has 
been proved using Lemma 1.1 and the idea of concatenation. Because Lemma 1.1 
is incorrect, these proofs are not valid. Further, the proofs cannot be carried 
through if we try to use Lemma 2.1 instead of Lemma 1.1, because of the conditions 
(2.1)(i) and (ii) ~ 

Lemma 2.1 is of course an extension of Lemma 1 of [5]. Similar extensions 
for some special a.v.ch, will be used in the rest of this paper to find the strong 
capacities of these a.v.ch, in a number of communication situations 2. 

4. Capacities of Certain Special a.v.eh, in the Case (A3, S-,  R-) 

Here we consider transmission over certain special a.v.ch. (defined below) 
using pure codes and maximal error, when neither the sender nor the receiver have 
any side information about the channel sequence (i.e. codes as defined in (1.3) and 
(1.4) are used). We now define the various a.v.ch, to be studied. 

(4.1) The single parameter a-ary symmetric a.v.ch, is determined by the set of 
a x a stochastic matrices 

(~(2) ~--- {W2(" I ~ [S) Is~Sc: [0,  1"1}, 

where for any se[0,  1] we have, for all k= 1, ..., a, 

w2(1.lkls)={1-s i f j = k  
s/(a - 1) for all j ~: k. 

Thus the a.v.ch, is determined by a set of (s, a)-symmetric matrices, indexed by 
the values of s. 

(4.2) Let z, = (z~, ..., z") be a point in the a-dimensional unit hypercube, Ia, i.e. 
zke[0, 1] for all k=  1 . . . . .  a, and define for each z,~I~ the a x b stochastic matrix 

w3(jl k ]z,)= if jeek, j:l=b=a+ 1 
[ 1 - z  k when j = b = a + l .  

Clearly such a matrix determines a general erasure-type d.m.c. The a-ary erasure 
a.v.ch, is determined by the collection 

N3) = {w3(']" [s) lsES<__I~}. 

i We are informed by the referees, however, that the proofs can be fixed by using the idea of concate- 
nation in conjunction with random coding. 
2 We are also informed by the referees that Lemma 1 of [5] has been extended by Ahlswede (see [3]) 
to the interesting Gaussian case. 
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(4.3) The matrix w4(- ]. Is), defined for any s~[0, 1] by 

l 
0 

w,(jl k Is)--- s(1 - s )  k-~ 
/ (1  - s) ~-~ 

if j >  k 

for all j = 2, ..., k 

if j = l ,  

is the c.p.f, of a "ladder" d.m,c. (see [6]). The collection 

%~ = {w~ (-I" Is)Is~s~ [0,1]}, 

will be called the a-ary ladder a.v.ch. 

Remark. The "star"  a.v.ch, can be defined as a generalization of the ladder 
a.v.ch. (see [6]), and all results proved in this paper for the ladder a.v.ch, can be 
generalized in a straightforward fashion for the star a.v.ch. 

We shall now give detailed results for ~2) only and merely state the relevant 
results for the other channels, pointing out differences in the proofs, if any. 

(4.4) Let S denote the convex closure of S, i.e. S is the smallest closed convex 
set containing S. Then, we denote by (b~(2) the convex closure of ~(2~, where 

(4.5) For any a x b  stochastic matrix w('[ ' [s)  and any probability vector rc a 
(the input probabilities) define 

~ (s) = ( ,~  (s), ~2 (s), . , . ,  ~ (s)) 
by a 

c;~(s)= ~ r?w(/I kls), 
k = l  

and let 

(4.6) H(~, )  = - ~ ~r k l o g ~  k. 
k = l  

Then, we define the "rate", R (n,, w (- I" Is)}, by 

(4.7) R(~, ,  w(.]. ls))=H(ab(S))--  ~ ~kH(w(. Ik ls) )  ' 
k = l  

(4.8) It is easily verified that R(rc,, w2(. j �9 Is)) is convex 0 in n, and convex U 
in ss[0,  1] so that by a well known theorem (see Lemma 4 of [5]) 

C 2 --max rain R (re,, w2(, I �9 Is)) 
(4.9) . . . .  s 

~min  max R (re,, w2(. [ �9 Is))> 0. 
SEXY ~a 

A1SO~ f o r  a n y  ~/~a w e  g e t  

(4.10) R(n, ,  wa(- f - I (a -  1)/a))=0. 

