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Paths of Random Evolutions 

R.V. Erickson* 

We study the paths of general random evolution processes obtained by piecing together deter- 
ministic evolution functions according to the dictates of a regular step process. If the state space is 
metrizable we show that such processes are strong Markov; and they are even standard under a certain 
continuity condition on paths. We apply this result to solutions of stochastic delayed differential 
equations, and we make a connection between our processes and random evolutions associated with 
classes of semigroups. 

1. Introduction 

An often used model for the content of a dam is that which assumes content 
is piecewise linear with slope given by an underlying Markov  chain. Writing Y 
for content, this is phrased as dY t /d t=  Z t, Z a Markov  chain. (See Pinsky (1968) 
and Brockwell (1972) for treatments of this model.) 

More generally, we have considered the case d Y~/dt = a (Zt) Yt + b (Z~), where Z 
is a finite state Markov chain, and have shown that X = (Y, Z) is a Hunt  process 
if Y is pieced together using solutions of appropriate initial value problems 
(Erickson (1972)). 

This idea leads to very general results. Below we replace Z by a regular step 
process, and we show how to piece together rather general deterministic evolution 
functions to yield a process Ysuch that the process X -  (Y, Z) is a standard process. 

Our results will imply that a "solution Y of an autonomous delayed differential 
equation driven by a regular step process Z "  is such that X = (Y, Z) is a standard 
process. We also show that paths of random evolution processes associated with 
families of semigroups (Griego and Hersh (1971), p. 407) and multiplicative 
operator  functions (Pinsky (1973)) yield standard processes. 

These facts are given in Section 7 which deals with applications. In that 
section, in addition, we raise a question concerning processes with deterministic 
germ fields (Knight (1972)). 

In sections (2) through (6) we consider evolution data, the evolution process, 
the Markov  property, strong Markov  property, and finally quasi-left-continuity. 

The pattern of the construction and proof  is much like that used in Blumenthal 
and Getoor  (1968) to construct regular step processes. We follow this reference 
for notation and several results. To facilitate citation we give chapter and para- 
graph number  of this book in the form BGI  7.12, for example. 

* Research supported in part by National Science Foundation grant GP28658. 
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2. Evolution Data 

We think of random evolution as follows. Let Z be a piecewise constant 
process whose states are thought of as giving rules for evolution. For  each rule z 
and initial position y there is a deterministic evolution function k 1 (y, z, t). The 
evolution process Yis obtained by piecing together the functions k 1 appropriately" 
if Yo = Y0 and Z passes through states z o to z 1 ... to z, at times 0 < z 1 < . . .  < z, < 
t<Z,+l  then Y evolves from Yo to k~(y o, z o, Zo), ..., jumps to y, and evolves to 
k~ (y,, z,, t -  z,) at time t. 

From this it is clear that to specify Y as a stochastic process it is necessary to 
specify k~, the jump probabilities for Y and Z and the holding probabilities for Z. 
This we do now, and in section (3) we construct the process X = (Y, Z). 

Let E~ and E z denote metrizable spaces with Borels gl and g2. Evolution 
occurs in E~ and the rules governing evolution are denoted by elements of E 2 . 

Set R + = [ 0 ,  oo) with Borels N+,  T=[0 ,  oe] with Borels J .  Let A=(A~, A2) 
be a point isolated from E = E1 x E z and define E a = E u {A }. E and E a are metri- 
zable with Borels ~ ~ ~1 x ~2 and ga. Finally define F = E x R + u {3} with Borels o ~, 
where 6=(A, oe), and "oo" is the one point compactification of R+ with oe > r  
for all r in R+. 

A function k: F --. E a is called a (deterministic) evolution function if it has the 
general properties 

(2.1) k(x,O)=x, k(x, t) is in E for all x in E, t in R+, and k(A, oe)= A, 

(2.2) k(x, t+s)=k(k(x ,  s), t) for all x in E, s, t in R+, 

(2.3) k is ~ / E  a measurable and 

(2.4) t ~ k (x, t) is right continuous for all x in E, t in R +, and x ~ k (x, t) is g /g  
measurable for each t in R+. 

So that the evolution state can be distinguished from the evolution rule we require, 
in addition, the special property 

(2.5) k (x, t )= (k I (y, z, t), z) for all x = (y, z) in E and all t in R+. 

In applications the function kt is typically the solution of an initial value 
problem in El, indexed by a symbol from E 2 . In such a case assumptions (2.1) to 
(2.4) can be deduced from (2.5) and usual theorems concerning such solutions, 
if enough conditions are placed on the equations defining the initial value problems. 
Actually, the function kl is basic in our considerations and the function k defined 
in (2.5) merely simplifies notation. 

