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When k(x, y) is a quasi-monotone function and the random variables X and Y
have fixed distributions, it is shown under some further mild conditions that
&k(X,Y) is a monotone functional of the joint distribution function of X and Y.
Its infimum and supremum are both attained and correspond to explicitly de-
scribed joint distribution functions.

1. Introduction

It is well known that if X and X’ are random variables, if X is stochastically
smaller than X’ and if k(x) is a monotone function then k(X) is stochastically
smaller than k(X') and

Fk(X)=Ek(X),

and the ordering is reversed when k(x) is an antitone function (see for instance
p. 159 of Hardy, Littlewood and Pélya [6] and p. 179 of Veinott [15]). We say
that X is stochastically smaller than X, and write X < X", if Pr{X <x} > Pr{X’'<x}
for all x. Also k(x) is called monotone (resp. antitone) if k(x)<k(x') (resp. k(x)=
k(x") for all x<x'.

We are interested here in a two-dimensional analog of this result. For pairs
of random variables (X, Y) and (X', Y’) we say that (X, Y) is stochastically smaller
than (X', ), and we write (X, Y)=(X', Y"), if

Pr{X<x, Y<y}=2Pr{X' <x, Y <y}

for every x and y. It is easy to see that the condition (X, Y)<=(X’, Y') alone does
not imply

EK(X,Y)SEK(X,Y) (1)
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for monotone functions k(x,y) of two variables. A simple counter example is
given by Veinott [15]. He goes on to show that (1) holds for monotone functions
if certain additional conditions, involving the conditional distributions of Y
given X =x and of Y’ given X'=x', are imposed. (In fact this result is n-dimen-
sional, n=2. For a slightly weaker set of conditions see Pledger and Proschan
[117) Here we are not concerned with monotone functions k(x,y) but with
quasi-monotone functions, which are analogs to monotone functions of one
variable as well. The class of quasi-monotone (and quasi-antitone) functions
contains many important functions which are not monotone (nor antitone).
Many examples are given in Section 4. Just as the condition (X, V)= (X", Y") is
insufficient to guarantee (1) or its reverse for monotone functions k(x, y), it is
insufficient for quasi-monotone functions as well. The major additional require-
ment we impose is that the corresponding marginal distributions of (X, Y) and
(X', Y') are the same. This requirement, while strong, is both natural and necessary.

2. The Main Result

Consider the random variables X and Y defined on a probability space (Q, #, P)
and let F(x) and G(y) be their distribution functions réspectively and H(x, y)
their joint distribution function. In studying the dependence of £k(X,Y) on H
it would be useful to have an appropriate expression, other than its definition
ijk(x, y)dH(x, y), and this is now done when k is quasi-monotone (or quasi-
antitone). In order to produce slightly simpler expressions we assume all distribu-
tion functions to be left continuous.
A function k(x, y) is called quasi-monotone if for all x<x" and y<y'

AL k=k(x, )+ k(X y)—k(x, ) —k(x', )20,

and quasi-antitone if 4% %) k<0, ie. if —k is quasi-monotone. If k is quasi-
monotone and right continuous then it determines uniquely a (o-finite, non-
negative) measure u on the Borel subsets %2 of the plane R? such that for all

xZx and y=V,

p{le, xTx (v, y 1} = AR XAk, @

(see p. 167 of von Neumann [10]). An interchange of the order of integration in
an appropriate double integral gives then the desired expression for £k(X, Y).

Let us first illustrate the method in a particular case and then proceed to the
general case. Let k(x, y) be symmetric, right continuous and quasi-monotone.
Define the function f(x, y, ) by

1 if X(w)<x,y=Y(w) or Y(w)<x,y=<X(w)
0  otherwise.

fxy, w)={

Then f is clearly a measurable function on (R? x Q, #* x %, ux P) and since it
is nonnegative we have by Fubini’s theorem

& fpo fdu=l: & fdp.
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But clearly
fr2 fdp=k(X, X)+k(Y, Y)-2k(X, Y),
Ef=P{X<xay, YZxvy}+P{X=Zxvy, Y<xAy}
=F(xAP+GxAY)—Hxvy,xAy)~HXAY,XVY)

= A(X, y)r say, (3)
and thus
E(X. X)+h(Y, ¥)—2k(X, Y)} = e Adp. @)

If the expected values £k(X, X) and &k(Y, Y) are finite we obtain the desired
expression

26K(X, Y)=Ek(X, X)+E(Y, Y)— [r2 Adp. (5)

Now if the marginal distributions F and G are fixed, £ k(X, Y) depends on H only
through A, and since p is a nonnegative measure, increasing H will result in
increasing €k(X, Y); in other words &k(X, Y) is a monotone functional of H.
(And it is clearly an antitone functional of H when k is an antitone function.)

