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Convergence Properties of Random T-Fractions 

Sheila Foster and Tom Pitcher* 

I. Introduction 

T-fractions are analytic continued fractions which were first introducted by 
Thron in 1948 [3]. They have the general form 

z z 

l+doz-~ 1+dl z + l+d2 z + ' ' ' "  

One reason for interest in the convergence behavior for T-fractions is that there 
is a one-to-one correspondence between the set of T-fractions and the set of all 
formal power series. However, the convergence behavior of T-fractions can be 
very strange. For  example, if d, = - 1 for all n, the T-fraction 

z z 
1 - z + - -  

1 - z  + 1 - z  + "  

converges to 1 for [z[ < 1. On the unit circle, the T-fraction diverges except at the 
point z =  - 1  where it converges to 1. On the region [z[ > 1, this same T-fraction 
converges to the value - z .  

In this paper, we will consider {d,}, n=0 ,  1, 2 . . . . .  to be an independent 
identically distributed sequence of random variables. Through use of the ergodic 
theorem, we shall show that a T-fraction has an exponential rate of point-wise 
convergence with probability one provided that the support of the measure on 
the d., n=  0, 1, 2 . . . . .  is sufficiently large. On the other hand we will show in 
Theorem 4.3 that they do not converge uniformly in general. 

T-fractions have approximants for any positive integer n, given by 

A. (z) z z 
B.(z)=l+d~ l + d l  z + + l + d . z  

where the numerators, A.(z), and the denominators, B.(z), are given by the 
following recursion formulas: 

A 1 (z)= 1 

Ao (z) = 1 + do z 

A.(z) = (1 + d.z) An_ 1 (z)+ zA._2 (z), 
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and 
B_l(Z)=0 

Bo (z) = 1 

B.(z) = (1 + d.z) Bn_ 1 (z) + z B._ z (Z) . 

Applying these recursion relationships, we see that the difference between the 
n-th and ( n -  1)-th approximants is given by 

A.(z) A._l(z) l= .A . ( z )B ._ l ( z ) -A ._ l ( z )B . ( z ) l  
B. (z) B._ 1 (z) B. (z) B._ 1 (z) 

Lzl" 

lB. (z) B._I (z)[ " 

Looking more closely at the recursion relationships for the denominators, 
we have 

o r  

where the matrices 

are unimodular. If 

then 

B.(z) ] (1 [ l+dkz 
B._l(z)]= k=l \1 ; )  (;) 

= z "/2 1-[ M(dk, z) 
k = l  

.(.) ,.(.) ] = M (dk, 2), 
621  N22 k = l  

A.(z) 
B. (z) 

A . _ I ( z  ) = [zL" 1 

Bn-  1 (z) IBn (z) B n_ 1 (z)[ = 611c~(n)/~21"v(n) [ 

~(n) ~(n) We will prove convergence of A./B. by proving that the term Sll ~21 
exponentially. 

grows 

II. Growth of the Column Vectors of  a Product of  Random Matrices 

Let/~ be a probability measure on SL(2, C), the group of all unimodular 2 • 2 
matrices over the complex field, and let G be the smallest closed subgroup con- 
taining the support of #. G operates as a matrix group on the space C 2, the 2- 
dimensional vector space over the complex field. If, in the space C 2 -  {0} we 
identify any two vectors that are positive multiples of each other, we obtain the 
space V. Using 

V = /)1,/)2eC, Ira +lv212---1 
[72 
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as the representation of V, we see that V can be imbedded in C 2 in an obvious way. 

We will denote the operation of G on V as ~ v - g v 
Ilgvl[ 

We will need the following theorem which is an easy consequence of some 
results of Furstenberg (Theorem 8.5, p. 424 of [1] is the real version of it). We will 
write # �9 ~ for the convolution of a measure # on SL(2, C) and a measure ~ on V. 

Theorem 2.1. There exists a stationary ergodic probability measure ~ for # 
on V, that is a solution of # �9 ~ = ~. I f  G does not leave a subspace of C 2 fixed and if 

0<c~u= ~ ~log ]lgvX] d#(g) d~(v)<oo, 
VG 

then for the sequence gl, g2, ... of  independent, #-distributed matrices 

lim 1 log Jig, ... gl ulP =~,  
n 

with probability one for every ue C 2. 

We intend to use this result to show that the product Sll"("~ s21"(") grows exponen- 
tially. We shall consider d,, n = 0, 1, 2,. . .  to be a sequence of independent iden- 
tically distributed random variables so that the matrices M(dk, z) are independent 
with some distribution /~ induced by the distribution of the d's. Note that the 
resultant distribution # gives rise to a G which leaves no subspace fixed except 
in the degenerate case of constant d. In fact if G had an eigenvalue v and eigenvector 
2, this would lead to the equation 

(1 +dz) 2 + z~=22z ~ 
which determines d. 

