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Local Times and Supermartingales 

Donald Geman and Joseph Horowitz 

Introduction 

Let X = (Xt) be a random process with state space (E, g) on which a a-finite 
measure ~ is given. This paper deals with the problem of finding conditions under 
which, with probability 1, the process spends (Lebesgue measure) zero time in 
any ~-negligible set. 

t 

The density ~t(~o)=#t(dx, co)/~(dx), #t(F,~)= ~Ir(Xs(~o))ds, if it exists, is 
0 

called the local time at x, and has been studied mostly for Markov processes 
[3, 11, 12], but also for certain Gaussian processes [1, 2, 9, 21]. 

In the Markov case, the local time is characterized as the unique additive 
functional whose fine support [3] is {x}; its connection with occupation times 
has been rather secondary. Here we apply the so-called "general theory of processes" 
(developed largely by Meyer and the "Strasbourgeoisie" along lines suggested by 
Markov theory) to non-Markovian processes. This gives a systematic method 
for dealing with occupation times. 

In w 1 we give a necessary and sufficient condition for a local time which 
consists of three parts: the first two are absolute continuity requirements on 
various measures, while the last is that certain potentials Z x, x s E  (in the sense 
of Meyer [17]) be of class (D). We also describe some general circumstances in 
which the absolute continuity conditions are verified, and investigate the continuity 
in t of the local time. The situations for nondeterministic Gaussian processes and 
Markov processes are explained br ief ly-  the potentials Z x are new in the Gaussian 
case, but in the Markov case reduce to those well-known in the Blumenthal and 
Getoor theory. Since the ZX's cannot all be of class (D) when no local time exists, 
we have an easy method of constructing potentials not of class (D). In particular, 
for Brownian motion in IR 3, we show that the example of such due to Johnson 
and Helms [14] arises in essentially this manner. 

The results of w 1 are applied in w 2 to stationary, especially Gaussian, processes. 
If the mean-square prediction error for a stationary, continuous, Gaussian 
process satisfies a certain integrability condition, there exists a continuous (in t) 
local time. Also, a condition used by Berman and Orey is shown to be necessary 
and sufficient for the energy of ~ (in the sense of [18]) to be finite for a.e. x; other- 
wise it is infinite a.e. (in particular, if the second spectral moment is finite, the 
energy is infinite). The section concludes with several examples, including two 
complex Gaussian processes, one with and one without a local time, and a short 
computation of the first passage time distribution for the stationary Ornstein- 
Uhlenbeck process. At present we are investigating the possibility of extending 
this method to non-Markov situations. 
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We have placed several measurability arguments in an Appendix, along with 
some results in the "general theory of processes" which are necessary for w 2 
and may be of some independent interest. 

Our notation is a conglomeration of that of [3] and [-17]. We write IR(IR+) 
for the real line (positive half-line [-0, Go)), with Borel sets ~(~+).  If (M, ~ )  is a 
measurable space, we write (ambiguously) f s f f # )  to mean that f is an ~#-measur- 
able function on M (whose range will always be clear); in particular fs(dg)+ 
means the range is IR+. For a family {~#~}t~i of a-fields, ~/~#t denotes o-([.J~#~), 

t e l  t~I  

i.e. the a-field generated by ~ / t .  An increasing process ~ = (~t)t~R+ is a real-valued 
t ~ l  

random process with ~o=0 and almost every trajectory right continuous and 
nondecreasing; we often consider the trajectory of such a process as a measure 
on IR+. Let (E, g) and (F, o~) be measurable spaces. A (Markov) kernel on E x 
is a mapping (x, A)---~p(x, A) such that p(-, A)~(E)+ for each A 6 ~  and p(x, ") is 
a (probability) measure for each x~E. 

Finally, we make the convention that ~ means the integral over (a, b]. 
a 

1. Existence of Local Times 

a) Let X =  (Xt)t~+ be a measurable random process on a probability space 
(~2, ~,  P) with state space (E, g). Fix a a-finite measure n on g. A local time of X 
(relative to n) is a family of increasing processes ~x=(e~,), x eE, such that 
(t, x, co) -+ e~(~o) is in (N+ x g x i f )  and 

t 

(1) Ir(Xs( ))ds, a.s. 
F 0 

(It is the indicator of the set F.) The process ~x is called the local time at x, and 
it can be shown that, if E is a locally compact Hausdorff space with countable 
base, and Mx(m)={t: Xt(cn)=x} is closed a.s., then, for n-a.e, x, the support of 
~.(m) (construed as a measure on IR+) is a.s. contained in M~(~o). The existence 
of a local time means that a.s. a particle travelling along the trajectory X.(o~) 
spends (Lebesgue measure) zero time in any n-negligible set in E. 

Suppose we start with a family of processes (e~) satisfying (1). It is not difficult 
to "regularize" the family to obtain right continuous, nondecreasing paths, 
hence it is no real restriction to require that ~ be an increasing process. As we 
shall see in Section d), we may also require that e~. be predictable relative to a 
certain "natural"  increasing family of a-fields {~} defined below. 

b) We will always assume (and this is crucial) that the a-fields B, ~ o =  
a(Xs: s<t), and ~-o= V ~ o  are all separable, i.e. generated by a countable 

t e~R.+ 

subfamily. Further, we take Y to be the P-completion of ~o .  These restrictions 
are fairly harmless: for example, if X is continuous in probability, then a (~+ • ~ )  
measurable version of X may be chosen with each ~ o  separable ([-20, 91]). Define 

t 

(2) Kt(F, A)= ~ P ( A , X ~ F ) d s ,  Fog,  A 6 ~  ~ tslR+. 
0 
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(3) Lemma. Suppose K t ( ", A) ~ rc for each t ~IR+, A e ~o ,  and let k(t, x, A) ~ (dx) = 
Kt(dx, A). Assume the density k(t, x, A) may be chosen so that 

(i) it is a measure on ~ o  for each fixed (t, x). 
Then k(t, x, A) may be chosen so that it is also 

(ii) (t, x)-measurable for each A 
(iii) a right-continuous non-decreasing function of t for every x, A. 

Proof Appendix. 
The choice of k(t, x, A) which satisfies (i)-(iii) will be termed the "perfect 

version". When a local time {c~ x} exists, we have Kt(dx, A)=E(c~; A)rc(dx) from 
(1), so k(t, x, A)=E(c~; A) is the perfect version. Finally, notice that Kt(',  A ) ~ n  
for each A iff K,( ' ,  (2) < ~. 

(4) Lemma. Suppose Kt( ' ,  (2)~7r for all t, and let k(t ,x,  A) satisfy (i)-(iii). Then 
a local time exists i f f for  a.e. x, k(t, x, ")~P (on ~o)  for all tsIR+. 

In fact, by (iii), we could say instead: for each t, k(t, x, " )~P on ~-0 for a.e.x. 
The proof is easy, but depends on the following lemma, which results imme- 

diately from [-17, 154]. 

(5) Lemma. Let (Mi, ~i), i= 1, 2 be measurable spaces, ~#2 separable, let p(ml,A) 
be a kernel on Mlxd/& with p(ml," ) a finite measure on ~ 2  for each m l e M  > 
and let 2 be a a-finite measure on J/d2. I f  for each ml, p(ml, ")42, the density may 
be chosen jointly measurable. 