The general case of a quasi-monotone, right continuous function k(x,y)
requires a different choice of f, but the idea is of course the same. The appropriate
function f(x, y, w) is now defined by

+1  if xp<x=2X(w), yo<y=Y(w)
or X(w)<x=xy, Y(@)<y=yq
fleyo)=y—1 if X(w)<x=xo, yo<y=Y(w)
or xo<xsX(w), Y(@)<y=yo
0  otherwise

where x, and y, are (appropriate) fixed real numbers. Again f is 4> x #-measur-
able. If £+ and f~ are the positive and negative parts of f, then by Fubini’s
theorem we have

£ fre f * du={ra 61 * dp.
Proceeding as before, and introducing

ko (x, y)=k(x, y)—k(x, yo) —k(xo, ¥)+ k(X0 Vo) ()
we obtain

Sk (X, Y)=[r2B*du and &kg(X,Y)=[pB dp,
where kg and k; are the positive and negative parts of k,, and

1+H(x, ))—F(x)=G(y) if xo<x, yo<y

B+(X:J’):<g)f?: H(X.y) lf xng, Y§J/o
0 otherwise )
F(X)—H(X-J’) lf xéxos y0<y

B~ (x,y)=&f~={G(y)-H(x, ) if xp<x, y=yo

0 otherwise.
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If Z* and Z~ are the positive and negative parts of a random variable Z, using
the standard terminology, we say that its expectation &Z exists (even if infinite
valued) if at least one of £Z7 and £Z~ is finite, and then &Z is defined by
EZ*T—&Z . Thus, if the expectation &ky(X, Y) exists (even if infinite valued)
we have

Eko(X, V)= [radp (®)

where B=B* —~B~. By (6), this is guaranteed if £k(X, Y) exists (even if infinite
valued) and & k(X y,), € k(x,, Y) are finite, in which case we have

EkX, V)=Ek(X, yo)+Ek(xq, Y)—k(xg, yo)+ - Bdp. )

Hence for fixed F and G, £k(X, Y) depends on H only through B and thus it is
a monotone functional of H (antitone when k is antitone).

. . d .
Let us now summarize our results. We write X = X’ when the random variables
X and X’ have the same distributions.

Theorem 1. Let X iX NY Z Y and (X, Y)= (X', Y'). If k(x, y) is a quasi-monotone,
right continuous function then
Ek(X,Y)=28k(X',Y) - (10

when the expectations in (10) exist (even if infinite valued) and either of the fol-
lowing is satisfied:
(1) k(x,y) is symmetric and the expectations &k(X, X) and k(Y, Y) are finite,
(ii) the expectations &k(X,y,) and Ek(xy, Y) are finite for some x, and y,.

Of course the reverse inequality in (10) holds if k is quasi-antitone. It should
be noted that the expression in the general case, given by (9) and (7), is greatly
simplified when k is a multiple of a distribution function by taking the reference
points xg, y, at —co. However, in most interesting examples k is not a multiple
of a distribution function (in fact u is not even finite).

It should be remarked that (X, V)= (X', Y’) and k quasi-monotone do not
necessarily imply that k(X, Y)=>k(X', Y"), from which {10) would follow trivially.
This is seen by the following example. Let (X, Y)i(B, B) and (X', Y’)i(B, B)
where B, B’ are independent Bernoulli random variables each with mean 3, and
let k(x,y)=(x+y)* (quasi-monotone). It is easily seen that (X, Y)c=(X",Y"),
Ek(X,Y)=2>15=8k(X", Y') and that neither k(X, Y)2k(X', Y) nor k(X,Y)<
k(X', Y) is true.

The result as stated in Theorem 1 is not in its weakest form. It may be that
inequality (10) holds assuming only that the expectations in (10) exist (even if
infinite valued); however, at present, we can neither prove nor disprove this
statement. Instead we offer the following remarks. When k is symmetric, intro-
ducing

ks(x9 )’)zk(xa X)+k(y, y)—'2k(xa y};oa

we have
2k (x, y)=k(x, x)+k(y, y) —ky(x, y)
=k+(X, X)+k+(y, y)_k_(xa X)—-k_(y, y)'_ks(xa y)
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and from (3) and (4),
026k (X, Y)SEk (X, Y)E + 0.
It then follows that assumption (i) may be weakened to

() k(x,y) is symmetric and either the expectations k™ (X, X) and £k (Y, Y)
are finite, or the expectations £k~ (X, X), 8k~ (Y, Y), and £k (X, Y) are finite.