We may sometimes demand that 

(2.6) t ~ k (x, t) has left limits for all x in E, t in R +, or 

(2.7) t ~  k(x, t) is continuous for all x in E, t in R+, 

and we then say simply that k has left limits (is continuous). 
Concerning the independence of the hypotheses on k we note 

(2.8) Proposition. Assumption (2.4) implies (2.3) and even that k[E x R+ is g x R +/g 
measurable. The converse fails. 
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The implication is proved exactly as is the well known fact that "right contin- 
uous processes (in a Hausdorff space) are progressively measurable", [-Meyer (1966) 
IV. 47]. One might conjecture the converse, and even (2.7), if one defines the 
contraction semigroup {T, t>0} by Ttf(x)=f(k(x, t)), where x is in E, t in E+ 
and f is in the Banach space L of bounded measurable functions from E to R, with 
supremum norm. Apparently neither (2.3) nor (2.4) nor even (2.7) is enough to 
guarantee strong measurability of t~T~ as the following example shows: Set 
E = [ , -  1, 1] and define k using the following table, where 0 < a-< b < 1. 

x < 0  x + t > 0  x+a ] x>O 
(2.9) k(x,t)(x't) ] x+t<0x+t I]x+t=0a [ b ~ x=a't=O t 

Notice that k satisfies (2.1), (2.2) and (2.3) for any a, b. Now (2.7) holds if a =  0=  b; 
(2.4) holds and (2.7) fails ira = 1 -- b; and even (2.4) fails ira =~, b = 1. 

In this setup L i sa  separable Banach space, and if { Tt} were strongly measurable 
it would also be strongly continuous, t > 0. (See, for example, Dynkin (1965), p. 35.) 
But then the action of {T~} on the identity function would imply that k(x, t) is 
continuous for t > 0, uniformly in x. Even when a = 0 = b, so that k is continuous 
(2.7), we see that {T~} fails to be strongly measurable: just consider its action on 
the signum function. 

Let us return to giving the evolution data. 

Having specified k we still must specify holding and jump distributions for the 
rules governing evolution. To do this we specify two functions, 2 and Q. 

The function 2: E--, (0, oe) will be used as a parameter for the exponential 
density and will be assumed to satisfy the conditions 

(2.10) 2 is 8/N+ measurable, 2(x)=2z(z ) for all x=(y, z) in E. 

Extend 2 to F by setting 2(A)= 0. Again 22 is basic and 2 saves much writing. 

To specify jumps we assume given a Markov transition function Q: E x g--. [-0, 1] 
such that 

(2.11) Q(x, .) is a probability measure on g for each x in E, 

(2.12) Q(., A) is g/N+ measurable for each A in d ~ and 

(2.13) Q((y, z), E1 x {z})=0 for all (y, z) in E. 

Extend Q to F x ~ -  by setting Q(A, {A})=I. Condition (2.13) guarantees that 
"evolution rules change when jumps occur". 

When g=gl x g2 (for example, when E 1 and E z are separable), one way to 
obtain such a Q is to be given Markov transition functions Qi on Ei, i=  1, 2, with 
the property that Qz (z, {z}) = 0 for all z in E 2 . Use these to define Q((y, z), A x B) = 
Q1 (y, A) Q2 (z, B), and extend this to Q on E x C. In applications Q2 is often thought 
of as basic: for example it might give the jumps of an underlying Markov chain 
or regular step process. In this case, when only Q2 is specified, we assume that 
Q~ (y, A) = ey (A) is unit mass at y. 
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Obviously our Q is somewhat more general than Q1 x Q2 and will have the 
effect of allowing the evolution state to "undergo a sudden shift when the evolution 
rule changes". Thus in our setup kl, 2 2 and Q are basic. 

In case Q2 is basic we could say that the random evolution is driven by the 
regular step process specified by )t 2 and Q2. 

From now on the data E 1, E 2, k, 2, and Q will be assumed given and assumed 
to satisfy all the conditions listed in this section, except (2.6), (2.7) which will be 
invoked .explicitly when used. We will refer to this data, or simply to k, 2 and Q, 
as basic data. 

3. The Process 

In this section we use the basic data k, 2 and Q to  construct the process of 
interest. 

For N = {0, 1,...} set ~2 = F  N and let (g = ~-N. For  co = {(y,, z,, t,)}~ in ~2 define 
the projections 

rc.(co) = (y., z., t . )=w.,  a.(co)= (y., z . )=x. ,  b.(e))-  y., 
(3.1) 

c.(co) = z . ,  ~ . ( co ) :  t . .  

Define a Markov kernel K: F x o~--+ [0, l l  using the basic data: for (x, t) in 
E x R +  

(3.2) K (x, t; du, ds) = Q (k (x, s - t), du) ~L (x) e (x; s - t) ds, 

where 2 (x) e (x; s) = 2 (x) exp [ - 2 (x) s] for s > 0, zero otherwise, is the exponential 
density with mean 1/2(x). Also define 

(3.3) K(6, {6})= 1. 

This is a Markov kernel (has properties (2.11) and (2.12) on F x ~ )  because of 
Fubini's theorem and the assumptions on k, 2 and Q (see Neveu (1965), p. 74). 

By the theorem of Ionescu-Tulcea (Neveu (1965), p. 162), for every measure 7 
on (F, ~ )  there exists a measure P~ on (f2, f~) such that the sequence {rc,}~ ~ is a 
Markov chain with initial distribution 7. 

