Inequalities for $\mathscr{E} k(X, Y)$ when the Marginals are Fixed

Stamatis Cambanis ${ }^{1 \star}$, Gordon Simons ${ }^{1 \star}$, and William Stout ${ }^{2} \star \star$
${ }^{1}$ Department of Statistics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
${ }^{2}$ Department of Mathematics, University of Illinois, Champaign-Urbana, Illinois 61820, USA

When $k(x, y)$ is a quasi-monotone function and the random variables X and Y have fixed distributions, it is shown under some further mild conditions that $\mathscr{E} k(X, Y)$ is a monotone functional of the joint distribution function of X and Y. Its infimum and supremum are both attained and correspond to explicitly described joint distribution functions.

1. Introduction

It is well known that if X and X^{\prime} are random variables, if X is stochastically smaller than X^{\prime} and if $k(x)$ is a monotone function then $k(X)$ is stochastically smaller than $k\left(X^{\prime}\right)$ and

$$
\mathscr{E} k(X) \leqq \mathscr{E} k\left(X^{\prime}\right),
$$

and the ordering is reversed when $k(x)$ is an antitone function (see for instance p. 159 of Hardy, Littlewood and Pólya [6] and p. 179 of Veinott [15]). We say that X is stochastically smaller than X^{\prime}, and write $X \subset X^{\prime}$, if $\operatorname{Pr}\{X<x\} \geqq \operatorname{Pr}\left\{X^{\prime}<x\right\}$ for all x. Also $k(x)$ is called monotone (resp. antitone) if $k(x) \leqq k\left(x^{\prime}\right)(\operatorname{resp} . k(x) \geqq$ $k\left(x^{\prime}\right)$) for all $x \leqq x^{\prime}$.

We are interested here in a two-dimensional analog of this result. For pairs of random variables (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ we say that (X, Y) is stochastically smaller than $\left(X^{\prime}, Y^{\prime}\right)$, and we write $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$, if

$$
\operatorname{Pr}\{X<x, Y<y\} \geqq \operatorname{Pr}\left\{X^{\prime}<x, Y^{\prime}<y\right\}
$$

for every x and y. It is easy to see that the condition $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$ alone does not imply

$$
\begin{equation*}
\mathscr{E} k(X, Y) \leqq \mathscr{E} k\left(X^{\prime}, Y^{\prime}\right) \tag{1}
\end{equation*}
$$

[^0]for monotone functions $k(x, y)$ of two variables. A simple counter example is given by Veinott [15]. He goes on to show that (1) holds for monotone functions if certain additional conditions, involving the conditional distributions of Y given $X=x$ and of Y^{\prime} given $X^{\prime}=x^{\prime}$, are imposed. (In fact this result is n-dimensional, $n \geqq 2$. For a slightly weaker set of conditions see Pledger and Proschan [11].) Here we are not concerned with monotone functions $k(x, y)$ but with quasi-monotone functions, which are analogs to monotone functions of one variable as well. The class of quasi-monotone (and quasi-antitone) functions contains many important functions which are not monotone (nor antitone). Many examples are given in Section 4. Just as the condition $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$ is insufficient to guarantee (1) or its reverse for monotone functions $k(x, y)$, it is insufficient for quasi-monotone functions as well. The major additional requirement we impose is that the corresponding marginal distributions of (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are the same. This requirement, while strong, is both natural and necessary.

2. The Main Result

Consider the random variables X and Y defined on a probability space (Ω, \mathscr{F}, P) and let $F(x)$ and $G(y)$ be their distribution functions respectively and $H(x, y)$ their joint distribution function. In studying the dependence of $\mathscr{E} k(X, Y)$ on H it would be useful to have an appropriate expression, other than its definition $\int_{R^{2}} k(x, y) d H(x, y)$, and this is now done when k is quasi-monotone (or quasiantitone). In order to produce slightly simpler expressions we assume all distribution functions to be left continuous.

A function $k(x, y)$ is called quasi-monotone if for all $x \leqq x^{\prime}$ and $y \leqq y^{\prime}$

$$
\Delta_{\left(x, x^{\prime}\right)}^{\left(y, y^{\prime}\right)} k \equiv k(x, y)+k\left(x^{\prime}, y^{\prime}\right)-k\left(x, y^{\prime}\right)-k\left(x^{\prime}, y\right) \geqq 0,
$$

and quasi-antitone if $\Delta_{\left(x, x^{\prime}\right)}^{\left(y, y^{\prime}\right)} k \leqq 0$, i.e. if $-k$ is quasi-monotone. If k is quasimonotone and right continuous then it determines uniquely a (σ-finite, nonnegative) measure μ on the Borel subsets \mathscr{B}^{2} of the plane R^{2} such that for all $x \leqq x^{\prime}$ and $y \leqq y^{\prime}$,

$$
\begin{equation*}
\mu\left\{\left(x, x^{\prime}\right] \times\left(y, y^{\prime}\right]\right\}=\Delta_{\left(x, x^{\prime}\right)}^{\left(y, y^{\prime}\right)} k, \tag{2}
\end{equation*}
$$

(see p. 167 of von Neumann [10]). An interchange of the order of integration in an appropriate double integral gives then the desired expression for $\mathscr{E} k(X, Y)$.