Similarly condition (ii) for general k may be omitted whenever an appropriate
truncation argument can be applied. At present we do not have a truncation
argument to eliminate (ii) altogether. However the following truncation argu-
ments clearly work for some specific k’s mentioned in Section 4. It is clear that
if all random variables X, Y, X', Y’ are bounded and if k is locally bounded than
(ii) is satisfied. Now for a function f(x) and ¢>0, define f*(x)=—c if f(x)< —c,
=f(x) if —c=f(x)Lc, =c if ¢< f(x). Notice that from (6) we have k(x, y)=
fo(x, y)+f(x)+g(y) where f(x)=k(x, o) and g(y)=k(xo, y)—k(xo, yo). For ¢>0
et

ke (x, y)=ko (X, y)+ “(x) +&°(¥).-

Then as cloo we have k°(x,y)—k(x,y) as well as k(xS y)—>k(x,y) (with
ko (x5, ¥)Tko(x, ) on the first and third quadrants of the plane around (x,, y,)
and ko (x°, y°) | ko (x, y) on the second and fourth quadrants). Assuming k is locally
bounded, we clearly have

Ek(X,Y)ZEk(X,Y) and k(X Y)=ZEk(X' YY)
and thus assumption (ii) may be replaced by

(ii)" k is locally bounded and such that as c1 oo, either §k°(X,Y)—->Ek(X,Y)
and kX', Y) > (X', Y') for some x, and y,, or Ek(X, Y)>Ek(X,Y) and
Ek(X',Y)-Ek(X, Y.

Condition (ii) is easily seen to be satisfied for several simple k’s, e.g. xy,
(x+y)?, etc.

3. An Application to the Set of Values of £k(X, Y)

In this section we denote by #(F, G) the class of all joint distribution functions
H(x, y) with fixed marginals F(x) and G(y), and by &y k(X, Y) the expected value
when H is the joint distribution function of X and Y. It is well known that #(F, G)
has an upper and lower bound. In fact a distribution function H(x, y) belongs to
H(F, G) if and only if

H (x,y))=H(x, y)SH, (x,y)

for all x and y, where the distribution functions H_ and H, are given by
H_(x,y)=max{F(x)+G(y)—1,0}, H, (x,y)=min {F(x), G(y)}

(see Hoeffding [8] and Fréchet [5]). #(F, G) is clearly a convex family of distri-
bution functions.
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Now let 2 be any convex family of bivariate distribution functions. If
H,H'es# are such that &yk(X, Y) and &g k(X, Y) exist and are finite then each
number in the closed (bounded) interval with endpoints 6z k(X, Y) and &5 k(X, Y)
is equal to & K(X,Y) for some H"e#. Indeed, if for each ae[0, 1] we define
H,=oH+(l—a)H', then H,e# and the conclusion follows from

Ey (X, Y)=aégk(X, Y)+(1—0) & k(X, Y).
This conclusion is no longer valid if
— 0 <Egk(X, Y)<Egk(X,Y)=+w

as is seen by the example 5 = {H,, 0<a=<1}. Hence, in general, the set of values
of &y k(X, Y) when H ranges over a convex family of distributions is not neces-
sarily convex; in fact it has one of the following forms I, {—oo}ul, U {+ w0},
{—o0}ulu{+ w0}, where I is an interval. (I may be open, semi-open, or closed
as well as bounded or unbounded.) We now show in Theorem 2 that if k is quasi-
monotone and some further assumptions are satisfied, when H ranges over
H (F, G) the set of values of &zk(X, Y) is closed and convex and its supremum
and infimum are determined.

The proof of Theorem 2 rests on the following property which is stated
separately since it does not require k to be quasi-monotone.

Lemma. Let X and Y be random variables with distribution functions F and G
respectively and joint distribution function H, and let k(x, y) be a Borel measurable,
locally bounded function on the plane. If the expectations &y k(X,Y) and
Ey_k(X,Y) exist and at least one of them is finite, then the (possibly unbounded)
closed interval with endpoints &y, k(X,Y) and &;_k(X, Y) belongs to the set of
values of Exk(X,Y) when H ranges over #(F, G).

Proof. According to the discussion preceeding the lemma it suffices to show that
if for instance

— <&y, k(X, Y)<& k(X,Y)=+o0

there is a sequence H,e#(F,G), n=1,2,..., such that &y k(X, Y)— +oo (all
remaining cases can be treated similarly). From the definition of H, and H_ we

have that under H, , (X, Y)-i-(F‘1 (U), G"*(U)), and under H_,
(X, )=(F ' (U), 6™ (1~ V),

where U is a uniform random variable on (0,1) and F~1(u)=inf{t: F(t)=u}.
Also, by assumption, we have

S k(X,Y)=EK(F(U), G+ (1~ UY=L k(F ' (W), G~ (1 —w) du= + 0.
Now for each 0<a <1 define g,(u) on [0, 1] by

{671 —w) i a<u<l-a
8(1)= G (u) if 0Su<a or 1—asugl,
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and let H, be the distribution function of the pair (F ' (U), G,(U)). For each x
we have

Pr{g, (U)<x}=Leb{(o, L —)n(1 -G (x), 11}
+Leb {([0, 0] U [ —1, 1))~ [0, G(x))} =G (x)
and thus H,e # (F, G). We also have
S k(X, V)=Ek(F 1 (U), g,(U))
= k(F ), G A —w)du+(+ ] Dk(F " (), G (W) du.