Proof of (4). The "only if" part having already been shown, let k(t, x, A) be as 
stated, but redefine k (t, x, A) = 0 on the exceptional x-set. This still gives a perfect 
version. Now applying (5) to the kernel (x, A ) ~ k ( t ,  x, A) with t fixed, we get an 
(x, co)-measurable density ~t(x, co)= k(t, x, dco)/P(dco). As in the proof of (3), we 
can choose a version c~(co) of at(x, co) which is (x, co)-measurable, nondecreasing, 
right-continuous in t for each (x, co), hence (t, x, co)-measurable. Thus, 

t 

~ ~ ~(dx) dP=K,(F, A)= ~ ~ lr(XO ds dP, 
A F  A O  

SO 

(6) 
t 

I (Xs)ds a . s .  
F 0 

for each tclR+, F~g .  Now let F run through a countable generating set closed 
under finite intersections and let t run through the rationals to get a single set 
of probability zero off which (1) holds. 

c) We sketch here two very general situations in which k(t, x, A) exists and 
may be chosen perfect. Recall that a class cg of sets in fro is called compact if, 

u 
for any sequence C,~Cg with (~ C, = ~  there is an integer N > 1 for which (-] C, = ~. 

1 i 

Assume that f ro  is separable, and contains a compact class cg with the property 

P(A)=sup{P(B):  B c A ,  BECK}, A E ~  -~ 

(If s is a Polish space and ~ o  is the Baire a-field, this assumption holds.) 
19" 
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Now a "natural"  choice of n for local time problems is the "l-potential" 

measure n(F)=  ~ e -s P(XsEF)ds. Then, obviously, Kt(" , Q)'~n, Define a linear 
0 

mapping Tt: LI(E, g, n)-~ L l(fJ, ~o ,  p) as follows: for f e LI(E, g, n), 
t 

T t f(co)= t -1 ~ f(X~(o))) ds. 
0 

This is a Markov operator, and [20, 192-193] there is a (Markov) kernel mr(X, A) 
such that 

Tt f  dP= ~ mr(x, A) f (x )n(dx) .  
A E 

Taking k(t, x, A)= trot(x, A) we obtain a density for Kt(' ,  A) satisfying (i). 

Next, with the same assumption on fro, assume that n is any a-finite measure 
on g. Consider the conditional probabilities P(AIX~) for each A ~ f f  ~ sE IR+, and 
say they admit a perfect version if a Markov kernel p(s, x, A) on (IR+ x E) x f o  
may be chosen so that, for a.e. s (relative to Lebesgue measure) 

(7) ~ p ( s , x , A ) P ( X s E d x ) = P ( A , X ~ F  ), F~$ ,  A ~ Y  ~ 
F 

We then use the more suggestive notation P(AIX s = x) instead of p(s, x, A). 

(8) Theorem. There exists a perfect version P(AIXs=x).  

Let %(F)=P(X~eF), s~IR+, Feg .  This is a kernel on IR+ xdo, so we may 
define a unique probability measure # on N+ x g by 

oo 

f(s, x) # (ds, dx) = ~ e -~ ~ f(s, x) ns (dx) ds. 
0 g 

Now define a Markov operator 
oo 

T: LI(IR+ x E, ~+ x d ~ #)--~Ll(f2, fro, p) by Tf(co)= ~ e-~f(s,  X~(co)) ds. 
0 

There is, again, a Markov kernel p(s, x, A) on (IR+ x E) x f o  such that 

T f d P =  ~ p(s ,x ,A) f ( s ,x )#(ds ,  dx). 
A R +  x E  

Putting f(s, x)=IB(s) Ir (x), where B e ~ + ,  F~do, we find 

e -~ P(A, X~eC) ds = ~ e -~ ~ p(s, x, A) n~(dx) ds, 
B B F 

s o  

P(A, XsEF)= ~ p(s, x, A) n~(dx) a.e.s. 
F 

Now, using the separability of i f0 and do, one easily finds a single exceptional 
s-set off of which (7) holds, thus establishing (8). 

Finally, suppose each rcs has a density relative to n: n~(dx)= ~ (x)n (dx). By (5), 
q~ (x) may be chosen (s, x)-measurable, and, if P (AIXs = x) has been chosen perfect, 

t 

it is immediate that Kt(', A) ~ n for all A s f fo ,  and k(t, x, A) = ~ P(A[X~ = x) ~)~(x) ds 
is a perfect version of the density, o 
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Since we will return to the situation described in this section several times, we 
summarize the assumptions and results: 

(i) the separable a-field ~-0 contains a compact subfamily 

(ii) for each seN+,  the one-dimensional distribution ~s(dx) has a density 
~s(X) relative to ~ which is jointly (s, x)-measurable. 

Under condition (i), the conditional probabilities P(A[Xs=x) always admit a 
perfect version, and k (t, x, A) may be chosen perfect if either rc is the 1-potential 
measure or (ii) holds. 

d) In this section we state and prove the main theorem. Before doing so, we 
need the following concept. Let {Qt: teN+} be a family of finite measures on 
y 0  such that 

(a) Qt(A) is a decreasing, right-continuous function of t for each A 
(b) Qt((2)--+0 (t-+ co). 

We call the family progressively absolutely continuous along {o~o} (written 
P A C { ~  ~ and understood relative to P) ifQt~P on ~t ~ for each t. Let Zt=dQt/dP 
(relative to ~t~ i.e. Qt(A)= ~ Zt dP, ZtE(~tt~ It is immediate that Z=(Z,)  is a 

A 
non-negative supermartingale relative to {~0}, and E(Zt)~ 0 (t-~ oo) by (b). We 
now enlarge the a-fields to get a right-continuous version of Z. Recall that Y is 
the P-completion of ~o .  Let ~2 c ~  be the family of P-negligible sets, and define 
fit - ~ - ~  v ~W. It may be shown that {J~,} is right-continuous, hence satisfies the - - v  t +  

"conditions habituelles" of [5]; and later, when we use concepts such as pre- 
dictability, we mean in terms of this family. Then Z, being a supermartingale 
relative to {~}, admits a right-continuous version (see [17, 95]), again denoted Z ,  
and adapted to {~}, though not to {~o} in general. 

The new Z~ is still a density for Qt on ~t ~ but now we get 

Qt(A) = ~ Z t dP for ~ o  
A 

and we may extend Qt to ~t in an obvious way; then {Q~} is PAC{~t}. Using 
Meyer's [17] terminology, Z=(Z~) is a potential. 

Returning to the question of local times, assume that Kt( ' ,  f2)~z and the 
perfect version of k(t, x, A) has been chosen. Define the measure 

oo 

QX(A)= ~ e-Sk(ds, x,A), A e Y  ~ telR+, xeE. 
t 

From the definition of k we see Q~ is a finite measure for a.e. x - indeed, we may 
and do assume for every x - a n d  (a), (b) above are satisfied. When {Q~'} is PAC 
we write Z~= (Z~) for the corresponding potential and note the relation 

(x3 

(9) E(ZX; A)=Q'[(A) = ~ e-Sk(ds, x,A) for AEYt ~  
t 

Assuming {Q~} is PAC for a.e. x, let Z~-=0 for the exceptional x's. From (9) 
follows 

(10) the map x---.E(Z~; A) is measurable for AEo~, ~  hence for AEo~. 
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For later use we now have: 

(11) Lemma. Suppose {ZX: xeE} is a family of class (D) potentials for which (10) 
holds. Then there exist predictable (=natural), integrable, increasing processes 
A ~ = (A~) such that A ~ generates Z ~ and (t, x, co) --, At (co) is measurable. 