Let us first illustrate the method in a particular case and then proceed to the general case. Let $k(x, y)$ be symmetric, right continuous and quasi-monotone. Define the function $f(x, y, \omega)$ by

$$
f(x, y, \omega)= \begin{cases}1 & \text { if } X(\omega)<x, y \leqq Y(\omega) \text { or } Y(\omega)<x, y \leqq X(\omega) \\ 0 & \text { otherwise }\end{cases}
$$

Then f is clearly a measurable function on $\left(R^{2} \times \Omega, \mathscr{B}^{2} \times \mathscr{F}, \mu \times P\right)$ and since it is nonnegative we have by Fubini's theorem

$$
\mathscr{E} \int_{\mathbb{R}^{2}} f d \mu=\int_{R^{2}} \mathscr{E} f d \mu
$$

But clearly

$$
\begin{array}{rl}
\int_{\mathbb{R}^{2}} & f d \mu=k(X, X)+k(Y, Y)-2 k(X, Y), \\
\mathscr{E} f & =P\{X<x \wedge y, Y \geqq x \vee y\}+P\{X \geqq x \vee y, Y<x \wedge y\} \\
& =F(x \wedge y)+G(x \wedge y)-H(x \vee y, x \wedge y)-H(x \wedge y, x \vee y) \\
& =A(x, y), \quad \text { say }, \tag{3}
\end{array}
$$

and thus

$$
\begin{equation*}
\mathscr{E}\{k(X, X)+k(Y, Y)-2 k(X, Y)\}=\int_{R^{2}} A d \mu \tag{4}
\end{equation*}
$$

If the expected values $\mathscr{E} k(X, X)$ and $\mathscr{E} k(Y, Y)$ are finite we obtain the desired expression

$$
\begin{equation*}
2 \mathscr{E} k(X, Y)=\mathscr{E} k(X, X)+\mathscr{E} k(Y, Y)-\int_{R^{2}} A d \mu \tag{5}
\end{equation*}
$$

Now if the marginal distributions F and G are fixed, $\mathscr{E} k(X, Y)$ depends on H only through A, and since μ is a nonnegative measure, increasing H will result in increasing $\mathscr{E} k(X, Y)$; in other words $\mathscr{E} k(X, Y)$ is a monotone functional of H. (And it is clearly an antitone functional of H when k is an antitone function.)

The general case of a quasi-monotone, right continuous function $k(x, y)$ requires a different choice of f, but the idea is of course the same. The appropriate function $f(x, y, \omega)$ is now defined by

$$
f(x, y, \omega)=\left\{\begin{aligned}
&+1 \text { if } \quad x_{0}<x \leqq X(\omega), y_{0}<y \leqq Y(\omega) \\
&-1 \text { or } X(\omega)<x \leqq x_{0}, Y(\omega)<y \leqq y_{0} \\
& \text { if } X(\omega)<x \leqq x_{0}, y_{0}<y \leqq Y(\omega) \\
& 0 \begin{array}{l}
\text { or } x_{0}<x \leqq X(\omega), Y(\omega)<y \leqq y_{0}
\end{array} \\
& \text { otherwise }
\end{aligned}\right.
$$

where x_{0} and y_{0} are (appropriate) fixed real numbers. Again f is $\mathscr{B}^{2} \times \mathscr{F}$-measurable. If f^{+}and f^{-}are the positive and negative parts of f, then by Fubini's theorem we have

$$
\mathscr{E} \int_{R^{2}} f^{ \pm} d \mu=\int_{R^{2}} \mathscr{E} f^{ \pm} d \mu
$$

Proceeding as before, and introducing

$$
\begin{equation*}
k_{0}(x, y)=k(x, y)-k\left(x, y_{0}\right)-k\left(x_{0}, y\right)+k\left(x_{0}, y_{0}\right) \tag{6}
\end{equation*}
$$

we obtain

$$
\mathscr{E} k_{0}^{+}(X, Y)=\int_{R^{2}} B^{+} d \mu \quad \text { and } \mathscr{E} k_{0}^{-}(X, Y)=\int_{R^{2}} B^{-} d \mu,
$$

where k_{0}^{+}and k_{0}^{-}are the positive and negative parts of k_{0}, and

$$
\begin{align*}
& B^{+}(x, y)=\mathscr{E} f^{+}= \begin{cases}1+H(x, y)-F(x)-G(y) & \text { if } x_{0}<x, y_{0}<y \\
H(x, y) & \text { if } x \leqq x_{0}, y \leqq y_{0} \\
0 & \text { otherwise }\end{cases} \\
& B^{-}(x, y)=\mathscr{E} f^{-}= \begin{cases}F(x)-H(x, y) & \text { if } x \leqq x_{0}, y_{0}<y \\
G(y)-H(x, y) & \text { if } x_{0}<x, y \leqq y_{0} \\
0 & \text { otherwise } .\end{cases} \tag{7}
\end{align*}
$$