The joint distributions are computed using the operators 7K" defined on 
bounded ~ "  + 1/N measurable functions f by 

(3.4) ~ f  dP~=TK"f=~?(Wo)~K(wo, dwl). . .  ~K(w._l ,  dw,)f(Wo . . . . .  w,). 

When we calculate using (3.4) we will write w j= (x j, t~)= (y j, z j, t j) for generic 
variables. 

Write px = pyzO if 7 = ~x,o is unit mass at the point (x, 0) = (y, z, 0), and write E ~ 
for expectation relative to P~. 

Define v(co)=inf{n]rc,(co)=6} (= oo if no such n) as the first time rc hits 6. By 
simple calculations we see that 

(3.5) P~(%=O)=l--P~(v=oo),  P~(~,+a <%)=O=P~(c,=c,+l) 

for all x e E and all 7 such that 7 ({6})= 0. For  example, if e > 0 then 

E'  (exp [ - c~ (~,+1 - z,)]) = E'  (2 (a,)/[e + 2 (a,)]), 

and the third equality follows by letting c~ ~ oo. 
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Because of (3.5) we see that nothing is lost if we restrict f2 to sequences {w,}~, 
w, = (y+, z,, t,), where 

O=to<tl <. . .<tv_t  <t~=o�9 I ... and 
(3.6) 

z,+z,+l for O<n<v, wv+j=3 for j = 0 , 1  . . . . .  

We interpret the conditions after index v as vacuous if v = ~ .  Actually we could 
omit all (o's for which v 4= ~ ,  but our proof of the strong Markov property depends 
on having sequences of the type given in (3.6). (See (5.6) and (5.7).) We designate 
the particular sequence with v=0  by co~ = {b,}~, 3 , - 6 .  

Denote the restricted set of sequences satisfying (3.6) by f2' and let fr be the 
trace of ~ on f2'. We still have fq'=a{rt0, rq . . . .  }, and {zc,}~ ~ remains a Markov 
process on (f2', ~', P?). Now drop the primes. 

Define ~(co)=lim%(co) and piece together the evolution process for t in 

T= [0, oe] : X+(coa) = A for all t, and for v > 1, 

X,=(Y~, Z,)=k(a,, t -%)  if "Cn<=t <'Cn+I, 
(3.7) 

A if ~__<t< oQ. 

Notice that t---, X+(co) is right continuous for every co, t in R+; and it has left 
limits for every co if k has left limits (2.6). 

Finally, define translation operators 0t: f2--. f2 by setting 0t(COA)= coA for all t, 
0,(co)=e) a if t>~(co), and for %(co)<t<~,+l(co) set 0t(co)={co)} ~, where co~= 
(Xt(co), 0) and oo)=(a,+~(co), "c,+j(e3)- t),j= 1, 2, .... We have X~ o O,=X~+, for all s, 
t in  T. 

4. The Markov Property 

In this section we show that X is a normal process (in the sense of BGI 3.1 
and 5.16). 

To be more precise, define J~~ s<__t}, ~~  and 
+ o  = 0 ~ t  + 

s > t  

(4.1) Theorem. The collection ~o ~o X=(f2, ~ o ,  ~*t+, Xt, OF, pc) is a normal Markov 
process with state space (E, g) (augmented by A). Every path t-~ Xt(co ) is right 
continuous; and every path has left limits if k does (2.6). 

The collection X is called the random evolution determined by the data k, )~, Q. 
To prove the Markov property we must show 

(4.2) Px(Xt+s6B; A)=Ex(px(i)(X, eB); A) 

for all x in E, s, t in R+, B in g and A in ~t~ Since E is a metric space, the a-algebra 
of Baire sets coincides with the Borels g, and because of the Lebesgue monotone 
convergence theorem it suffices to prove 

(4.3) EX ( f  (Xt + s); A) = E ~ (EX(t) f (Xs); A) 

for all bounded continuous functions f :  E ~ R, (extended by f (A)=0)  (see, for 
example, Neveu (1965), II.7.1 and 2). But for such functions f, u~f(X,(co)) is 
bounded and right continuous for every o0; thus both sides of (4.3) are right 
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continuous functions of s. Hence, it suffices to verify the equality of the corre- 
sponding Laplace transforms, which, by Fubini's theorem, demands 

cO ~O (o e 
09 

In terms of the resolvent operators U ~, ~ >=0, defined by U~f (x)= E ~ ~ e-~t f (Xt) dt, 
we see that we must prove o 

co 

(4.5) E x (!e-~<"f(X.)du;A)=EX(e-<"U~<f(X,);A) 
for all x, s, t, all A in ~ o  and all bounded continuous f ( f  (A)= 0). 

In their construction of regular step processes Blumenthal and Getoor (BGI 12) 
make no metrizability assumption on E nor continuity assumption on f They 
are able to do this because t--* Xt(~o) is piecewise constant and right continuous, 
thus implying right continuity of t~f(X~(o~)). To retain this last property we 
chose to restrict attention to continuous f and thus were forced to argue as above. 

The first step in the proof of (4.1) is to prove 

(4.6) Lemma. In the above notation we have ~ o  = ~o .  