Both the proof and an explanation of the terminology are in the Appendix. 
Consider now the following three conditions: 

(I) Kt(dx, A)=k(t, x, A) zc(dx) with k(t, x, A) perfect, 

(II) {Q~'} is PAC for a.e. x, 
(III) Z ~ is of class (D) for a.e.x. 

(12) Theorem. A local time exists iff (I)-(III) hold. 

Proof. Given a local time {c~x}, we already have (I) with k(t, x, A)--E(c~'; A) 
(see Section b)). Then for a.e. x, 

Q~(A)--E ~ e - 'de2;A  
\ t  

is clearly PAC, and Z~ = E  e -s dc~ [4  is a class (D) potential [17, 106]. 

For the converse we may assume Z x is class (D) for all x; if (A~') is the predictable, 
integrable, increasing process which generates Z x, we may assume (by (I1)) that 

t 

A~ (o2) is (t, x, co)-measurable. Define e~ (co)= ~ e S dA~ (co), giving again a predictable, 
0 

increasing process. By (4) it suffices to show that k(t, x, M).--E(e~; M) for every 
t 

t eN+,  MeoW~ n-a.e. Equivalently, we may show E(A~; M ) =  ~ e -~ k(ds, x, M), 
o 

te IR+, M ~ f f  ~ 7r-a.e. Finally, this is equivalent-using the separability of ~ - 0  to 

t 

(13) E(Ar;M)=~e-~P(M,X~eF)ds ,  teN+, M e ~  ~ F e e ,  
0 

where A r = ~ A~[ n(dx). 
F 

From the decomposition Z~ = E (A~ -A~' Io~) we have 

c~ 

(14) E( Ar-Ar't , M ) =  ~ e-~P(M, XseC)ds, Fed ,  M e ~ .  
t 

t 

P u t B  r = ~ e-Slr(Xs)ds. Then(14)reads E ( A r - A r "  , =E(Bo~r _Bt  ,r. M), M e ~ .  
0 

Thus A r -  B r is a martingale, and 

t t 

(15) E f Y~_ dAr~ =E ~ Y~_ dBf 
0 0 

for any bounded, positive, right-continuous martingale Y [17, VII. T 17]. Since 
A r, B r are both natural increasing processes, we may replace " s - "  by s in (15). 
Now, for any M e ~ ,  take Yt to be the right continuous modification of the 
martingale P ( M ] ~ )  (see [17, VI. T4]), and (13) follows. 
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Remarks. 1. Suppose we have a family of increasing processes e~' which 
satisfy (1). Then conditions (I)-(III) are satisfied, so there exist predictable in- 
creasing processes satisfying (1). Indeed, (c~) must have already been predictable 
for zc-a.e.x. 

2. We shall show later by example that condition (III) may fail even with (I) 
and (II) in force. 

e) Let us return to the situation described at the end of Section c) so that 
(I) holds. Suppose that regular versions have been chosen for the conditional 
probabilities P (X, e F] ~ ) ,  F e  & t < s. 

(16) Theorem. I f  P(Xsedx[~)~Tc(dx)  a.s.,for t <s, then (II) holds. 

Proof Let 0t (s, x, co) be the density: almost surely 

(17) P ( X s e F J ~ ) =  ~ O,(s,x, co)~z(dx), r e g .  
F 

As shown in the Appendix, 0t can be chosen (s, x, co) measurable (s> t). Thus, for 
A e ~ ,  FeC,  

Q~(A)~(dx)= ~ e-Se(A, &er)ds 
F t 

(j ) = S E e-SO,(s,x, co)ds; A ~z(dx), 
1" 

and, consequently, 

(18) Q~(A) =E e -~ Or(S, x, co) ds; A ~-a.e. 
t 

Letting A run through a countable generating subfamily of Ytt ~ yields a single 
zc-negligible set off of which (18) holds for all A (t fixed). In view of the right 
continuity of Q~.(A), (II) is established. 

From (18) it is evident that the potential Z x is given by 
oo 

(19) Z~(co)= ~ e -~ •,(s, x, co) ds for a.e. t, a.s. 
t 

We say that ~ e - ~ Or(s, x, co) ds equals Z'[ up to modification. The two processes 
t 

in (19) may not be indistinguishable since the right hand side may not be right- 
continuous. In many cases, however, it is possible to select Ot so as to render the 
right side of (19) right-continuous, and then "a.e. t" can be replaced by "for all t". 

f) In this section we investigate briefly the behavior of Z x at stopping times, 
and the implications concerning smothness of e~ as a function of t. We retain the 
assumptions at the end of Section c), noting that 

co 

(20) Qt(A)= ~ e-~P(AlX~=x)4&(x)ds.  
t 

(21) Theorem. Suppose (I) and (II) hold with Q~ given by (20). For every stopping 
time T of the family {~t}, we have 

oo 

(22) E (Z~) = ~ e-S dp~ (x) P (T < s [X~ = x) ds. 
0 
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Note. Let Ae~r .  Applying (22) to the stopping time 
obtain 

oo 

(23) E(Z~;A)= ~ e-~(o~(x)P(T<s, AlX~=x)ds, 
0 

T A = T I  a + oo IA~ w e  

Proof. We prove (22) first for stopping times whose range is contained in a 
countable set D in IR+. Since {T= t}eo~  t for tED, we have 

E = T =  t) 
t E D  

oo 

= 2 Y e-S~)~(x)lu, oo)(s)P(T=tlX~ =x)ds 
t e D  0 

o~ 

= ~ e-~(Ps(x)~n(T<s, T=t]Xs=x)ds 
0 t e D  

which is the same as (22). Now for an arbitrary stopping time T, let T, be the 
stopping times with values in the dyadic rationals such that T, + T for all co. The 
right-continuity of Z x, Fatou's lemma, and the optional sampling theorem 
[17, VI. T 13] give EZ~-=lim EZ~. Since I[o,~)(T,)--* I[o,s)(T) for all co, s, we get 
also 

0o Go 

lim ~ e-S(ps(x)P(T,<s]Xs=x)ds= ~ e-~(~(x)P(T<slXs=x)ds,  
o o 

which concludes the proof. 

(24) Corollary. With Q~[ as in (20), the potential Z x will be regular (hence of class (D)) 
iff 

c~ 

(25) j e -S 4)s(x) P(T=slXs= x) ds=O 
o 

for every bounded stopping time. 

Recall that a potential Z is regular [17] iff lira E Z T = E Z  r for any bounded 
n 

stopping times T, T, with T, T T. F/511mer [8] has shown that regular => class (D). 
Finally, we remark that a class (D) potential Z is regular iff it is generated by a 
continuous increasing process. Hence, condition (25) is necessary and sufficient 
for a continuous local time at x. 

g) Here are two examples. 

Example 1. Let Xt be a real-valued process with absolutely continuous trajec- 
tories such that m(t>O: X t = 0 ) = 0  a.s., where m=Lebesgue measure and Xt is 
the (a.e.) derivative of Xt (for instance, a quadratic mean differentiable Gaussian 
process with certain conditions on the q.m. derivative). 

Let v~(co) denote the number of times Xs(co)=x for O<s<t. It is shown in 
[9] that a local time (relative to Lebesgue measure) exists and is given for a.e. x by 

t 

S 12s(co)[ -1 dye(co).  
0 
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The potential is then Z t = E  e -~ 12~1-1 dv'~l ~ up to modification; it cannot 

be regular since M is a step function. 