If Z^{+}and Z^{-}are the positive and negative parts of a random variable Z, using the standard terminology, we say that its expectation $\mathscr{E} Z$ exists (even if infinite valued) if at least one of $\mathscr{E} Z^{+}$and $\mathscr{E} Z^{-}$is finite, and then $\mathscr{E} Z$ is defined by $\mathscr{E} Z^{+}-\mathscr{E} Z^{-}$. Thus, if the expectation $\mathscr{E} k_{0}(X, Y)$ exists (even if infinite valued) we have

$$
\begin{equation*}
\mathscr{E} k_{0}(X, Y)=\int_{R^{2}} d \mu \tag{8}
\end{equation*}
$$

where $B=B^{+}-B^{-}$. By (6), this is guaranteed if $\mathscr{E} k(X, Y)$ exists (even if infinite valued) and $\mathscr{E} k\left(X, y_{0}\right), \mathscr{E} k\left(x_{0}, Y\right)$ are finite, in which case we have

$$
\begin{equation*}
\mathscr{E} k(X, Y)=\mathscr{E} k\left(X, y_{0}\right)+\mathscr{E} k\left(x_{0}, Y\right)-k\left(x_{0}, y_{0}\right)+\int_{R^{2}} B d \mu \tag{9}
\end{equation*}
$$

Hence for fixed F and $G, \mathscr{E} k(X, Y)$ depends on H only through B and thus it is a monotone functional of H (antitone when k is antitone).

Let us now summarize our results. We write $X \stackrel{d}{=} X^{\prime}$ when the random variables X and X^{\prime} have the same distributions.
Theorem 1. Let $X \stackrel{d}{=} X^{\prime}, Y \stackrel{d}{=} Y^{\prime}$ and $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$. If $k(x, y)$ is a quasi-monotone, right continuous function then

$$
\begin{equation*}
\mathscr{E} k(X, Y) \geqq \mathscr{E} k\left(X^{\prime}, Y^{\prime}\right) \tag{10}
\end{equation*}
$$

when the expectations in (10) exist (even if infinite valued) and either of the following is satisfied:
(i) $k(x, y)$ is symmetric and the expectations $\mathscr{E} k(X, X)$ and $\mathscr{E} k(Y, Y)$ are finite,
(ii) the expectations $\mathscr{E} k\left(X, y_{0}\right)$ and $\mathscr{E} k\left(x_{0}, Y\right)$ are finite for some x_{0} and y_{0}.

Of course the reverse inequality in (10) holds if k is quasi-antitone. It should be noted that the expression in the general case, given by (9) and (7), is greatly simplified when k is a multiple of a distribution function by taking the reference points x_{0}, y_{0} at $-\infty$. However, in most interesting examples k is not a multiple of a distribution function (in fact μ is not even finite).

It should be remarked that $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$ and k quasi-monotone do not necessarily imply that $k(X, Y) \supset k\left(X^{\prime}, Y^{\prime}\right)$, from which (10) would follow trivially. This is seen by the following example. Let $(X, Y) \stackrel{d}{=}(B, B)$ and $\left(X^{\prime}, Y^{\prime}\right) \stackrel{d}{=}\left(B, B^{\prime}\right)$ where B, B^{\prime} are independent Bernoulli random variables each with mean $\frac{1}{2}$, and let $k(x, y)=(x+y)^{2}$ (quasi-monotone). It is easily seen that $(X, Y) \subset\left(X^{\prime}, Y^{\prime}\right)$, $\mathscr{E} k(X, Y)=2>1.5=\mathscr{E} k\left(X^{\prime}, Y^{\prime}\right)$ and that neither $k(X, Y) \supset k\left(X^{\prime}, Y^{\prime}\right)$ nor $k(X, Y) \subset$ $k\left(X^{\prime}, Y\right)$ is true.

The result as stated in Theorem I is not in its weakest form. It may be that inequality (10) holds assuming only that the expectations in (10) exist (even if infinite valued); however, at present, we can neither prove nor disprove this statement. Instead we offer the following remarks. When k is symmetric, introducing

$$
k_{s}(x, y)=k(x, x)+k(y, y)-2 k(x, y) \geqq 0,
$$

we have

$$
\begin{aligned}
2 k(x, y) & =k(x, x)+k(y, y)-k_{s}(x, y) \\
& =k^{+}(x, x)+k^{+}(y, y)-k^{-}(x, x)-k^{-}(y, y)-k_{s}(x, y)
\end{aligned}
$$

and from (3) and (4),

$$
0 \leqq \mathscr{E} k_{s}(X, Y) \leqq \mathscr{E} k_{s}\left(X^{\prime}, Y^{\prime}\right) \leqq+\infty .
$$

It then follows that assumption (i) may be weakened to
(i)' $k(x, y)$ is symmetric and either the expectations $\mathscr{E} k^{+}(X, X)$ and $\mathscr{E} k^{+}(Y, Y)$ are finite, or the expectations $\mathscr{E} k^{-}(X, X), \mathscr{E} k^{-}(Y, Y)$, and $\mathscr{E} k_{s}(X, Y)$ are finite.