Proof First introduce the right continuous jump process J~(ooa)-A, and for 
v > 1, Jt = an if z n < t < z, + 1 = A if ( < t < ~ .  We claim that Wt = a {J~, s < t} is such 
that for all t (a) ~ = ~ +  and (b) Jt~, = ~ ~ 

To prove (a) note first that for each given t and ~o there exists an ~o' so that 
J~(~') = Js ̂  t(r for all s < t + 1. Now use BGI 6.17 to characterize sets A in W, + ~, 
0 < e < I : A  ~ ~ +~ iff (i) A E ~ +1 and (ii) if o~ o cA and J~(~Oo)= J~ (~o) for all s < t + e, 
then ~eA.  Given A e ~ +  = ~ + ~ ,  0 < e <  1, let ~ooeA and suppose ~o is such that 
Js(~Oo)=J~(~o ) for s<t;  then by right continuity and piecewise constancy of J 
there exists an e--e(~Oo, co, t), 0 < e < l  such that J~(o~o)=J~(c~ ) for s < t + z .  For 
this z, A e ~ + ~ ;  thus ~oeA and AeYgt, by two applications of the above charac- 
terization. This proves (a). For  A in g the event 

-0 A={XseA}= w {X~sA}c~{~n<s<~n+I}- An, 
0 0 

where 

Similarly 
An= {k(J(zn), s -  zn)~A } n {~n_-< s <zn+l}. 

{Js+A} n {'cn<=s < zn+ a} = {X(%)eA} ~ {'Cn<--S < Zn+ I}. 

Since (2.4) implies k is g~ x ~ + / #  measurable we have (b) if we prove that each z n 
is a stopping time relative to both {~t ~ and {J~}. This is done in (4.7) below. 

(4.7) Lemma. For each n the projection *n is a stopping time relative to the a-fields 

Proof First notice that our arguments for (4.6.a) show that ~r =~r The 
inclusion is clear: for B in 8 2, {ZseB } = {XseE 1 x B} = {JseE 1 • B}, s in Re .  Next 
~l=inf{t>OIZt4-Zo},  and right continuity gives {z 1 > t } =  N {Zr=Zo},  where 

reQ(t) 
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Q(t)={r=qt[O<=q< 1, q rational}. Thus z 1 is an ~ stopping time. Since %+1 = 
T .  -It- T 1 o 0~, we have {z,+ 1 < t} = U {z, < t - r, "q o 0~, < r}, Q = rationals. If we show 

r~Q 
that {Zl o 0,. < r} = 0~ 1 {z 1 < r} ~r176 we are done by induction, since ~r =sr 
In general O ~ I { Z ~ e B } = { Z s + ~ B } ,  and the result follows. (These arguments 
are those of BGI 7.5 and 8.7, but the hypotheses in those theorems are made for 
ease of formulation and do not cover our case.) 

We turn now to the proof of the Markov property and (4.5). Since f(A)--0,  
it suffices to show, for A in ~ o ,  

(; ) (4.8) E ~ e - ~ f ( X , )  du; A,  =EX{e -~t U~f(Xt); A,} 

where A ~ = A c ~ { % < t < % + I } = A , c ~ B , ,  B , = { t < % + l }  , A, e a { ~ o , . . . , ~ , }  and 
A, c {r, < t}. The representation of An is proved by observing that the generators 
{ X ~ A }  o f ~  ~ are such that 

{ X s ~ A  } (5 {Tj ~_~ S < Tj+. I } = {k (a f l  s - -  T j ) E A }  ('1 { T j ~  S < Tj+I}  = AsjC~ {s<zj+i} , 

with A~jeo-{u o . . . . .  u,} f o r j < n ,  s<t .  

Fix x, t, c~ and A , = A ,  riB. ,  A, so- {Tr o . . . .  , n,}, A . c  {%< t}, B ,=  {t < ~,+1}. Let 
A . ~ , + I ,  . ~ n + 2  B, ~ be appropriate sets corresponding to A,, B, in f2. In the 
notation of (3.4) we have 

EX{e -~' U'f(X,) ;  A,} =e~o K "+x [e - ' '  U~f(k(x , ,  t -  t,)) I(A*) I(B*)] 
(4.9) 

= exo K" [I(a*)  e(x., t - t.) e - "  U~f(k(x . ,  t - t.))], 

since the only dependence on (x. + 1, t. + 1) occurs in the indicator function I(B*)= 
c~o 

I(t < t.+ 0. Next split the left side of (4.8) into the sum ~ L j, where 
0 

[ tn+j+l ] $ * --~u 
Lj=  oK"+J+I I ( A . ) I ( B . )  e , 

tn+j 

tn+l tn+l 
for j >  1, and L o is defined similarly but with S replacing ~ . Introduce the new 