Example 2. Suppose Xt is real-valued Gaussian, continuous in probability, 
mean 0, and variance 2 2 vt = E X t  >0  for all t>0.  Let X~t=E(X~I~) (= the  ortho- 
gonal projection on the Hilbert space spanned by Xr, r < t); here t < s. The condi- 
tional variance V~Z=E((X~-X-s,)2I~) 2 -2 = G - E X s t  since orthogonality implies 
independence in the present situation. We assume that V~>0 for s>t,  so the 
process is "non-deterministic" in the obvious sense. Then we have a density (see 

Section e)) P(X~Edx I~)= G(s, x) dx,  

~tt(S , X)=(2~Z) -U2 Vs~ -1 exp[ - 2/ 2 - ( x -  X,,) , 2 V j .  

Then, by (16), {Q~} is PAC  and the potential Z x is given by 
co 

(26) Z~ =(2~) -L'2 ~ e -~ V~7 ~ exp [ - (x - J ( , , ) 2 /2  V~ 2] ds 
t 

up to modification. 

Suppose that V~t>g(s- t )>O (s>t) for some function g such that 
oo 

I e-*(g(s)) -1 ds< c~. 
0 

The potential Z x is then bounded, hence of class (D), and a local time (relative to 
Lebesgue measure) exists. For a specific case, consider a standard Brownian 
motion d(t). Then Vst=(s-  t) -1/2 (S> t) and 

oo 

Zt--- (2re) -1/2 ~ e-~(s - t) -1/2 e -(x-~(t)?/2(s-t) ds 
t 

oo 

= ( 2 ~ )  - ' ~  e - ' ~  e -~  s -~j2 e - ( ~ - ~ ( ~ ' ~ / ~  ds 
0 

= e -t  e- V~-Ix-~(t)l/l~. 

This is obviously regular, so there is a continuous (in t) local time. It is well-known, 
of course, that the local time may be chosen jointly continuous [13]. 

h) Next we give a general remark which will be used in w 2. The potential Z x 
given above might well be called the "l-potential" because of the factor e -s. 
Replacing this throughout by e -;'~ (2 > 0) we get the 2-potential Z~(x) correspond- 
ing to the measure oo 

Q~(x,A)= ~ e-Z~k(ds, x ,A) ,  A e ~  ~ 
t 

~ X  when {Qt ( , ')} is PAC. All previous results remain valid for ZZ(x); in particular 
the local time ex is the same for all 2 (it must satisfy (1)). Under the conditions 
of c), to total mass of Q~ (x, ") (which will be useful later) is given by 

oo 

(27) Q{'(x, O)= ~ e -zs 4)~(x) ds, 
t 
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where (Os(X) is the density of X s. (As an example, the 2-potential for standard 
Brownian motion d (t) is Z{ (x) = e- ~t e- V2-x Ix- ~(t)l/]/~.) 

i) We conclude this part with a brief discussion of the Markov case. Our 
results are closely related to those of Getoor and Kesten [11]. 

Let X be a standard Markov process with state space (E, N) and let n be a 
reference measure (following the terminology of [3]). Our intention is to verify 
conditions (I) and (II) and identify the potential. 

Suppose ul(x, y) is a density of the 1-potential relative to n: 

oo 

UI(x,F)=EX~ e-Slr(Xs)ds = ~ul(x,y)~z(dy), FeN; 
0 F 

such a density exists since the sets of potential zero are exactly the re-negligible ones. 
We will assume 

(28) x ~ u 1 (x, y) is 1-excessive for each y eE.  

This holds under the duality hypotheses of [3, Chapter VI] or Hunt's hypothesis (F). 
Let # be any starting distribution, and define, for yeE, t eN+,  

(29) Q~(y, A)=e-t E" [ul(Xt, y); A], Ae 4 .  

The strong Markov property gives 

oo 

(30)  SQUt(y,A)rc(dy)= ~e-~Pu(X~eF, A)ds, A~4 ,  reg ,  te~+. 
I" t 

t 

Introduce/s (F, A)= ~Pu(X~EF, A)ds. This is dominated (as a measure in F) 
0 

by # U ~. The density f:" (t, x, A) may be chosen perfect using an argument analogous 

(t ' to that of (8) ake the operator f---, ~ f(Xs)d . The measure # U 1 is in turn 
0 

dominated by 7z, with density vu(y)= ~ l~(dx) ul(x, y). Put 
E 

oo 

ku(t,y,A)=fcu(t,y,A)vu(y), QtU(y,A) = ~ e-~k"(ds, y,A). 
t 

Then (30) holds with Qt" in place of 0t", from which follows 

(31) Q~(y, ")=0~"(y, ") on 4 ~ for rc-a.e, y 

for each t since 4 ~ is separable. But Qt" (y, A) and (~t" (Y, A) are right continuous 
in t (the former because of (28)), so that (31) holds off a single y-set independent 
of t. Thus we have conditions(I) and (II) with the potential Zf=e-tul(Xt,y). 
Now a local time exists iff Z y is of class (D) for a.e.y.  The dependence on the 
starting distribution/~ must be removed as in [3, 165]. 

We remark that Griego [12] has proven the existence of a local time under 
the assumptions of hypothesis (F) and all points regular, while Getoor and 
Kesten [11] prove the same result assuming the existence of a reference measure 
and all points regular ((28) is a consequence of these assumptions). 



Local Times and Supermartingales 283 

For Brownian motion IR a, with n(dx)=dx,  we have ul(x, y)=(2n ]x -y t )  -1 x 
e x p ( - ] / ~  Ix-y]) ;  hence 

ZYt=e-t(2n ]Xt-y[) -a e x p ( - ] ~  ]Xt-y]). 

Since the range of X t has measure zero [13, Chapter 7], no local time exists; 
thus Z y cannot be class (D) for a.e. y, not even for all y in a set of positive measure. 
The potential ]X t - y ] -  a dominates Zt y, hence also is not class (D) for a.e. y - i n d e e d  
IX , -y[  -~ is the Johnson-Helms [14] example of non-class (D) potential. (They 
show it is not class (D) for every y.) 

2. Stationary Processes 

a) When X is a stationary process, the results of w 1 assume a particularly 
simple and appealing form. We will outline the general situation briefly, then 
apply the results to stationary Gaussian processes. 

Suppose, then, that X = (Xt),~ ~ is strictly stationary, let ~t  ~ ~o ,  etc. be defined 
as in w l(b) (with obvious accommodations for the time set IR) and assume in 
addition that there is a flow (0t)t~R compatible with X. By flow we mean a one 
parameter group (Ot)tsgt. of bimeasurable, measure-preserving bijections 0,: ~2--~ s 
such that (i) 0o=identity, (ii) the map (t, co)--+ 0t(co ) is measurable relative to 

t~-lt~-%_ ~-o and X t = X  o o 0,. In general one x ~ o / ~ 0 ;  compatibility means ~t ~ ~ J - ~  ~+t 
must be cautious about (ii) which is violated in the usual function space represen- 
tation with 0t being the shift [7]. If, however, the paths are (for example) continuous 
and the state space (E, g) is a Hausdorff space with its Borel a-field, then the 
representation in the space C~ of continuous functions on IR to E, with shift 0t, 
will have the desired properties. 