Similarly condition (ii) for general k may be omitted whenever an appropriate truncation argument can be applied. At present we do not have a truncation argument to eliminate (ii) altogether. However the following truncation arguments clearly work for some specific k 's mentioned in Section 4. It is clear that if all random variables $X, Y, X^{\prime}, Y^{\prime}$ are bounded and if k is locally bounded than (ii) is satisfied. Now for a function $f(x)$ and $c>0$, define $f^{c}(x)=-c$ if $f(x)<-c$, $=f(x)$ if $-c \leqq f(x) \leqq c,=c$ if $c<f(x)$. Notice that from (6) we have $k(x, y)=$ $k_{0}(x, y)+f(x)+g(y)$ where $f(x)=k\left(x, y_{0}\right)$ and $g(y)=k\left(x_{0}, y\right)-k\left(x_{0}, y_{0}\right)$. For $c>0$ let

$$
k^{c}(x, y)=k_{0}\left(x^{c}, y^{c}\right)+f^{c}(x)+g^{c}(y)
$$

Then as $c \uparrow \infty$ we have $k^{c}(x, y) \rightarrow k(x, y)$ as well as $k\left(x^{c}, y^{c}\right) \rightarrow k(x, y)$ (with $k_{0}\left(x^{c}, y^{c}\right) \uparrow k_{0}(x, y)$ on the first and third quadrants of the plane around $\left(x_{0}, y_{0}\right)$ and $k_{0}\left(x^{c}, y^{c}\right) \downarrow k_{0}(x, y)$ on the second and fourth quadrants). Assuming k is locally bounded, we clearly have

$$
\mathscr{E} k^{c}(X, Y) \geqq \mathscr{E} k^{c}\left(X^{\prime}, Y^{\prime}\right) \quad \text { and } \quad \mathscr{E} k\left(X^{c}, Y^{c}\right) \geqq \mathscr{E} k\left(X^{\prime c}, Y^{\prime c}\right)
$$

and thus assumption (ii) may be replaced by
(ii)' k is locally bounded and such that as $c \uparrow \infty$, either $\mathscr{E} k^{c}(X, Y) \rightarrow \mathscr{E} k(X, Y)$ and $\mathscr{E} k^{c}\left(X^{\prime}, Y^{\prime}\right) \rightarrow \mathscr{E} k\left(X^{\prime}, Y^{\prime}\right)$ for some x_{0} and y_{0}, or $\mathscr{E} k\left(X^{c}, Y^{c}\right) \rightarrow \mathscr{E} k(X, Y)$ and $\mathscr{E} k\left(X^{\prime c}, Y^{\prime c}\right) \rightarrow \mathscr{E} k\left(X^{\prime}, Y^{\prime}\right)$.

Condition (ii)' is easily seen to be satisfied for several simple k 's, e.g. $x y$, $(x+y)^{2}$, etc.

3. An Application to the Set of Values of $\mathscr{E} k(X, Y)$

In this section we denote by $\mathscr{H}(F, G)$ the class of all joint distribution functions $H(x, y)$ with fixed marginals $F(x)$ and $G(y)$, and by $\mathscr{E}_{H} k(X, Y)$ the expected value when H is the joint distribution function of X and Y. It is well known that $\mathscr{H}(F, G)$ has an upper and lower bound. In fact a distribution function $H(x, y)$ belongs to $\mathscr{H}(F, G)$ if and only if

$$
H_{-}(x, y) \leqq H(x, y) \leqq H_{+}(x, y)
$$

for all x and y, where the distribution functions H_{-}and H_{+}are given by

$$
H_{-}(x, y)=\max \{F(x)+G(y)-1,0\}, \quad H_{+}(x, y)=\min \{F(x), G(y)\}
$$

(see Hoeffding [8] and Fréchet [5]). $\mathscr{H}(F, G)$ is clearly a convex family of distribution functions.

Now let \mathscr{H} be any convex family of bivariate distribution functions. If $H, H^{\prime} \in \mathscr{H}$ are such that $\mathscr{E}_{H} k(X, Y)$ and $\mathscr{E}_{H^{\prime}} k(X, Y)$ exist and are finite then each number in the closed (bounded) interval with endpoints $\mathscr{E}_{H} k(X, Y)$ and $\mathscr{E}_{H^{\prime}} k(X, Y)$ is equal to $\mathscr{E}_{H^{\prime \prime}} k^{\prime}(X, Y)$ for some $H^{\prime \prime} \in \mathscr{H}$. Indeed, if for each $\alpha \in[0,1]$ we define $H_{\alpha}=\alpha H+(1-\alpha) H^{\prime}$, then $H_{\alpha} \in \mathscr{H}$ and the conclusion follows from

$$
\mathscr{E}_{H_{夫}} k(X, Y)=\alpha \mathscr{E}_{H} k(X, Y)+(1-\alpha) \mathscr{E}_{H^{\prime}} k(X, Y)
$$