According to Theorem 2.1 J611 ~'(") [2 + [g~] [2 grows like e 2"" (#). We assume through- 
out this section that 0 < ~u < oo. We will say more about this condition later. 

Lemma 2.1. I f  the distribution of the d,'s has a bounded density and K and L 
are positive constants, then for z + 0 

[(1 + d,z) z-~[ < L e  -K" 

only finitely often with probability one. 

Proof A simple application of Borel-Cantelli. 

The rather awkward looking conditions of the next lemma are satisfied 
whenever d has a distribution which is bounded and compactly supported. 

Lemma 2.2. Suppose z=#O, c(>0, e > e ' > 0 .  I f  the densities of d, and of 
Arg((1 +d,z)  z -~) are bounded, then for n sufficiently large, with probability one, 

if either Ig~][ > e"(=-~') or I g(2"1) ] > e "(~-~'). 

Proof We see that 

g(lnl +1)= (1 -}- dn+ 1 z) z - �89  g~)l -{- z}  g ~  : A -}- B .  
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If 6 is the angle between A and B, then for - 90 ~ < 6 < 90 ~ 

I g~ + 1) I > max (Ihl, IBi) 12 sin (3/2)1 

so that, for some k>O, [g~l+nl >k  max ([A[, [B[)16[. 

We will prove the lemma for the case [g~l)l>_e "~-''), the other case is proved 
similarly. In this case 

[g~l+ 1)[ > k [(1 + d n +  1 z) z - � 8 9  e n ( g -  e') 13[ ~ k  e "~- ~'- ~) 16[ 

for large n, applying Lemma 2.1 with L = I  and K=q~>0.  If M is the bound for 
the distribution of the argument and if ff > 0, then 

P([ 6 [ < e-"~ P([Arg( l + d,+l z) z-+ + Arg g~)~ - Arg z~ g~ [ < e-"~ 2 M e-"~'. 

Hence, by Borel-Cantelli, for large enough n 

if cp and ~ are taken small enough. 

Theorem 2.2. Let z~=O be fixed, and suppose that the distribution of the d's 
and of Arg((1 +dz) z -~) are bounded. I f  0 < g u <  ~ and if ~>0, then 

g(n) ,-,(n) I "> e 2 n (~- ~) 
11/5211 - -  

for large n with probability one. Consequently the T-fraction 

z z 
1 +doz-~ 

l+d l z  + l+d2z +"" 

converges with probability one. 

Proof. By Theorem 2.1, for e > 0 

so that either 
[g~l)l>e "( ' -2~ or Ig~"~l~e "('-2~) 

for large n. Therefore, by Lemma 2.2 

and 
g(n) __ I g(ln11)[ - ~  e(n-1)(o~-3e-log[zl/2n) 

from which the theorem follows. 

IlI. The Sign of % 

In light of Theorem 2.2 it is natural to ask when % is positive. We define a 
measure 2 on V by setting d2 = (2 n)- 2 p dp dO 1 dO 2 where 

( 1/i---p e'~ U'~- 2 elO2] 
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is an element of V. 2 is a probability on V and the following result implies that 
it is invariant under unitary transformation. 

Lemma 3.1. d(~2) d2 (V)= ]tg-1 VII -4" 

Proof. For any continuous f on V 

y f(v) dg2(v)= y f(~ v) d2(v) 
V V 

  2SoSoSo I ]/i~-0. 2 e 'z2] p dp dOl d02 

27r2 ~0 ~0 ~0 2~2~ 1 ((l /~a ei~l~), c?(p, 01,02) 
- -  Z(72 e'Z:] P ~(0.,Z1,Z2 ) d0.dzldz2" 

By a straightforward calculation 

(fl' 01' 02) (7 g-- 1 ( , 0. e iZ l~  - 4  

(0., zl, z2) -- p k]// 1-- 0 .2 eiz2] l] 

which gives the result. 

Using this we can prove, just as in [1] (Lemma 8.9, p. 425) the following result. 

Lemma 3.2. I f  the stationary measure 4 for It on V is equivalent to 2, then 

e u = - � 8 8  ~ ~ log d(g-~ 4) v d4 (v)d4(v)d~t(g). 

Theorem 3.1. If  the stationary measure e~ for It is equivalent to 2, c~u>0 unless 
~,-~ 4=4 for It-almost every geG. 

Proof. By Jensen's inequality 

log d(g-1 4) gd~ v d~ (v)d~(v)<log~ d( 4) (v)d4(v)=O. 

d(g -1 4) 
Equality will hold only if 1, i.e. only for those g for which ~- ~ 4 = 4. 

d4 
The question of the existence of a stationary measure of the form d4=p d2 

is easily seen, with the help of Lemma 3.1, to involve the solution of 

p(~-~ v) 
Tp(v)= ~ c Jig -1 vii 4 dl~(g)=p(v). 