b) With the assumptions ofw l(c) in effect, a perfect version of P(AIX~=x)  
may be obtained by taking P (AIX~ = x) = px (0~ A), where px (A) = P (A IX o = x) is 
a regular version of the conditional probability P(AIXo). We then have, for teN+,  

t 

Kt(F,A)= S P(XoEF, OsA)ds, A ~  ~ F e g  
0 

t 

so that k (t, x, A)= S Px(O~ A)ds  gives a perfect version of the dens i ty - the  meas- 
0 

ure n being taken as the one-dimensional distribution n ( F ) = P ( X t e F  ). Thus we 
oo 

can write Q~(A)= ~ e -~ Px(O S A) ds, and, if {Q~'} is PAC, the potential Z x may be 
t 

chosen to satisfy Z~[=e -t  Z:~ o 0 t for all t > 0  a.s., using the results of [16]. The 
local time e~ (if it exists) is then an additive functional (see paragraph e)) whose 
so-called Palm measure [10] is px for a.e.x. Indeed, we proved in [9] that, for 
X stationary, a local time exists iff a.e. P~ is a Palm measure. Using the theory 
of Palm measures one may show (under supplementary hypotheses) that P and P~ 

t 

have the same invariant null sets for a.e. x, and lim t -~ IAoO~de2=px (A) ,  
t ~ r  

0 

thereby exhibiting pX(A) as a suitable "limit of relative frequencies" sampled 
along the support of e~. We shall not pursue these matters here (see [10]). 
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c) Consider a stationary, real-valued, Gaussian process X=(X,)f~R, and for 
convenience assume EXf = 0 and let the covariance r (t)= E (X, Xo) satisfy r (0)= 1 
r ~ 1. The one-dimensional distribution is, in this case, ~ (F)= P (X, c F )=  standard 
normal. Local times for such processes have been studied by Berman [-1, 2], 
Orey [-21], and the authors [-9]. The measure n may be taken either as (b or as 
Lebesgue measure. If r" (0) exists (finite), the paths Xf are a.s. absolutely continuous 
and the local time is given as in w 1, Example 1. Otherwise the paths are non- 
differentiable a.e. with probability 1, and the situation becomes more complicated. 
Berman [,1] and Orey [,21] have shown that 

(1) ~ (1-r(s)) -1/2 ds< 
0 +  

is sufficient for the existence of a local time (i.e. i is finite for some ~ >0). (In fact 
0 

they show that for any Gaussian process with covariance r(s, t), the condition 

(2) S~ (r(s, s)+r(t ,  t ) - 2 r ( s ,  t)) -1/2 ds dr< oo 
O+ 

is sufficient.) Under further restrictions on r(t) Berman [,1, 2] has obtained nu- 
merous sufficient conditions for joint continuity in (t, x) of the local times - always 
by means of Kolmogorov-type moment conditions. Condition (1) is incompatible 
with 

(3) - r" (0) < oo 

but it is not known (to us) whether (1) is necessary for the existence of local time 
when (3) fails. (The process 

X t = ~ n - 3 / 2  [,A, cos n t + B ,  sin n t], 
n = l  

with A,, B, i.i.d, standard normal, falls in the gap between (1) and (3).) Since (1) 
does not depend on the nondeterminism of the process, the method of Example 2, 
w 1, does not apply. Nonetheless, we can use that method on a certain class of 
processes to get a local time which is continuous in t. 

d) Let X be as just described, but assume that it may be realized in the space 
C~ with shift Of (see a)). Reverting to the notation of w 1, Example 2, we have 
2sf=E(Xsl~)=E(X~__f[~o)oO f (s>t). Putting Xt=E(Xf[o~o), we get 2 2 gsf ~(~s-t~ 
where o -2 = 1 -  EX 2 is the mean-squared error made in predicting Xf by )(f. It is 
known [-6] that cr 2 is monotone increasing and that X is either deterministic (a 2 - 0) 
or nondeterministic (a 2 > 0 for all t > 0). We consider only the latter case. 

The conditional density 0f(s, x, co) of (1.16) may be written (omitting co) 

O,(s ,x)=(2naz_f)- l /2  exp[ - (x - -E(Xs[~ t ) )2 /2~z_ f ] ,  s > t .  
oo 

Putting -x ~ e -~ Of(s, x) ds, we conclude that the potential Z x equals ~x up to Zf  
t 

modification (see (1.26)). Rewriting, we have 
oo 

(4) ~ =(2n) -*/2 e - t  ~ e -~ a ;  ~ e x p [ - ( x - E ( X ~ + t [ ~ ) ) 2 / Z ~ r  2] ds. 
0 
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Since the "exp" term is at most 1, we find that Z x is bounded (hence class (D)) if 

(e (5) ~ as ld s<oo  quivalently: ~e-~a21ds< . 
O+ 0 

Thus (5) is sufficient for a local time, although this follows already from the 
Berman-Orey result, since (5) implies (1) (a~ z < 1 - r  2 (s)). On the other hand, 

(6) Theorem. Under (5), Z x is a regular potential (hence c~'[ is continuous in t). 

Proof Let 5 p denote the family of finite {~}-stopping times, and let T,, 
TE5 ~ be uniformly bounded. For s > 0  fixed, if T, TT or 7~,J.T a.s., then 

(7) E(X~+rnlO~r. ) .... , E(X~+rl~r) ( n - ~ ) .  

Assuming this for the moment, we prove (6) as follows. First we note that a 
version ~(t) of E(X~+t [4 )  may be chosen which is (s, t, co)-measurable, and which 
is, for each fixed s, the well-measurable projection of the process X~+t; hence 
~(T)=E(X~+r [~r) a.s. for any TES( (This is proven in the Appendix.) We form 
2 x with this version, and then, for TESe bounded, 

oo 

(8) E2~.= ~ e-~aF1E(e-r exp[-(x-E(X~+rl~r))z /2a2])ds 
0 

by Fubini's theorem. But then EZ~. is also given by the right member of (8): for 
T~5 ~ bounded and discrete one has ~ -5 EZ T = EZ r trivially, and for arbitrary T we 
may approximate from above by T, e5  ~ bounded and discrete. It follows that 
EZ~.-~ EZ~r since Z ~ is a right-continuous supermartingale, and EZT. EZT 
by (5), (7), (8) and dominated convergence. Now for T, TT bounded, we get 
l imEZ}. =EZ~. for exactly the same reasons, and that proves the theorem. 

To prove (7), define X* = sup ]X~l, a>0 .  This is finite since X is continuous; 
O<_s<_a 

hence, by the Landau-Shepp theorem [15], X* is integrable. Suppose T.eY, 
7~,<a for every n. Then, for fixed s, IX +Tol<=X*+a. 

and MeTer's convergence theorem [ 18] NowifT ,  J.T,~'~r=~ T, [17, IV. T42],  
implies (7). (Although MeTer's theorem involves an increasing family of a-fields, 
the proof works equally well for a decreasing family.) If T,T T, MeTer's theorem 

.... ~ it remains to prove says E(Xs+T. IN~'T,,)~ E(Xs+T[ v T.), SO 

(9) ~ T =  V~r. (T,]'T). 