This conclusion is no longer valid if

$$
-\infty<\mathscr{E}_{H} k(X, Y)<\mathscr{E}_{H^{\prime}} k(X, Y)=+\infty
$$

as is seen by the example $\mathscr{H}=\left\{H_{\alpha}, 0 \leqq \alpha \leqq 1\right\}$. Hence, in general, the set of values of $\mathscr{E}_{H} k(X, Y)$ when H ranges over a convex family of distributions is not necessarily convex; in fact it has one of the following forms $I,\{-\infty\} \cup I, I \cup\{+\infty\}$, $\{-\infty\} \cup I \cup\{+\infty\}$, where I is an interval. (I may be open, semi-open, or closed as well as bounded or unbounded.) We now show in Theorem 2 that if k is quasimonotone and some further assumptions are satisfied, when H ranges over $\mathscr{H}(F, G)$ the set of values of $\mathscr{E}_{H} k(X, Y)$ is closed and convex and its supremum and infimum are determined.

The proof of Theorem 2 rests on the following property which is stated separately since it does not require k to be quasi-monotone.

Lemma. Let X and Y be random variables with distribution functions F and G respectively and joint distribution function H, and let $k(x, y)$ be a Borel measurable, locally bounded function on the plane. If the expectations $\mathscr{E}_{H_{+}} k(X, Y)$ and $\mathscr{E}_{H_{-}} k(X, Y)$ exist and at least one of them is finite, then the (possibly unbounded) closed interval with endpoints $\mathscr{E}_{H_{+}} k(X, Y)$ and $\mathscr{E}_{H_{-}} k(X, Y)$ belongs to the set of values of $\mathscr{E}_{H} k(X, Y)$ when H ranges over $\mathscr{H}(F, G)$.

Proof. According to the discussion preceeding the lemma it suffices to show that if for instance

$$
-\infty<\mathscr{E}_{H_{+}} k(X, Y)<\mathscr{E}_{H_{-}} k(X, Y)=+\infty
$$

there is a sequence $H_{n} \in \mathscr{H}(F, G), n=1,2, \ldots$, such that $\mathscr{E}_{H_{n}} k(X, Y) \rightarrow+\infty$ (all remaining cases can be treated similarly). From the definition of H_{+}and H_{-}we have that under $H_{+},(X, Y) \stackrel{d}{=}\left(F^{-1}(U), G^{-1}(U)\right)$, and under H_{-},

$$
(X, Y) \stackrel{d}{=}\left(F^{-1}(U), G^{-1}(1-U)\right)
$$

where U is a uniform random variable on $(0,1)$ and $F^{-1}(u)=\inf \{t: F(t) \geqq u\}$. Also, by assumption, we have

$$
\mathscr{E}_{H_{-}} k(X, Y)=\mathscr{E} k\left(F^{-1}(U), G^{-1}(1-U)\right)=\int_{0}^{1} k\left(F^{-1}(u), G^{-1}(1-u)\right) d u=+\infty
$$

Now for each $0 \leqq \alpha \leqq \frac{1}{2}$ define $g_{\alpha}(u)$ on $[0,1]$ by

$$
g_{\alpha}(u)= \begin{cases}G^{-1}(1-u) & \text { if } \alpha<u<1-\alpha \\ G^{-1}(u) & \text { if } 0 \leqq u \leqq \alpha \text { or } 1-\alpha \leqq u \leqq 1\end{cases}
$$

and let H_{α} be the distribution function of the pair $\left(F^{-1}(U), G_{\alpha}(U)\right)$. For each x we have

$$
\begin{aligned}
\operatorname{Pr}\left\{g_{\alpha}(U)<x\right\}= & \operatorname{Leb}\{(\alpha, 1-\alpha) \cap(1-G(x), 1]\} \\
& +\operatorname{Leb}\{([0, \alpha] \cup[\alpha-1,1]) \cap[0, G(x))\}=G(x)
\end{aligned}
$$

and thus $H_{\alpha} \in \mathscr{H}(F, G)$. We also have

$$
\begin{aligned}
\mathscr{E}_{H_{\alpha}} k(X, Y) & =\mathscr{E} k\left(F^{-1}(U), g_{\alpha}(U)\right) \\
& =\int_{\alpha}^{1-\alpha} k\left(F^{-1}(u), G^{-1}(1-u)\right) d u+\left(\int_{0}^{\alpha}+\int_{1-\alpha}^{1}\right) k\left(F^{-1}(u), G^{-1}(u)\right) d u .
\end{aligned}
$$