1, tn 
time variables v = u - t ,  s i=t ,+~- t ,  i>1. Because of I(B*) and the exponential 
density in K, integration in the new variables is over 0 < v < s  1 in L o and 
0 = s o < s a <. . .  < sj < v < sj+~ in Lj. Notice that in these variables B* is transformed 
into {0< sl} and is superfluous next to an exponential density. Finally, introduce 
the new state variables x*=x.+i ,  i>1, x '=x*d=k(x. ,  t - t . ) ,  k(xn+i, u--tn+i)-= 
k(x* ,v - s i ) .  Since 2(x*)=2(x,+i) by (2.10), and k(x ,+i , t ,+ i+l - t ,+i )= 
k(x*, si+ 1 -s~), it is easy to check that 

(4.10) Lj=~xoK" I ( A * ) e ( x , , t - t , ) e - ~ t e x , o K  j+l S e-~Vf(k(  x*,v))dv . 
sj 

J 
Then ~ Lj equals the right side of (4.9) and (4.8) holds. This proves the Markov 

0 
property. 
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To complete the proof of Theorem (4.1) we observe that for all x Px(X o = x) = 
P~(k(x, %)= x)> PX(k(x, 0)=x,  To=0)= 1, by (2.1) and (3.4). Thus X is a normal 
Markov process. 

5. The Strong Markov Property 

In this section we prove 

(5.1) Theorem. The random evolution determined by k, 2 and Q, that is 

X={s ~o  ~ o  Xt ,Or ,P~} 
~ o o ~  ~ t -~-  ~ 

is a strong Markov process. 

This means that for every bounded d~ measurable function f, every {~t ~ } 
stopping time T, t>=0 and x in E 

(5.2) E ~ { f o Xt + r l~ r  ~ = EX(T) f o X r 

(See BGI, p. 12, for the interpretation of equality of such statements as (5.2).) As in 
the proof of Theorem 4.1, it suffices to show that 

{y } (5.3) E ~ e~Uf(Xu) du; A =EX{e -~T U~f(XT); A} 

for all e>0 ,  all bounded continuous f with f (A)=0 ,  and all A in .,~r ~ (i.e. A e f f  ~ 
such that A c~ {T<s}  s~,~~ =~ss ~ all s). 

By observing that (5.3) is Eq. XIV.11.3 of Meyer (1967), we see that (5.3) also 
implies XIV.7.1 of Meyer (1967): 

(5.4) E ~ { f  o Xs[ f f  r ~ } = EX(T) f o X(S  - T) 

for all random variables S >  T which are ffr~ measurable. (Notice that (5.2) 
follows from (5.4) with S = t + T.) 

From this observation we have 

(5.5) Corollary. For all ~ > 0 and all continuous mappings f :  E --> R, with compact 
support, the map t ~  U~f (Xt) is right continuous on [0, ~) almost surely, if E is 
homeomorphic to a universally measurable subset of a compact metrizable space. 

If we could deduce (5.5) directly we could then invoke BGI 8.11 to infer the 
strong Markov property of X. This is the technique employed by Blumenthal 
and Getoor in their construction of regular step processes (BGI 12). But we are 
unable to do this. Instead, we prove (5.3) directly and then (5.5) is a corollary of 
Meyer (1967) XIV, T 11. (See (6.3) for stronger assumptions on E that are usually 
fulfilled in applications.) 

To show that (5.3) is true it evidently suffices to prove its validity with 
An=AC~{%<= T<Zn+l} in place of A, for we may assume f (A)=0 .  Write (5.3.n) 
for this new equation. We would like to say that (5.3.n) follows by exactly the 
calculations (4.9) and (4.10) used to prove (4.8). Indeed it does once we prove the 
next two lemmas. The effect of these lemmas is to show that on the event 
{%< T<zn+I}, the value T can be treated as a constant when performing the 
inner (or first) few iterated integrations of 7K "+j. (Recall that-t-~-~176 (4.6).) 
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(5.6) Lemma.  Let T be an {~tt ~ stopping time, A 6 ~ , A,  = A c~ {z,< T<z ,+ l} .  

(a) A,6o-{~ o, . , . ,  re,, z,+l} for n=0 ,  1, .... 
(b) Let coeA, and suppose co' is such that rcj(co') = rrj(co),j= 0 . . . . .  n. Then co'cA, 

iff z,+ 1 (co') > T(co), and in this case T(co') = T(co). 

Proof For  (a) notice that  A , =  U (Ac~ {z,< T < r < r , + l }  ), where the union is 
r 

over nonnegative, rational r. But we have seen (just following (4.8)) that every set 
C ~ g o  has the property that C c~ {z, < r < z, + 1 } = C, e o- {re o . . . .  , re,, r ,  + 1 }. Thus (a) 
follows if we choose C = A c ~ { z , <  T} c~ { T < r } e ~  ~ Now let co, co' be as in (b). 
If v(co)<n then co=co'. Assume v(co)/x v(co')>n+ 1 so that T(co) < oo. If co'cA, then 
z,+l(co')>T(co')>%(co')=r,(co), which implies that  Xs(co')=Xs(co) for all 
s<T(co')AT(co)<oo.  Set t ' =  T(co'), t=T(co).  If t '<t, then O ' E { T < t ' } E ~  ~ and 
Xs(co')=X~(co) for s<t' ,  giving coe{T<t '}  and t<_t'<_t. (See BGI  6.17.a "only if", 
which follows without assuming the existence of an co' such that X~(co')= X~ ̂ t(co) .. . .  ) 
If t < t' then we show that  t' = t similarly. This gives 

T(co)= T(co') and r ,+l(co')> T(co')= T(co). 