Having realized X in the space C =  C~ we note that ~-~176 ) is the Borel 
o-field in C for the topology of uniform convergence on compact subsets of 1R 
(of ( - c o ,  0]). Consider the shift Ot as a random process on (C, To)  with state 
space (C, o~~ Then ~ is the augmentation (by the family sF  of P-null sets - see 
w of a(0~: s<t). The process 0~ has continuous paths since a continuous 
function is uniformly approximated by its (small) translates. For Te5 p, let 
~ = a {Or+ t: t E IR+ } v sV, regarding Ot as mapping (C, . ,~o)~ (C, ~0~ According 
to Lazaro and Meyer [16], given a bounded random variable ( on (C, ~-), there 
is a bounded ge(~o ~  such that E(~o OrlffT)=go Or for every Te5 P bounded. 
This easily implies 

(10) P(MI~)=P(MIOT),  M e ~ .  
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Clearly 0r, e ( ~ , ) ,  so that 0re(V~T~ Finally, a result of Chung [4, 94] 
establishes (9). 

e) We investigate here the energy (in the sense of [19]) of the potential Z x, 
and show that it provides some insight into the meaning of condition (1). Recall 
that if a potential Z = (Zt) is not of class (D), its energy e (Z) is defined to be infinite, 
while, in the class (D) case, e(Z)=�89 <_<_ oe, where A=(At) is the predictable 
increasing process which generates Z. (See [19] for the connection with the 
classical concept of energy.) 

An increasing process ~ = (~t)t~ is an additive functional relative to the flow 
(0t) if, for each s,t~lR, et+~=e~+ct~o0t a.s. Consider the increasing process 

t 

At=~e-~des  and assume Ecq<oo.  This implies Eel=tEe1  for all t~IR, and 
0 

EAoo< oo. Suppose e, and thus A, to be adapted, and let Z be the class (D) 
potential E(A~o [o~)-At (up to modification). Then e (Z)<  Go iff Ea  2 < oo for all t: 

t 2 

e(Z)<o~ : , o o >  E A ~ >  E ( ! e - ~  dc~) >e-2 tEe2  t . 

Conversely, if E e~ < c~ for all t (which is equivalent to E e~ < ~ for some t + 0), 
then 

oo oo oo o0 co 

EA2 = I e-t  ~ e-~E( ~' ~) ds dt< 21 e - ' l  e-SE(a2) ds dt<=2 t e-~E(a2) ds. 
0 0 0 t 0 

By the ergodic theorem, s -1 =~ converges in L 2 as s-~ or, thus E ~  = O(s2), and 
the last integral is finite. 

As remarked earlier (in b)), the local time c~ ~ -  if it ex is t s -  will be an additive 
functional in the present situation. Writing e (x) for e(Z x) we have: 

(11) Theorem. Let X have a local time relative to Lebesgue measure. Then: 
{x: e(x)< ~ }  has positive measure iff (1) holds, in which case e(x)< ov a.e. Further, 

ov X 2 

(12) e ( x ) = . l  ~ (1-rZ(s ) ) ' l /2exp-[s -~  l+r ( s ) ]ds<-oe .  
4 n o  

Since Berman [1] has shown that (1) implies E(a~)2<oQ a.e., we need only 
prove the "only if" assertion. We require some preparation. 

(13) Lemma. (i) Let c~(u, v) be the bivariate normal density havin G zero means, 
unit variances, and correlation p>O. Then, for any (complex-valued) integrable 

function g, ~ g (u) g (v) 4) (u, v) du dv >__ O. 

(ii) For D e ~ bounded with re(D)>0 ( m = Lebesgue measure), there exist 6>0,  
t/>0, such that [ t - s l < b  implies 

I (x'-x i EL\  sin ; XteD, \ u(t--s) ] 

where u 2 (t - s) = E (X t - X~) 2. 

Proof. (i) Trivial if p=0 .  For p>0 ,  write 

q~(u, v) =(2n(1 -p2))-l/2qb~(u-v) O(u)O(v), 
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where O~(u)--=e -uz/2~z, o-2=p-l(1 _p2), and O(u)=e -"z/z(l+p). The result is now 
immediate since ~b~ is positive definite (see, e.g. [23]). 

(ii) Let q(D) be the indicated expectation. For any B~D, Be~ ,  we have 
Iq(B)-q(D)I<3@(B-D), hence we may assume D is open. Put Y=X~, 
Z=(X,-X~)/u( t -s) ,  so (Z, Y) is bivariate normal, zero means, unit variances, 
and covariance - u ( t -  s)/2. If f(z, y) is the density of (Z, Y), 

q(D)= ~ ~ s inf - Io(y)Io(u( t -s)z+y) f (z ,y)dzdy 
2 - c o  - ~  

~ ( D )  ~ sinz ~ (dz)>0  as I t - s [ - - , 0  
Z - - c o  

by dominated convergence; this yields (ii). 
We can now prove (11). Suppose re{x" e(x)< Go} >0. Then there is a bounded 

Borel set D, re(D)>0, for which ~E(c~)adx<oe, t<l .  Choose 6,17>0 such 
D 

that (13)(ii) holds and r ( s - t ) > 0  whenever s,t<~. For almost every coef2, 
c~ (co)Io (x)e LlnL z, and the Parseval relation gives 

co 

j (a )2 dx= I ly)[2dy a.s. 
D - c o  

6 

where ~ (y) = [ e iyx o~ Io (x) dx = ~ e iyx~ ID (Xs) ds. (The last equality is a conse- 
0 - c o  

quence of (1.1).) Hence, 

(13 

oo > ~ E(a~) 2 dx = ~ E l((y)J 2 dy 
D - - c o  

co 6 

= ~ ~ ~ E ( e i r ( X r X s ) ;  X t ~ D  , Xs~D)dsdtdy 
- c o O 0  

6 6 co 

= f  f f E(ei'(x~-x~); XteD, XsaD)dydsdt (Fubini and 13(i)) 
0 O - - c o  

~ (u(t-s)) -I  
>~ J I E(ei'{x~-Xs}; XtaD, X~eD)dydsdt 

0 0 -(u(t-s))  -~ 

= 2 ~  ~(u(t--s)) -l  q(D) dsdt 
0 0 

6 6 
~ 2 t  l ~ ~ ( u ( t - - s ) )  -1  d s  at, 

0 0 

and this implies (1). 
Using the definition of additive functional, it is easy to show that 

e(x) =�88 f. at, 
0 
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and we may assume (1) is proving (12). But then Berman [1, 295] gives the formula 

1 t t 
E(c~')2 = ~ -  ! ! ( 1 - r 2 ( s - u ) )  -1/2 e x p [ -  x2/(1 +r(s-u))]  ds du 

(stated in [1] for t = 1) from which (12) follows. 

Remark. (i) When (3) holds, (1) fails so e(x)= ee. We indicate a direct proof 
using Palm measures. Under (3) the local time is given as in w 1, Example 1, and 
obviously P~ is concentrated on {Xo=x} for a.e. x, so the measure v~.(co) has 
unit mass on t = 0  under px. An alternate formula for the energy may be derived, 
namely 09 

e(x)=�88 ~ e- l t lEXl~ldt  a.e. 
- - 0 9  

(E ~ is integration with P~), so 
0 

e(x)>�88 E x ~ [2~1-1 dv~>�88 E ~ ]Xo1-1. 
- 1  

But 2o is Gaussian, mean 0, variance - r " ( 0 ) <  oe under px, so e(x)= oe. 
(ii) Condition (5) implies Z x bounded which itself implies finite energy. Also, 

it can be shown that Z ~ bounded implies (1). We do not know whether Z x bounded 
(for a.e. x) is sufficient for (5) or necessary for (1). 