(4.11) Further, for any fixed se[0,  1], R(n , ,w2( . I . I s ) )  is maximized over re, 
at zc* =( l /a ,  1/a, . . . ,  1/a) yielding 

(4.12) R* (s) = log a - s log(a - 1 ) -  H(s, l - s), 
23 Z,Wahrscheinlichkeitstheorie verw. Gebiete, Bd, 29 
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so that 

(4.13) 

N. S. Kambo and S. Singh 

C z = min R* (s). 
sos  

With these definitions we now state some lemmas and the main result for the 
a.v.ch. ~2). 

Lemma 4.1. A (n, N, 2) code for cgt2 ) is a (n, N, 2) code for cgt2 ) and conversely. 

Proof The proof of this is so similar to that of Lemma 3 of [5] that we omit it. 

Lemma4.2. Let Sc_[O,(a-1)/a) and define s "=maxS .  Then, the d.m.c. 
w 2 (. 1. is") underlies the a.v.ch. (bP(2). 

Proof We prove this by showing that if {(ui, Ai)Ji= 1, ..., N} is any s.m.l.c. 
for the d.m.c, w2('l-Is"), then for all i=  1, ..., N, and for all s,~S, we have 

P(AiJ u i Is,)= P(Ail u i is,), 

" s"). The proof of this relation is naturally similar to the where s~=(s", s , . . . ,  
proof of Lemma 2.1 except that the conditions (2.1) are not needed in this case. 
Thus, with the same notation, except that w('l" is) is now replaced by w2(. I" is) 
and w(" l" is*) by w2(" ] �9 is"), we have instead of Eq. (2.16), 

(4.14) ~ w2(j[ 1 Is)= 1 - s + m s / ( a - 1 )  
jEB 

for all sE[0, 1]. Hence, for any s<_s" (i.e. for all seS) 

(4.15) 2 w2(jl l [s)~ ~ w2(jl l Js"), 
jEB jEB 

and the rest of the proof goes as in the proof of Lemma 2.1. 

Lemma4.3. Let S_c((a-1)_/a, 1] and define s '=minS.  Then, the d.m.c. 
w2(. 1. Is') underlies the a.v.ch, cg(2 ). 

Proof Again, we slightly modify the proof of Lemma 2.1 to obtain the required 
result. Thus, because now s'> ( a -  1)/a, (2.5) is replaced by the reverse inclusion viz. 

(4.16) 1A*t~_jA *~ for all j = 2 ,  ..., a. 

And now, if for some B__ Y, B4=~ we have leB,  then B=  Y. Thus any B e d ,  now 
contains either m__< a -  1 elements excluding 1 or B = Y. Hence, for B 4 = Y we have 

(4.17) 2 w 2 ( j l  1 1 s ) = m s / ( a -  1) for any seS, 
j~B 

and it follows that for all B e d ,  and for all s~S 

(4.18) ~we( j]  1 Is)> ~w2( j l  1 Is'), 
j~B jEB 

so that the rest of the proof goes through as before. 

Theorem 4.1. The strong capacity of the a.v.ch. (g(2) in the case (2 a, S-,  R-)  
is given by C 2. 
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Proof Because of Lemma 4.1 we can consider (6~(2) instead of (~(2) (i.e. S instead 
of S). Then, we first note that for any S__ [0, 1] we must have the following three 
mutually exclusive cases: 

(i) S~[0 ,  ( a -  1)/a), 

(ii) S_~((a- 1)/a, 1], 
(iii) the point (a-1) /a~S.  This includes the case when points of S lie in both, 

[0, (a - 1)/a) and ((a - 1)/a, 1 ]. 

Suppose now that (i) is true. Then, from Lemma 4.2 we see that the d.m.c. 
w2(. I �9 Is") underlies cg(2 ). Also, clearly s"~S so that this d.m.c, is basic to off(2 ) and, 
by Theorem 1.1 th e capacity of c~2 ) is max R(n a, w2(. I �9 Is")) which is seen from 

7ta 

(4.11) and (4.12) to be R* (s"). It remains to show that, in this case, 

(4.19) C 2 = min R* (s) = R* (s"). 
s ~ S  

If we note from (4.8) that R* (s) is a convex U function of s in [0, 1] with a unique 
minimum at s=(a-1) /a ,  then we see that it is non-increasing in the interval 
[0, (a-1)/a)(see also (4.11) and (4.12)). This proves (4.19). 

In case (ii) holds, we invoke Lemma 4.3 instead of 4.2 and the rest is similar 
to the argument given above. 