Conversely, if r ,  + 1 (co') > T (co), then X~ (co') = Xs (co) for s < T(co) < r ,  + 1 (co)/x z, + 1 (co'). 
Arguing as above we show T(co) = T(o')  and co'cA,. This completes the proof. 

Now define the map d,: (2 --, f2 so that  rcj o d, - rcj for 0 < j < n and ~j o d, (co) = 
6 = (A, oo) for j > n + 1 and all co. Thus d, leaves the first n + 1 terms of the sequence 
co unchanged and replaces the remaining terms with 6's. Clearly d, is ~ , / ~  
measurable, ~ ,  =o-{rr o . . . . .  re,} (Meyer (1966) article 1.8). Lemma (5.7) now gives 
us a crucial factorization. 

(5.7) Lemma.  Let T, A, A, be as in (5.6). Then A,  = A, c~ B,, where A, = d~ 1A,~ ~.,  
A,  ~ { z ,< T o d,} and B ,=  { T o d, < Z,+ l }. Also, T o d, is (~,/~ + measurable. 

Proof If co ~ A, then so is d, (co), for z, + 1 ~ d, (co) = oo > T (co), and r ,  + 1 (co) > T(co) = 
T(d,(co)). This shows A,  c A ,  c~B,. Conversely, if coeA, c~B, then d,(co)eA,, 
T o d, (co) < ~, + 1 (co) and co e A, by (5.6.b). Next, d. (co) e A, implies z, (co) = z, (d, (co)) < 
T(d,(co)); thus d 2 l A ,  c { z , < T o d , } .  Finally, T is ~f~/~+ measurable, since 

~*~, making the T o d, measurabili ty clear. This completes the proof. ~ o o  ~ oZ '0  

Now fix x, e > 0, n and T, A, A,,  A, and B, as in (5.6) and (5.7). Using the results 
of (5.6) and (5.7), the proof  of (5.3.n) (i.e. (5.3) with A, replacing A) is essentially 
identical with the proof  of (4.8) given in (4.9) and (4.10): In (4.9) replace t by Tin  the 
first term and by T, in the next two terms, where T,(x o, to, ..., x,, t , )=  Tod,(co) if 
rcj(co)=(xj, ti) , j = 0  . . . .  , n. The set B* equals {T,<t ,+ l} .  Concerning the Lj in 
(4.10), replace t by T, and x* by k(x, ,  T , - t , ) .  Since T, does not depend on w,+), 
j =  1, 2 . . . . .  argue exactly as in (4.8) and (4.9). This completes the proof of (5.1). 

To prove Corollary (5.5) we note first that  
oo 

x ~ P t f ( x ) = E ~ f ( X t ) =  ~ ~o  K"+I ( f (k(a . ,  t - t , ) ) ;  {t ,<  t <  t.+~}) 
0 

is g a / ~  measurable for all bounded ga/N measurable f (Neveu (1965), p. 74). 
Since U=f is a excessive for nonnegative g / ~  measurable f (BGII2.2e), that  
t ~ U=f(X,) is right continuous almost surely follows from (5.1) and Meyer's (1967) 
Theorem XIV, T 11. (Certain completions may be necessary for these theorems 
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to apply. We could introduce these now, but  we prefer to wait until the paragraphs  
before (6.2) below.) This completes the proof  of (5.5). 

6. Quasi-Left-Continuity and Standard Processes 

Let {T,} be an increasing sequence of {~o+} stopping times with limit T. We 
wish to show that  X ( T , ) ~  X(T)  on { T <  (} almost surely. This proper ty  is called 
quasi-left-continuity on [0, (), and we abbreviate this by q - l -  c - (. 

(6.1) Theorem. Let X be the random evolution determined by k, Q and 2. Then X is 
q-- l -  c-- ~ iff k is continuous (2.7). 

Proof Suppose X is q - l -  c - (. Let  x be in E, 0 < t < ~ and set x' = k (x, t). Let  
t, Tt be any sequence along which x , =  k(x, t , ) ~  x~o, some point  x~ in E. For  the 
sequence of stopping times T, = t,/x z I T T =  t/x z 1 we have X(T,) ~ X(T)  a.s. Px on 
{ T <  (}. Define A = {z I > t, a o = x} so that  P~ A = exp [ - 2 (x) t] > 0. Then  for almost  
all ~o e A the above convergence gives x ,  = k (x, t,) = X(T,,  e~) ~ X(T, o)) = k (x, t) = x', 
and continuity of k follows. Conversely, suppose k is cont inuous and let T~T T. 
Then q -  l - c -  ( can fail for at most  those co such that  for some j and all large n, 
T=zs+ t and zj< T.<zs+ 1. On the set A.s={zs< T.<z~+l} =Asc~{T.<zs+I} we 
calculate as in the proof  of the strong Markov  proper ty  following (5.7) (T.j is defined 
using T. o ds): 