Since for $u \in[\alpha, 1-\alpha], F^{-1}(u)$ and $G^{-1}(1-u)$ are bounded, and since k is locally bounded, it follows that the first integral is finite and

$$
\begin{aligned}
\lim _{\alpha \downarrow 0} \int_{\alpha}^{1-\alpha} k\left(F^{-1}(u), G^{-1}(1-u)\right) d u & =\int_{0}^{1} k\left(F^{-1}(u), G^{-1}(1-u)\right) d u \\
& =\mathscr{E}_{H_{-}} k(X, Y)=+\infty
\end{aligned}
$$

On the other hand, since $\int_{0}^{1}\left|k\left(F^{-1}(u), G^{-1}(u)\right)\right| d u=\mathscr{E}_{H_{+}}|k(X, Y)|<+\infty$, we have

$$
\lim _{\alpha \downarrow 0}\left(\int_{0}^{\alpha}+\int_{1-\alpha}^{1}\right) k\left(F^{-1}(u), G^{-1}(u)\right) d u=0
$$

It follows that $\lim _{\alpha \downarrow 0} \mathscr{E}_{H_{\alpha}} k(X, Y)=+\infty$, and thus the proof is complete.
Theorem 2. Let X and Y be random variables with distribution functions F and G respectively and joint distribution function H, and let $k(x, y)$ be quasi-monotone and right continuous. If the expectations $\mathscr{E}_{H} k(X, Y)$ and $\mathscr{E}_{H_{+}} k(X, Y)$ exist (even if infinite valued), then the set of values of $\mathscr{E}_{H} k(X, Y)$ when H ranges over $\mathscr{H}(F, G)$ is the (possibly unbounded) closed interval $\left[\mathscr{E}_{H_{-}} k(X, Y), \mathscr{E}_{H_{+}} k(X, Y)\right]$ when either of the following is satisfied:
(a) $k(x, y)$ is symmetric and (i) holds (in this case $-\infty \leqq \mathscr{E}_{H_{-}} k(X, Y) \leqq$ $\left.\mathscr{E}_{H_{+}} k(X, Y)<+\infty\right)$,
(b) for some x_{0} and y_{0}, (ii) holds and at least one of $\mathscr{E}_{H_{+}} k(X, Y)$ and $\mathscr{E}_{H_{-}} k(X, Y)$ is finite.

Thus under the assumptions of Theorem 2 the infimum and the supremum of $\mathscr{E}_{H} k(X, Y)$ for $H \in \mathscr{H}(F, G)$ are achieved by H_{-}and H_{+}respectively and they are given by

$$
\begin{aligned}
& \mathscr{E}_{H_{+}} k(X, Y)=\int_{0}^{1} k\left(F^{-1}(u), G^{-1}(u)\right) d u, \\
& \mathscr{E}_{H_{-}} k(X, Y)=\int_{0}^{1} k\left(F^{-1}(u), G^{-1}(1-u)\right) d u .
\end{aligned}
$$

Of course if k is quasi-antitone the infimum is achieved by H_{+}and the supremum by H_{-}.

Proof. (a) It is clear from (3) and (5) that for all $H \in \mathscr{H}(F, G), \mathscr{E}_{H} k(X, Y)$ exists (even if infinite valued) and satisfies

$$
-\infty \leqq \mathscr{E}_{H_{-}} k(X, Y) \leqq \mathscr{E}_{H} k(X, Y) \leqq \mathscr{E}_{H_{+}} k(X, Y)<+\infty
$$

If $\mathscr{E}_{H_{+}} k(X, Y)=-\infty$ then $\mathscr{E}_{H} k(X, Y)=-\infty$ for all $H \in \mathscr{H}(F, G)$. If

$$
-\infty<\mathscr{E}_{H_{+}} k(X, Y)<+\infty
$$

the result follows trivially when $-\infty<\mathscr{E}_{H_{-}} k(X, Y)$, and from the Lemma when $\mathscr{E}_{H_{-}} k(X, Y)=-\infty$.
(b) is shown similarly.

It is clear from the discussion in Section 2 that (i) and (ii) in (a) and (b) can be replaced by (i)' and (ii)' and the result of Theorem 2 remains valid provided H is restricted to range only over those members of $\mathscr{H}(F, G)$ for which (i)' and (ii)' are satisfied (otherwise $\mathscr{E}_{H} k(X, Y)$ may not exist).

It should be clear that the result of Theorem 2 is no longer true when k is not quasi-monotone (or quasi-antitone), i.e. for general k the closed interval with endpoints $\mathscr{E}_{\mathrm{H}_{-}} k(X, Y)$ and $\mathscr{E}_{H_{+}} k(X, Y)$ is a proper subset of the set of values of $\mathscr{E}_{H} k(X, Y)$ when H ranges over $\mathscr{H}(F, G)$. As an example take $k(x, y)=$ $\left(x-\frac{1}{2}\right)^{2}\left(y-\frac{1}{2}\right)^{2}$ and F, G to be the uniform distributions on $(0,1)$. Then under $H_{+}, X=Y$, and under $H_{-}, X=-Y$, and thus $\mathscr{E}_{H_{+}} k(X, Y)=\mathscr{E}_{H_{-}} k(X, Y)=$ $\mathscr{E}\left(X-\frac{1}{2}\right)^{4}=\frac{1}{80}$. On the other hand when $H(x, y)=F(x) G(y)$ we have $\mathscr{E}_{H} k(X, Y)=$ $\left\{\mathscr{E}\left(X-\frac{1}{2}\right)^{2}\right\}^{2}=\frac{1}{144}$.