If (iii) is true, then clearly C2, as defined in (4.9), is zero and we must show that 
the capacity of cg(2 ) in this case is indeed zero. This is easily done by noting that 
the matrix w2(. l" [(a-  1)/a)~(2 ) so that every code for @(2) is also a code for the 
d.m.c, determined by this matrix. The strong converse for this d.m.c., whose 
capacity is obviously zero, completes the proof. 

With the same definition of S for the a.v.ch, cg(4 ) we see that Lemma 4.1 is 
true for this a.v.ch, also. Further, we have 

Lemma 4.4. I f  s '=minS ,  then the d.m.c, w4('J. Is') underlies the a.v.ch. (g(4). 

Proof The proof here is also similar to that of Lemma 2.1; we simply note 
that when u~ = j  we have the inclusion relations 

(4.20) 

and further, 

~A *~ =- 2A*' = "" = sA *~, 

(4.21) kA*t=O for all k>j.  

The rest of the proof follows as usual. 

Finally, we have a theorem analogous to Theorem 4.1 which can be proved 
in a similar fashion. 

Theorem 4.2. The capacity of the a.v.ch, cg~) in the case (23, S- ,  R - )  is, with 
s' = min S as usual, 

(4.22) 

23* 

cg4 = max min R(~a, w4(- [ �9 = max R(z,,  w4(. I �9 Is')). 
~ a  s ~  7~ a 
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For the a.v.ch, cg(3 ) defined in (4.2) let (4.22) Z ~ = {v I there exists za~S such that 
zt=v}. Clearly Zt~_ [0, 1] for all t =  1 . . . . .  a. If we now define 

a 

(4.23) S = [-[ 2 t, 
t = l  

the row-convex closure of c~3 ) (see (2.13) and (2.14) of [5]) is given by 

(4.24) c~(3) = {w3 (" 1" Is) I s iS  ~- 14}. 

Now, if s* =z,* = (z*1, z .2, ..., z*"), where 

(4.25) z *~ --- min Z ~ for each t = 1 . . . . .  a, 

then, in a manner similar to Theorems 4.1 and 4.2 we can prove the following: 

Theorem 4.3. The capacity of the a.v.ch. ~(3) in the case (23 , S- ,  R- )  is given by 

% =max  mi_n R(n.,  w3(. L �9 Is)) = max R ( ~ ,  w3(-I" Is*)). 
~a sES ~Z a 

5. Capacities for Certain Special a.v.ch. 
in the Cases (~1, S+, R- )  and (21, S - ,  R +) 

In this section we consider the possibility of randomized encoding and decod- 
ing and in all cases we are interested in the maximal error of the code. Further, in 
one case (denoted by S +) the sender knows the c.p.f, governing the transmission 
of the t-th letter just before he sends it, and in the other case (denoted by R +) 
the receiver knows the channel sequence governing a received word (sequence) 
before he decodes it. We give below upper and lower bounds to the capacity of 
rg<2 ) in these cases. Under certain conditions (which are given below) these bounds 
are equal and they give us the strong capacity of the channel. As a special case 
of these results, when a=2, we get the capacity of rg<2 ) for the cases (23, S +, R-)  
and (23, S- ,  R+), the last case mentioned being new. Further, a theorem of a 
general nature is proved and it gives the capacities of cg(4 ) and a restricted version 
of % 3 )  in all cases of interest. 

We first consider ~2). Note that Lemma 4.2 states that if {(u~, Ai) li= 1, ..., N} 
is a s.m.l.c, for the d.m.c, w2(.]-Is*), for some s * < ( a - 1 ) / a ,  then {(ui, Ai)} is also 
a code (n, N, 2) for the a.v.ch, determined by any set of matrices w2('l" Is) with 
s < s*. Further, if the sender knows that a particular letter will be transmitted 
with the c.p.f, w2(. t �9 Ist), where st>(a - 1)/a, then he can randomize as follows: 
If the letter " i "  was to be transmitted, he now transmits the result of a chance 

experiment whose outcome will be some letter " j "  with probability p (j) = w 2 (Jl i I 1). 
Thus, in such cases the c.p.f, becomes, in effect, 

(5.1) w2 (" I "11 )  w2 (" I" Is t) -- w2 (" l" I1 - s'/(a - 1)). 