(iii) Examples will be given momentarily in which (a)(1) holds but (5) fails, 
(b)(1) fails for a nondeterministic process. 1/t 

f) Examples. (i) Let g (2) vary slowly at o% put 02 (t)= ~ g 00/2 d2, and suppose 
09 

g(2)/2 d2= o% ~ (t O(t)) -1 dt = oe (e.g, g(2)=log2 will do). Let G0o) be a spectral 
0 +  09 

distribution function such that G(2)= 1 - 2  .2  g(2) for large [2[. Then ~ 22 dG= o~ 
- 0 9  

so (3) fails, but (1) also fails because r ( 0 ) - r ( t ) ~ t  2 02(0 ( t ~ 0 )  (see Pitman [22, 
397]). Finally G can easily be chosen so that G '>0  a.e. and (1 +22) -1 logG'(2) 
is integrable, which gives a nondeterministic process [6, 5843. 

(ii) We use the terminology of Doob [6, XII.5] in this example. Let 0 < C*e L 2, 

C*(t) =0  for t e N + .  Define c(2)= ~ e 2ni~t C*(t) dt and 6(2)=  ~ [c(s)] 2 ds. Taking 
- o ~  - 0 9  

G as spectral distribution, we get a nondeterministic process if [e (2)12> 0 a.e. and 
0 

2 ~]C*(s)[ads, t>0 .  If we (1+22) -1 log]c(2)] 2 is integrable, and, in that case a t = 
09 - - t  

take C*eLlc~L 2, Fourier inversion will give r( t)= ~ C* (y - t) C* (y) dy where 
- 0 9  

r (t) = e 2 ~i~ x dG(2). Taking, in particular, C* (t) = - t on ( -  (2 ~)- 1, 0) and zero 
- 0 9  

elsewhere we find, after some computations, r (O) - r ( t )~b t  (t---,O) where b>0 ,  
and [c(2)] 2 =(2~z 2) -4 [2(1 - c o s  2 - 2  sin 2) +22]. One verifies now that the con- 
ditions for nondeterminism are fulfilled, that (1) holds, and (5) does not. 

(iii) Let X be a complex-valued stationary Gaussian process. We give examples 
in which X has and does not have a local time relative to plane Lebesgue measure. 
The one-dimensional distribution now is the standard complex normal, given by 
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the density dp(z)=(2n)-le -Izl2/2, z e ~  (=complex numbers). Following the 
approach of w 1, Example 2, we have a conditional density 

P(Xssdz 1~-o)=(re o-2) -1 exp [ - [ z  -E(Xs]~o)12/Za~] dz. 

(a~ has the same significance as in the real-valued case, dz refers to Lebesgue 
measure on C.) The potential Z ~ is given up to modification by 

co 

Zt =7c-1 e-t af e-sa-es exp[-[z-E(&+,l~)iz/2a 2] ds. 
0 

Obviously Z z will be bounded, hence class (D), if S a~- 2 ds ( 00, and to produce 
0+ 

an example we again follow Doob [-6, XII.5]. Take a number c~(0, 1), put 
a(t)=]t[ (~-1)/2 on ( - 1 ,  0), =0  elsewhere, and let b(t) be a function which is in 

L l ~ L  2, vanishes on IR+, and fb(t)dt=O. Put C*(t)=a(t)+ib(t). Then 
0 --oo 

2 as = S [C*(u)[ 2 du satisfies the above condition, so we get a local time. To obtain 
- s  

an example for which no local time exists, let X be a complex stationary Gaussian 
process with covariance r ( t - s )=  E(X~Xs) such that - r " ( 0 ) <  oo. The trajectories 
can be taken absolutely continuous (in II;) with probability 1 [6, 536]. Hence, 
with probability 1, the trajectory is a rectifiable curve and so has Lebesgue 
measure zero. It follows also that the potential Z z cannot be of class (D) for a.e. z -  
indeed not even for all z in a set of positive measure. 

(iv) We now use the machinery that has been developed to compute the 
Laplace transform of the first passage time distribution for the stationary 
Ornstein-Uhlenbeck (OU) process U~, telR. (The process Ut is the unique 
stationary Gaussian Markov process, or, most briefly, Ut=e-t~(e 2t) where 
is standard Brownian motion.) One can, of course, use existing methods; we offer 
the present approach as an illustration of a method which may be applicable 
to non-Markov processes. 

Since the OU process has covariance e-rtl it is easily checked that the con- 
ditional density is given by (for s > t) 

P(Usedul~)=(2rc(1 -e-2(s-t))) -1/2 e x p [ - ( u - e  -(s-t) Ut)2/2 (1--e-Z(s-t))] du. 

The 2-potential is 
oo 

(14) Z{(u)=(2n) -1/2 e-;~t~ e-ZS(1 -e-eS) -1/2 e x p [ - ( u - e  -s Ut)2/2 (1 - e- 2s)] ds 
0 

(without modification), so (5) holds and Z~(u) is a regular, class (D) potential, 
hence a continuous (in t) local time ~" exists. 

Denote by L,, (co) the time set { t > 0: U t (co)= u} and let A, be the support of the 
measure ~".: A,(co)={t>0: ~'+~(co)-~' ~(co)>0 for all e>0}. As we have noted 
earlier, A , c L ,  a.s. Put % = i n f { t > 0 :  Ut=u } = infL, .  Clearly ~"u(co)=0 a.s. 

Since Z?'(u) is of class (O), 

Zt~ (u)= M~ (u)- AtZ (u) 
20 Z.Wahrscheinlichkeitstheorie verve. Gebiete, Bd. 29 
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t 

where MZ(u) is a uniformly integrable martingale, and Ate(u)= f e-~S dc~. Thus 
Z~.(u)=M~.(u), and from (14), o 

oo 

(2 n)- 1/2 E (e- ~ )  ~ e-  x~(1 - e-  2 ~)- 1/2 exp [ - u2(1 - e-  s)a/2 (1 - e-  2~)] d s = EM~.(u). 
0 

By optional sampling, EM~. (u) = EM~ (u) = EZ~ (u) = (2 n)- 1/2 2-1 e-  ,~/2. Finally, 
then, 

oO --1 

E(e-~")=e-"~/2 2-1 ~o [~ e-Z~(1-e-a~)-l /2 exp[-uE(1-e-~)2/2(1-e-2~)] ds] 

The integral in brackets may be evaluated in terms of various special functions; 
when u = 0 the expression is especially simple: E (e - z~~ = 2 (2 B (2/2, 1/2))- 1, where 
B denotes the beta function. 

Appendix 
Proof of (1.3). Let (r be a countable field which generates ~o .  Since Kt(F, A) 

increases with t, there exists HEN such that n(HC)=0 and xEH implies 
k(s, x, A)<=k(t,x, A) for every pair of rationals s<=t, and every AE(r hence for 
every A e Y  ~ since k (s, x," ) is a measure (use a monotone class argument). Writing 
Q for the rationals, set, for A ~  -~ 

" x , A )  x~H 
[c ( t' x' A ) = { tO~tk (r' x C H . 

Then (Vitali-Hahn-Saks theorem) /r x, ") is a measure. Since t---~k(t, x, A) is 
right continuous, we get (t, x)-measurability; finally it is clear that 

Kt(r, A)= S k(t, x, A)~(dx), 
F 

so k is the desired version. 