4. Examples and Discussion

Some simple examples of continuous quasi-monotone and quasi-antitone functions are the following. Quasi-monotone functions: $x y,(x+y)^{2}, \min (x, y), f(x-y)$ where f is concave and continuous. Quasi-antitone functions: $|x-y|^{p}$ for $p \geqq 1$, $\max (x, y), f(x-y)$ where f is convex and continuous.

If $k(x, y)$ is absolutely continuous then $\frac{\partial^{2} k(x, y)}{\partial x \partial y}$ exists a.e. [Leb] and is locally integrable and for all $x \leqq x^{\prime}$ and $y \leqq y^{\prime}$,

$$
\Delta_{\left(x, x^{\prime}\right)}^{\left(y, y^{\prime}\right)} k=\int_{x}^{x^{\prime}} \int_{y}^{y^{\prime}} \frac{\partial^{2} k(u, v)}{\partial u \partial v} d u d v
$$

(see Hobson [7]). Hence when $k(x, y)$ is absolutely continuous, it is quasimonotone if and only if $\partial^{2} k(x, y) / \partial x \partial y \geqq 0$ a.e. Thus starting from any nonnegative locally Lebesgue integrable function one can generate (absolutely continuous) quasi-monotone functions.

An example of a quasi-antitone function which is not necessarily continuous is $k(x, y)=|f(x)-f(y)|$ where f is nondecreasing, say; when f is right continuous so is k.

Of the two properties required of the function $k(x, y)$ quasi-monotonicity is the crucial one in our method, while right continuity can be somewhat weakened. Of course if $k(x, y)$ is left continuous we can get the same results simply by defining μ by

$$
\mu\left\{\left[x, x^{\prime}\right) \times\left[y, y^{\prime}\right)\right\}=\Delta_{\left(x, x^{\prime}\right)}^{\left(y, y^{\prime}\right)} k .
$$

More importantly, if $k(x, y)$ has left and right limits at every point and if its points of discontinuity are located on a countable number of parallels to the axes, then we can obtain the same results provided the points where these parallels cut the axes are not atoms of the marginal distributions F and G (this is of course always
satisfied if F and G have densities). This follows from the fact that we can write $k=k_{1}+k_{2}$ where k_{1} is right continuous and k_{2} equals zero for points not on the countable number of parallels to the axes. Then $\mathscr{E} k_{2}(X, Y)=\int_{R^{2}} k_{2} d H=0$ since every H in $\mathscr{H}(F, G)$ assigns zero measure to every line parallel to the axes cutting the axis at a point which is not an atom of the corresponding marginal. In this connection it is interesting to note that if $k(x, y)$ is quasi-monotone and if for some x_{0} and $y_{0}, k\left(x_{0}, y\right)$ and $k\left(x, y_{0}\right)$ are of bounded variation in y and x respectively then $k(x, y)$ has left and right limits at every point and its points of discontinuity are located on a countable number of parallels to the axes (for the first part see p. 345 of Hobson [7] and for the second p. 722 of Adams and Clarkson [1]).

A function $k(x, y)$ is said to be of bounded variation on a bounded rectangle $[a, b] \times[c, d]$ if for all m, n and points

$$
a=x_{0}<x_{1}<\cdots<x_{m}=b, \quad c=y_{0}<y_{1}<\cdots<y_{n}=d
$$

the sum $\sum_{i=0}^{m-1} \sum_{j=0}^{n-1}\left|\Delta_{\left(\begin{array}{l}\left(x_{i}, x_{i}+1\right)\end{array}\right)}^{\left(x_{i}+1\right)} k\right|$ is bounded. If k is of bounded variation on every bounded rectangle, it is the difference of two quasi-monotone functions (see p. 718 of Adams and Clarkson [1]) and if it is also right continuous it determines by (1) a (unique σ-finite) signed measure μ. Then under the appropriate integrability assumptions the expressions for $\mathscr{E} k(X, Y)$ given by (3) and (5) and by (7) and (9) remain valid. Since μ can now take both positive and negative values the results of Theorems 1 and 2 are no longer valid. However, one can still obtain weaker results some of which we mention briefly.
(i) If the joint distributions H and H^{\prime} of (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ as in Theorem 1 assign full measure to Borel sets which are positive sets of the signed measure μ, then (10) is valid. Of course this means that k is quasi-monotone with respect to H and H^{\prime}, i.e., on sets of full H and H^{\prime} measure rather than on the entire plane. As an example $k(x, y)=|x-y|^{p}, 0<p<1$, is quasi-monotone on the complement of the diagonal of the plane and thus if $\operatorname{Pr}\{X=Y\}=0$ under H and $\operatorname{Pr}\left\{X^{\prime}=Y^{\prime}\right\}=0$ under H^{\prime} (i.e. H and H^{\prime} assign zero probability to the diagonal), (10) is valid. An even simpler case arises when with probability one $X \in A$ and $Y \in B$ where the Borel sets A and B are such that k is quasi-monotone on $A \times B$ (but not necessarily on the entire plane). Then Theorems 1 and 2 remain valid without any further qualifications. As examples, take $k(x, y)=(x+y)^{p}, 1 \leqq p$, and $X \geqq 0, Y \geqq 0$ with probability one, or $k(x, y)=|x-y|^{p}, 0<p<1$, and $X \leqq a<b \leqq Y$ with probability one.
(ii) If $\mu=\mu_{1}-\mu_{2}$ is the Jordan decomposition of the signed measure μ as a difference of two nonnegative measures μ_{1} and μ_{2}, under appropriate integrability conditions, one can get upper and lower bounds for $\mathscr{E}_{H} k(X, Y), H \in \mathscr{H}(F, G)$, like those in Theorem 2. For instance for k symmetric (under appropriate integrability conditions) we have that for all H in $\mathscr{H}(F, G)$,