Here we note that since s t>(a-1) /a ,  we get 1 - d / ( a - 1 ) < ( a - 1 ) / a .  Thus by 
this randomization strategy the same code {(ui, Ai) } can also be used for an 
a.v.ch, determined by any set of matrices wz(- [. Is) with s > ( 1 - s * ) ( a - 1 ) .  With 
these facts in mind, we introduce the following definitions which are made clear 
with the help of the figure (Fig. 1). 
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R* (s) t 

1 ! 

s:(a-1)/a s=l 

1 
, , s ( ] )  5(21, 

~ y . ~ s  " ,  51 

T(~I2)) "" 

S'/1 ) 
Fig. 1 

~ 5  

(5.2) Define S(1 ) = S n [0, ( a -  1)/a], 

S~2 ~ = S ~ [ ( a -  1)/a, 1] 

and let T be a m a p p i n g  defined by 

(5.3) T(s) = 1 - s / (a -  1) for all se  [0, 1], 

so that  for any S_~[0, 1] 

(5.4) 

Fur ther ,  let 

(5.5) 

T(S) = { T(s)[s~S}. 

, - T ( S ( 2 ) ) ,  S(~) = S m w 

, - T ( ~ ( 1 ) ) .  S ( 2  ) = S ( 2  ) k.) 

Note  that  T(S(i)) and hence S't~) are closed sets for i =  1, 2. Finally, define 

(5.6) s m = max  Sin, s(2 ) = m i n  8(2) 
t t and similarly, S(a ) and s(2 ). Also, we note  that  

0 if j = k 
(5.7) wz(j[k[1)= 1 / ( a -  1) i f j ~ k  

for all k = 1, . . . ,  a. 

Theorem 5.1. In the case (Z 1, S +, R - )  the capacity of the a.v.ch. (g~2) is bounded 
below by 

C -  = max  R* (s'(0 
i = 1 , 2  

and bounded above by 
C + = rain R*(s(i)). 

i = 1 , 2  

Proof 1) First  we prove  that  C -  is a lower bound  to the capacity.  Suppose 
, t , t that  C - = R  (sin), the p roo f  when C -  = R  (s(2)) being (symmetrically) the same. 
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Let {(ui, Ai) } be a (n, N, 2) s.m.l.c, for the d.m.c, determined by W2(" 1" ISil)). Using 
the randomization strategy given below the sender can always use {(u i, Ai)} 
as a (n, N, 2) code for cg(2 ). Suppose the i-th message is to be sent. Let uti be the 
t-th letter of u~ and s t be the t-th element of the channel sequence (i.e. the c.p.f. 
governing the transmission of the t-th letter will be w2(" [" I st)). Then, 

(i) if s~S(1), u~ is sent; 
(ii) if st~S~2) the sender randomizes and sends letter " j"  with probability 

w2 (j] u~ [ 1). The resultant probability of receiving some letter "k", as we have seen, 
becomes wz (k] utilT(d)). And from the Definition (5.6) of s' m we see that T(s ~) < s~) 
for all possible st~S(2). Hence, by Lemma 4.2, {(ui, At) } is also a code (n, N, 2) 
for ~(2) in the case (21, S +, R-).  

2) For the upper bound, we note that the existence of a (n, N, )~) code for the 
a.v.ch. ~(2) implies the existence of a (n, N, )~) code for the d.m.c, determined by 
any matrix in the collection ~2)- The smallest capacity of all these d.m.c, is C +. 
This completes the proof of Theorem 5.1. 

The question naturally arises as to whether these two bounds are ever equal. 
This is answered by the next theorem. 

Theorem 5.2. If, for any i= 1, 2, we have sli)=s~), then the strong capacity 
of the a.v.ch. (~(2) in the case (21, S +, R-)  is given by 

C -  = C + = e* ( s ( i ) ) .  

Proof Suppose, without loss of generality, that sll ) = s(1 ). We have to show that 

(5.8) max R* (si0) = R* (sil))= R* (s(1))= im~n2 R* (s(0). 
i = 1 , 2  = , 

We do this by showing that 

(5.9) 

and 

(5.10) 

R*(s~2))>=R*(s(1)) 

R*(sI2))<=R*(sI1)). 

First note that T(S(2))~SI1 ) s o  T(S(2))~S'(1 ). In the interval [O,(a-1)/a],R*(s) 
is a decreasing function of s (see Fig. 1 and (4.8)) so we get 

(5.11) R* (T(s(2))) > R* (sil)) = R* (sin). 