E ~ (e- ~(~s +~- T,); A~S) 

= e~ K j+l exp [ -  ~(tj+ 1 - T,j)] I(A*) I(T,s < ts+l) 

= e~ K s I(A*) )'2 (zs)/[a + X2 (zj)] ~ E x 0 ~ (X  ("cj))/[o~ -I- ). (X (~j))]), 

since 2 ( x ) = 2  2 (z) for all x=(y,  z) in E and A* c {ts< T,i }. (See (3.4) and (5.7) for 
notation.) N o w  argue exactly as in the penult imate paragraph of BGI  12: for 
A = {z s < T, < zj +1 for all large n} we have (for e ~ oo) 

PU(T=zs+ t ; A)=lim EU(e-'(~s+~- r); A) 

< lim lim inf E u (e-  ~(~s + ' -  r.); A,s) 
~t n 

__< lim E u (2 (X (zj))/[c~ + 2 (X (zj))]) = 0. 
~t 

F r o m  this follows q - l -  c - (, and the p roof  is complete. 

We recall that  k can be right cont inuous  and fail to be cont inuous (2.7), so that  
for our  processes the strong Markov  proper ty  may hold and q -  l - c -  ( fail. 

F r o m  (5.1) and (6.1) we see that  X is very nearly a s tandard process. The only 
requirements lacking are (a) completeness of the a-algebras ~..o {~'t+} and (b) suitable 
topological  properties on the state space E. 

To take care of (a) define o ~ to be the complet ion of o ~ ~  with respect to the 
family {P"; # a finite measure on ga} and define ~ to be the complet ion ofo~ ~ = ~ t  ~ 
in ~- (see BGI  5.3 and paragraphs  before BGI  5.7). Then  ~ = ~ +  (BGI 8.12) and 
X~ = ( ~ ,  -~, ~tt+, X~, 0 3, px) is strong Markov  (BGI 8.3). Using BGI  7.3 our  p roof  
of q - l -  c - ~ holds as well for X ~. 

The following is now immediate.  
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(6.2) Theorem. Let k, Q and 2 be given as in Section 2. The process 

X ~ = (f2, if, ~t +, X,, Or, px) 

is a standard process if k is continuous and if E~ is homeomorphic to a Borel subset 
of  a compact metric space. 

Here we have used Meyer's (1967, XIV.20) definition of a standard process. 
Our process is standard relative to the definition of BGI 9.2 if we assume E is 
locally compact with countable base (L.C.C.B.). 

We remark that the topological condition on Ea can be phrased by saying 
simply that E~ is a Lusin space. To see the relationship between this assumption 
and L.C.C.B., we state the following well known facts. Not all of these are explicitly 
given in Bourbaki (1966), but they are all simple corollaries of Sections 2.8, 2.9, 
6.2, 6.4 and 6.7 of Chapter IX of this reference. 

(6.3) Proposition. Let X be a topological space and let Y= [0, 11 u be the countable 
product of the closed unit interval. Then X has property (i) iff X is homeomorphic 
to a subset of Y of the type specified in (i'), i = 1, 2, ..., 5 : 

(1) compact metric 
(2) L.C.C.B. 
(3) Polish 
(4) Lusin 
(5) metrizable of countable type 

(1') closed, 
(2') F \  {y} (F closed in Y, y~ Y),  
(3') Ga (countable intersection of opens), 
(4) Borel, 
(5') arbitrary. 

7. Applications 

In this section we apply Theorem (6.2) to processes often met in practice. 

(7.1) Functional Differential Equations. Let 0__<r<o% C={x:  [ - r , O ] ~ R  n, 
x continuous}, and for any function y: I - r ,  oe )~R"  and any t_>_0, let y~ denote 
the shifted restriction defined by Yt (0) = y (t + 0), - r___ 0 <_ 0. We wish to consider 
initial value problems for autonomous functional differential equations 

(7.2) Y(t)= f (Yt), Yo =go 

where go~C and f :  C---,R" is continuous. It is shown in Hale (1971), Section 9, 
that i f f  maps closed bounded sets of C into bounded sets in R" and if each solution 
y(go) to (6.2) is unique and defined on I - r ,  oe) then y(go)(t) is continous in (t, go) 
and satisfies yo(go)=go and Y,+,(go)=Yt(Ys(go)), s, t>O. 

Now let fz: C ~ R" be a collection of functions so that all of the above results 
hold for each fixed z in some set E 2 . For each goe C and z e E  2 define k 1 (go, z, t)-- 
y(go, z)r~C, where y(go, z) is a solution of ~(t)=f~(yt), yo=go. Finally, define 
E =  C x E 2 and k(x, t)=(kl (go, z, t), z) for x=(go, z)eE. Then k satisfies (2.1) to (2.7) 
if we extend to F by the definition k(A, oe)=A and give E 2 the discrete topology 
(or any topology with fewer open sets). 