$$
\begin{aligned}
\int_{R^{2}} A_{+} d \mu_{2}-\int_{R^{2}} A_{-} d \mu_{1} & \leqq 2 \mathscr{E} k(X, Y)-\mathscr{E} k(X, X)-\mathscr{E} k(Y, Y) \\
& \leqq \int_{R^{2}} A_{-} d \mu_{2}-\int_{R^{2}} A_{+} d \mu_{1}
\end{aligned}
$$

where A_{+}, A_{-}are given by (3) with H replaced by H_{+}, H_{-}respectively. However, these upper and lower bounds are not achieved by some H 's in $\mathscr{H}(F, G)$ and more
important they are not the least upper bound and the greatest lower bound (whose calculations elude us).

5. Discussion of the Literature

We conclude with a few comments on the literature. For $k(x, y)=|x-y|^{p}$ the expression of $\mathscr{E} k(X, Y)$ given by (3) and (5) has been obtained for $p=2$ by Hoeffding [8] (see also p. 1139 of Lehmann [9]) and by Bártfai [2], for $p=1$ by Vallender [14], and for any $p \geqq 1$ by Dall'Aglio [3] (see also Dall'Aglio [4]). For $k(x, y)=x y$ the bounds of Theorem 2 are given on p. 278 of Hardy, Littlewood and Pólya [6] by the method of rearrangements. This work was done independently of Tchen [13] where the inequality of Theorem 1 is derived for continuous and bounded quasi-monotone functions.

References

1. Adams, C. R., Clarkson, J.A.: Properties of functions $f(x, y)$ of bounded variation. Trans. Amer. Math. Soc. 36, 711-730 (1934)
2. Bártfai, P.: Über die Entfernung der Irrfahrtswege. Studia Sci. Math. Hungar. 5, 41-49 (1970)
3. Dall'Aglio, G.: Sugli estremi dei momenti delle funzioni di ripartizione doppia. Ann. Sci. École Norm. Sup. 10, 35-74 (1956)
4. Dall'Aglio, G.: Fréchet classes and compatibility of distribution functions. Symposia Mathematica 9, 131-150. New York: Academic Press 1972
5. Fréchet, M.: Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon, Sect. A, Sér. 3, 14, 53-77 (1951)
6. Hardy, G. H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge: Cambridge Univ. Press 1952
7. Hobson, E. W.: The Theory of Functions of a Real Variable and the Theory of Fourier's Series. Washington: Harren Press 1950
8. Hoeffding, W.: Maßstabvariante Korrelationstheorie. Schr. Math. Inst. Univ. Berlin 5, 181-233 (1940)
9. Lehmann, E. L.: Some concepts of dependence. Ann. Math. Statist. 37, 1137-1153 (1966)
10. Neumann, J. v.: Functional Operators. Volume I: Measures and Integrals. Princeton: Princeton Univ. Press 1950
11. Pledger, G., Proschan, F.: Stochastic comparisons of random processes, with applications in reliability. I. Appl. Probability 10, 572-585 (1973)
12. Skorokhod, A. V.: Limit theorems for stochastic processes. Theor. Probability Appl. 1, 261-290 (1965)
13. Tchen, A.H.T.: Exact inequalities for $\int \phi(x, y) d H(x, y)$ when H has given marginals. Manuscript (1975)
14. Vallender, S.S.: Calculation of the Wasserstein distance between probability distributions on the line. Theor. Probability Appl. 18, 784-786 (1973)
15. Veinott, A.F., Jr.: Oprimal policy in a dynamic, single product, nonstationary inventory model with several demand classes. Operations Res. 13, 761-778 (1965)

[^0]: * Research supported by the Air Force Office of Scientific Research under Grant AFOSR-75-2796
 ** Research supported by the National Science Foundation