Proof of (1.11). The reader is referred to [5] for terminology. We recall briefly 
the Doob-Meyer decomposition of Class (D) potentials. First, a potential Z=(Zt) 
is a right-continuous, non-negative supermartingale such that EZ t--~ 0 (t--~ o(3). 
It is of class (D) if the family {ZT: TeSt} is uniformly integrable, where S a is the 
family of stopping times. For Z of class (D) there is a unique increasing process 
A =(At) such that A o~ is integrable, Z t = E (A~o I~ t ) -At  (up to modification) and 
A is predictable (or natural), meaning that the map (t, og)--~At(co) is measurable 
relative to the a-field ~ on IR+ x f2 generated by sets of the form 

n 

(A1) H={O} x F u  O l s , ,  T~2, 
i = l  

where F ~ o ,  $1 _-_ T~ __< S: __<... ___ T~ are in ~ ,  and 

]ISi, T31 = {(t, co): t~Ig+, Si(co)<t<__ T~(co)}. 

Coming to the proof, if T~Sr is discrete, the map x---~ EZ~ is measurable 
by (1.10); for arbitrary T, approximate with discrete stopping times from above. 
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Thus 

(A 2) x ~ EZ~. is measurable for T~5 P. 

Let #~ be the measure on ~ induced by Z x. It is determined by its values on 
sets H as in (A 1), namely ?1 

x Z x re(H)= T,E(zs,- T,) 
i = 1  

(which is non-negative). This is measurable by (A2), and a monotone class 
argument shows that x ~ # x ( H )  is measurable for all H ~ .  

For any function uE(~)+ we have x-+~udl~x measurable; hence, for 
oo 

uE(~ x Y )  +, E ~ u(t, co) dA~[ (co)= ~ fi d ~x 
o 

is x-measurable, fi being the predictable projection of u [5, Chapter V]. Taking 
u(s, co)=Ito, tl(s)Is(co) ( B e ~ )  we find that (x, B)--~E[At; B] is a kernel on E x  ~,~, 
and we may choose a jointly (x, co)-measurable density /it(x, co). This may be 
"regularized" as in the proof of (1.1) above to be right continuous in t, (t, x, co)- 
measurable, and indistinguishable from At(co). We omit the details. 

The density tpt(s, x, co). We prove that this density (used in (1.16)) may be 
chosen (s,x, co)-measurable (s>t). Fix t, and define a map 7s, t: (2--~Ex(2 by 
7s, t (co)= (Xs(co), co). This is measurable since X is; indeed, 

v~,' (g x 4~  = ~(xp v 4 ~ 

Let v~t be the distribution of 7~,, over g x 4 ~  vst(D)=P(7~,)(O) ), D E g x 4  ~ 
Notice that v~(F x A ) = P ( X ~ F ,  A), A E 4  ~ so v,,(D) is s-measurable for each D. 
Moreover, vs, < ~  x Pt for s >  t, where P~ is the restriction of P to 4 ~  first choose 
Ct(s,x, co) measurable in (x, co) by (1.5) and note that 7~.t(D)=~r co)dndP 

D 

when D = F x A ,  Feg ,  A E 4  ~ and then for all D E g x 4  ~ Now apply (1.5) to 
the kernel (s, D) ~ 7~,~(D) to finish the proof. 

The good version of E(X~+t]J~t). In the proof of (2.6) we needed a version 
~,(t) of E(X~+,]4) which was (s, t, co)-measurable and, for each s, a version of 
the well-measurable projection [5] of the process X~+t. The existence of such 
is a consequence of the following results. We refer the reader to [5] for terminology. 
Let ~/U be the a-field of well-measurable sets in IR+ x (2: it is generated by all 
processes u(t, co) which have right continuous trajectories a.s. The results below 
have analogues for the accessible and predictable a-fields (for the latter fiT is 
replaced by fiT- at certain points in the argument), but we shall not dwell on 
these. The family of a-fields {4}  is assumed (as usual) to be right continuous 
with all P-negligible sets contained in each 4 .  

(A3) Theorem. Let x~t(co) be an (s, t, 6o)-measurable process on two variables 
which is either bounded or non-negative. The well-measurable projection ~(t) of x~t 
(s fixed) may be chosen (s, t, co)-measurable. 

Recall that, for a bounded or non-negative measurable process u(t, co), its 
well-measurable projection is the unique well-measurable process fi(t, co) such 
that E[u(T); T <  oo] =E[f i (T) ;  T <  oo] for every T~5 ~. 
20* 
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Just as in [5, 99] it suffices, in proving (A3), to consider x~t of the form 
x~t(oo)=a(s)b(t)c(co ) where a, b are bounded Borel functions, and c e ( ] )  is 
bounded. Let (t be the right continuous modification of the martingale E(cl~).  
Then ~(t)=a(s)b(t)( ,  is the desired version. i 

If, in addition, for each s, the process x~t is right continuous a.s., ~(t) will 
have the same property [5, 101-1. 

Recall that a set AcIR+ x (2 is evanescent if, for a.e. coe(~, IA(t, CO)--0. A prop- 
erty holding outside an evanescent set is said to hold quasi-surely (q.s.). 

(A4) Theorem. Let x t be a non-negative, measurable, and separable process such 
that x*--- sup x~ is integrable for a>0.  Then the well-measurable projection 2 t 

O<_s<_a 

may be chosen finite q.s. 

Remarks. (a) The separability is only used to guarantee x* measurable. 

(b) A similar proof will show: if x~(co) are uniformly bounded measurable 
processes, and x " - ,  x q.s., then 2~-* 2 q.s. 

Proof Let x~=xt/xn, so xt(co)'Ixt(co) for all (t, co). Then 2~T2 q.s. (see the 
proof of T 14, 98 of [5-1). In fact, 2 may be defined as the indicated limit. The set 
A={(t, co): Yea(co)Too } is in OF, and its projection re(A) on ~2 is {co: 2t(~o)=oo 
for some t}. By the section theorem [5, IV. T10], given e>0, there is a Te5 P 
such that (T(co),e0)~A whenever T(co)< ~ ,  and P(~(A))<P(T< ~ ) + e .  Now 

2~.Itr<~l=E[x~.ltr<oollgr] [5, 100] 

which implies for a > 0, 

E(2~.; T <a)=E(x~.; T <__a)<=E(x*)< oo. 

Since (T(co), co)eA when T(~o)<a, we must have P(T<a)=0,  hence P(T< or)=0, 
and, finally, P(rc(A))=0, which proves (A4). 

(AS) Corollary. Let xt be a measurable, separable process such that x* = sup Ix~l 
O<_s<_a 

is integrable for a>0.  Then a well-measurable projection 2 of x exists and is 
finite q.s. 

This is immediate upon splitting x into its positive and negative parts, and 
using (A 4). 

Le t  X be a continuous, stationary, real-valued Gaussian process. Then X* 
is integrable for each a>0 ,  and we may choose ~+ (t) to be (s, t, co)-measurable 
and, for each s, the well-measurable projection of X3+t; ~2 (t) is chosen similarly. 
Then ~ ( t ) - - ~ + ( t ) - ~  (t) is the desired process. (We may set (~(t)=0 whenever 

- o o  arises from the above recipe.) Finally, we note that the set 

B =  {(s, t, a)): ~+(t, co)+ 32 (t, e))= oo} 

is measurable, hence B1 -- {(s, m): ~+ + ~;- < oo for all t} is in N x ~- ( = completion 
of ~ x  f f  under dsx  dP) by [5, I. T32]. Since, for each s, the section Bl(s) at s 
has probability 1, we get from Fubini's theorem that, for a.e. c~ef2, 4 + +~ ; -<  oo 
for all t and a.e.s. 
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