The transformation T preserves norm in L 1 (d2) and also preserves positivity so 
we have a familiar, though intractable, problem from ergodic theory to deal with. 

IV. Uniform Convergence of A.IB. 
If we suppose that the conditions of Theorem 2.2 are satisfied throughout 

a region D, then A,/B, converges with probability one at each point. By a straight- 
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forward application of Fubini's theorem we can assert that A./B. converges 
almost everywhere in D with probability one. It would seem natural to expect 
that in most cases this convergence would be uniform on compact subsets and 
hence that the limit function would be holomorphic. Surprisingly this is not the 
case in general as is shown by Theorem 4.3. 

First we note two results which are direct translations of known theorems 
about T-fractions. 

Theorem 4.1. I f  [d.]< M with probability one, then A./B. is uniformly bounded 
with probability one in some neighborhood of the origin depending only on M and 
hence converges uniformly on compact subsets to a holomorphic function. 

Proof This follows from Theorem 3.1 of [-3]. 

Theorem 4.2. I f  dl >--  1 with probability one and the distribution of d, is 
unbounded, then, with probability one, An/B n does not converge uniformly in any 
neighborhood of the origin. 

Proof This follows from Theorem 3.1 of [-2]. 

Theorem 4.3. I f  the distribution of dl has a density 0 with ~b (co) > 0, a.e. then, 
with probability one, An/B n does not converge uniformly in any open set. 

Proof Suppose fn=An/Bn converges uniformly in a disk U o with positive 
probability and hence, by the 0 - 1  law, with probability one. We can find a 
smaller disk U with 0 r U c U c Uo. Then 

P(c6f . (U))=P (dn = 1 An-2-cBn-2  for somezEU) 
z An_ 1 - c B . _  1 

( z z ) 
=-p d .=  . . . .  for some z eU  . 

z l+d~_lz  + l+d~_2z  + + l + d o z - c  

Since the d. are independent and identically distributed 

P(cefn(U))= P(dn~gn(U)) 
where 

1 1 z z 
gn(z) : Z l + d 0 z  + l + d l z  + + l + d . _ i z - c  

1 1 

z L ( z )  " 

Lemma4.1. j~ has a subsequence ~k converging uniformly on U to f : l i m f .  
with probability one. 

Proof Let Q be the measure on U • ~2 (~2 being the underlying probability space) 
which is the product of Lebesgue measure dlzl and the probability measure P 
and let Q. be the measure which results from the transformation d .ed . - ( c / z ) .  
Then the Q. are absolutely continuous with respect to Q, 

dQ. q~ (d. + c/z) 
- -  (z,  c o ) =  

dQ ~o(d.) 
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and moreover for any positive 6 one can find an e such that Q (A)<e implies 
Q,(A) <(i for all n. If the last statement were not true, there would be sets Ak 
and numbers nk with Q(Ak)<2 -k and Qnk(Ak)>6. If A~ is the set that results 
from interchanging dl and d,k, then Q(A'k)<2 -k and QI(A'k)>6 which violates 
the absolute continuity of Q1 with respect to Q. 

Now Nf,-flJ (uniform norm) is measurable since it only depends on the 
rational points and for any positive e, Q (ri f , - f  PI > e) goes to zero so Q, (ll f ,  - f  II > e) 
=Q(l lJ~-fr l  >~) also goes to zero. The lemma now follows from a standard 
measure theoretic argument. 

Lemma 4.2. For almost every c, 

P (c~f(U))> lira P(cef, (U)). 

Proof We will write A~ for the e neighborhood of the set A and 3A for its 
boundary. For any e > 0 

lim P (c ef, (U)) < P (c ef(U)~) 
so 

lim P (c ef .  (U)) < P (e ef~O)) 

<= P (c E (f(U) u f((? U))) 

<_ P (c ~f(U)) + P (c ~f((? U)). 

But f(3U) has measure zero for almost all f so by a Fubini type argument 
P(cef(OU))=O for almost all c. 

Lemma 4.3. Let d have the same distribution as d~ but be independent of all 
1 

the d,'s. Let g (z) . . . .  l / f  (z). Then 
z 

lim P(d,~ eg,~ (U))> P(d~g(U)). 

Proof By Rouche's theorem and Lemma 4.1 lim g,~(U)~g(U)-(oo) so that 

lira P (d,~ ~ g,~ (U)) > P (d ~ lim g,k (U)) 

We can now complete the proof of Theorem 4.3. For almost every c 

P (c ef(U)) => lim P (c ef ,  ( i ) )  

> lira P(d,~eg,~(U)) 

>=P(deg(U)) 
=/( f 4)(w)dlwl)dP 

g(g) 

= 7 > 0 .  

But if N is large enough, P(llfll > N ) < ?  so P(e~f(U))< 7 whenever [cl>N. 
Thus with probability one f ,  does not converge uniformly in any disk with 

rational center and radius and hence does not converge uniformly in any open set. 
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