But w:(.[.JT(s(2)) ) is obtained from w2(.I.Is(2~) by multiplying on the left by 
w2(" [" I1). This can be considered as having two channels in cascade and it follows, 
from the "data processing theorem" (see for example Theorem 4.3.3 in [8]), that 

R* (s(2)) > R* (T(s(2))), 

which with (5.11) proves (5.9). 

Similarly, T(s~I))~SI2 ~ so that T(s(1))> si2 ) and here R*(s) is a non-decreasing 
function of s so that 

(5.12) R* (T(s(1))) > R* (si2)). 
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And, again by the data processing theorem 

R* ( T(s(~ ))) <= R * (s 0 )) = R* (S'(1)), 
which with (5.12) proves (5.10) and hence the theorem. 

Because of the symmetry of these matrices, multiplication of any two is com- 
mutative. Hence, if the receiver knows channel sequence and the sender does not, 
the receiver can randomize before decoding in a manner similar to that described 
above and we would expect the same results to hold. More specifically, if {(ui, Ai) } 
is a (n, N, 2) code as in Theorem 5.1, then the sender transmits u i when the i-th 
message is to be sent. The receiver, knowing the channel sequence, adopts the 
following strategy: If yt is the t-th received letter and he knows that s t is the t-th 
element of the channel sequence, 

(i) if st~So) he accepts yt ,  

(ii) if st~S(2) he randomizes over Y (the output alphabet) with probability 
w2(jJyt[1) and accepts the resultant letter. Thus again the c.p.f, is, in effect, 
w2(" l" IT(st)). It follows from the arguments used in Theorems 5.1 and 5.2 that 

Theorem 5.3. Theorems 5.1 and 5.2 are true for the a.v.ch. (~(2) /f we change 
(21, S +, R - )  to (2~, S-,  R+). 

It can be verified for the a.v.ch, cg~2 ) that we always have s(1)=si~ ) if a=2 .  

Further, the matrix w2(.[-[1 ) becomes [~ ; [  so that it is no longer necessary 

for the sender (receiver) to randomize when he knows the channel c.p.f. This 
leads to an interesting corollary to Theorems 5.2 and 5.3 above, which we state 
as a separate theorem. 

Theorem 5.4. Given a = 2 so that 

where as usual S ~_ O, 1, define 

[1-So So ] 
w= where 1 - 2 S o = i n f J l - 2 s  I. 

k S O 1 - - S  O sES 

Then, the capacity of  the a.v.ch. (~(2) in the cases (23, S +, R - )  and (23, S- ,  R +) is 
the capacity of  the d.m.c.w. 

Remark 1. In the above theorem, the case (23, S-,  R +) is of particular interest 
since it has not been treated for the general binary a.v.ch, in [5]. 

Remark 2. Theorems 5.1, 5.2, and 5.3 are essentially generalisations of Theo- 
rems 4.1 and 4.2 of [4], except for a difference in the method of proof which allows 
us to obtain Theorem 5.4 as a corollary. Theorem 5.4 states that Theorems 4.1 and 
4.2 of [4] are also true when there is no randomization in encoding and decoding. 

We now define a more restricted version of cgt3 ) by the collection 

(5.13) cg(5) = {Ws (" I" ]s)]seS ~_ [0, 1]}, 
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where for all k = 1, ..., a 

(5.14) w 5 (j[ k Is)= if jW-k andjW-b=a+ 1 

1 - s  if j = b = a + l .  

i.e. each matrix defines an erasure-type d.m.c, where the probabil i ty of erasure 
of each letter is the same. 

The following theorem applies to ~(4) and cs I. 

Theorem 5.5. I f  the d.m.c, w(. l" l) is basic to the a.v.ch, cg then the capacity of Cg 
in all the cases (2i, . ,  ", ", -) and (2i, ", - , . ,  "), i =  1, 2, 3, 4, is given by the capacity of 
the d.m.c, w( ' l ' ) .  

Proof It can easily be verified that  a (n, N, 2) code for the d.m.c, w(. I') can also 
be used as a (n, N, 2) code for the a.v.ch, cs in each of the cases. Conversely, the 
existence of a (n, N, 2) code for the a.v.ch, in any of the cases implies the existence 
o fa  (n, N, 2) code for the d.m.c, w(-1-). The same argument  holds when we consider 
average errors. 

Remark. For  r = 4, 5 we can see that  the above theorem applies to the a.v.ch. 
cg~r), the d.m.c, wr( ' l"  Is') being the basic d.m.c, in each case ( s ' = m i n S  as usual). 
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