Now suppose that the index z changes according to a regular step process Z 
with data 22 : E 2 -+ (0, OO) and Q2: E2 x •2 ~ [0 ,  1], and define 

~(go, z)=,~2(z), Q(go, z; A x B)=~(A) Q2(z; B), 
where % is unit mass at go. 
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(7.3) Theorem. I f  E 2 is a Lusin space, then the data (fz,)~2, Q2) leads to a standard 
process X with data (k, 2, Q). Roughly, the process X = (Y, Z) satisfies the functional 
differential equation I?(t)=f(Y~, Z(t)), 

where fz(Yt)= f (Yt, z). 

Remark on notation: The process X=(Y,Z) takes values in C x E  2. We 
write Y~ for the function in C =  C [ - r ,  0] and Y(t)= Y~(0) for the value of Y~ at 0 
(suppressing all co's). No such distinction is necessary for the Z component but we 
write Z (t) to emphasize the meaning. 

Proof. Since k is continuous, the only part which needs to be proved is that 
E = C • E 2 is a Lusin space. This is obvious from (6.3) and the fact that C is Polish. 
This completes the proof. 

Notice that C is not locally compact with countable base so that even when E 2 
is finite the process in (7.2) is not standard according to the definition of BGI 9.2. 

Certainly initial value problems for ordinary as well as Banach valued differen- 
tial equations can lead to standard processes. 

(7.4) Multiplieative Operator Funetionals. In this section we show the connection 
between our random evolutions and those associated with families of semigroups 
of operators. 

First, suppose we are given data 22 and Q2 which generate a regular step 
process Z on a Lusin space E 2. Suppose also given a separable Banach space L 
and strongly continuous semigroups of bounded linear operators on L, say 
{Tz(t), t >__0}, z in E 2. Define E 1 = L a n d  kl(y, z, t)= T~(t)y. Then kl, 2 2 and Q2 give 
fundamental data for our process. Notice that k(y, z, t)= (kl (y, z, t), z) satisfies a 
stronger continuity condition then imposed in (2.7). 

Conversely, suppose given fundamental data consisting of Lusin spaces E 1 
and E 2 and functions k 1, •2 and Q2 which generate k, )~, Q satisfying (2.1), (2.2), (2.7) 
and (2.10) to (2.13). (In particular Q(y, z; A xB)=ey(A)Q2(z,B).  ) Define the 
Banach space L(L ~) of bounded measurable functions from E t to R (E 1 x E 2 to R); 
and define the semigroups Tz(t) on L by [Tz(t)f] (y)=f(kl(y ,  z, t)). Use the nota- 
tion of (3.1) and define the "multiplicative operator functional" or "random 
evolution" (see Pinsky (1973) or Griego and Hersh (1971), Eq. (2.1)), 

(7.5) M(t, co)= Tzo(tl) Tzt(t 2 - t l) . . .  T~,(t-  t,) 

if ~, (co) = t, =< t < z, + 1 (co)" Then M (t, co) f ~ (y, Z t (co)) = f ~ (Yt (co), Z~ (co)) for all co in 
At=  {colho(co)=y, Y(~j(co)-)= Y(zj(co)),j= 1, 2,...}. But when k 1 is continuous 
(2.7) and Q is constructed from Q2 as above, we have PY~ Ar = 1 for all y, z. 

To see a further connection between our processes (taking paths as basic) 
and the semigroup approach to random evolution, write fz ( ' ) = f -  (', z) in Lfor f -  
in L ~. Then the "expectation semigroup" { T ~ (t), t > 0} is defined by 

IT~ (t) f ~ ] (y, z )=E r~ M(t) fz( o, 

and the above arguments show it has the further representation EY~f - (Y(t), Z(t)). 
One final remark: Pinsky (1973) begins with axioms defining a multiplicative 

operator functional M. He shows that such objects can be factored as in (7.5) 
under certain continuity assumptions, but that in general this factorization will 
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involve, in addition, contraction operators between the Tterms. Random evolutio n s 
of this generality also generate processes of our type with k t as above but with Q 
having a certain form which allows jumps. Conversely, our general processes also 
yield such operators M. We leave the details of this for the interested reader. 

(7.6) Right Deterministic Germ Fields. Recently Knight (1972) considered Hunt 
processes with right deterministic germ fields, i.e., processes X for which 
(") a{x(r+s),O<=s<e} is "nearly" equal to a{x(r)}  for all {~o+} stopping 

~ > 0  

times T. He shows this property to be equivalent to the property that there exists a 
function k which satisfies our (2.1) to (2.3) and is such that 

(7.7) Px{X(s)=k(x, s), 0=<s<e for some e>0}  = 1 

for all x in E. Thus, modulo the Hunt assumption (which entails that E be locally 
compact with countable base), our processes have right deterministic germ fields. 
Knight's proof of the equivalence rests on quasi-left-continuity of X which implies 
continuity of k (2.7). Since we have constructed a large class of processes which 
satisfy (7.7) but for which quasi-left-continuity fails, it is natural to ask if general 
strong random evolution processes have right deterministic germ fields. We hope 
to consider this elsewhere. 
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