Since for uelo, 1 —a], F~1(u) and G (1 —u) are bounded, and since k is locally
bounded, it follows that the first integral is finite and

laiflol Bk(F ), G (1 —w)du= [ k(F " (), G (1 —u)du
=&y _k(X, Y)=+o0.
On the other hand, since [§ |k(F~" (), G ()| du= &y, |k(X, Y)|< + o0, we have
lg%(jgﬂf_u)k(F*l(u), G~ (W) du=0.
It follows that L%l &y k(X, Y)=+ 0, and thus the proof is complete.

Theorem 2. Let X and Y be random variables with distribution functions F and G
respectively and joint distribution function H, and let k(x, y) be quasi-monotone and
right continuous. If the expectations &y _k(X,Y) and &y k(X,Y) exist (even if
infinite valued ), then the set of values of Exk(X,Y) when H ranges over #(F, G)
is the ( possibly unbounded) closed interval [6y_k(X,Y), &g, k(X, Y)] when either
of the following is satisfied:

(@) k(x,y) is symmetric and (1) holds (in this case —ow0=&yx_ k(X,Y)=
. k(X,Y)< +0),

(b) for some x4 and y,, (i1) holds and at least one of &y k(X,Y)and &y _k(X,Y)
is finite.

Thus under the assumptions of Theorem 2 the infimum and the supremum
of &y k(X,Y) for He# (F, G) are achieved by H_ and H, respectively and they
are given by

Eu k(X Y)=[3 k(F " (u), G (w)du,
G k(X V)= k(F~"(u), G~ (1 —u)) du.

Of course if k is quasi-antitone the infimum is achieved by H, and the supremum
by H_.

Proof. (a) It is clear from (3) and (5) that for all He ' (F, G), £xk(X, Y) exists
(even if infinite valued) and satisfies

—0=8y k(X Y)ZS8uk(X, V)Z8y, k(X, Y)< + 0.
If &, k(X,Y)= —oo then &, k(X, Y)=—oco for all He #'(F, G). If
—o <&y, k(X,Y)<+®
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the result follows trivially when — oo <&y _k(X, Y), and from the Lemma when
C &y _k(X,Y)=— 0.
(b) is shown similarly.

It s clear from the discussion in Section 2 that (i) and (ii) in (a) and (b) can be
replaced by (i) and (ii) and the result of Theorem 2 remains valid provided H
is restricted to range only over those members of # (F, G) for which (i) and (i)
are satisfied (otherwise &5 k(X, Y) may not exist).

It should be clear that the result of Theorem 2 is no longer true when k is not
quasi-monotone (or quasi-antitone), i.e. for general k the closed interval with
endpoints &y k(X,Y) and &y, k(X,Y) is a proper subset of the set of values
of &gk(X,Y) when H ranges over #(F,G). As an example take k(x,y)=
(x—H*(y—1)? and F,G to be the uniform distributions on (0, 1). Then under
H,, X=Y, and under H_, X=-Y, and thus &y k(X,Y)=6y k(X,Y)=
E(X -1 =45. On the other hand when H(x, y)=F(x) G(y) we have &zk(X,Y)=
{¢X 2)2}2 = 144

4. Examples and Discussion

Some simple examples of continuous quasi-monotone and quasi-antitone func-
tions are the following. Quasi-monotone functions: x y, (x4 y)?, min (x, ), f (x —y)
where f i1s concave and continuous. Quasi-antitone functions: |x—y}? for p=1,
max (x, y), f(x—y) where f is convex and continuous.
0%k (x, )

= exists a.e. [Leb] and is
O0x 0y

If k(x,y) is absolutely continuous then
locally integrable and for all x<x" and y<V/,

&2 k(u v)
AL k= ——=

(see Hobson [7]). Hence when k(x,y) is absolutely continuous, it is quasi-
monotone if and only if ¢%*k(x,y)/dxdy=0 a.e. Thus starting from any non-
negative locally Lebesgue integrable function one can generate (absolutely con-
tinuous) quasi-monotone functions.

An example of a quasi-antitone function which is not necessarily continuous
is k(x, y)=|f(x)—f(y)| where f is nondecreasing, say; when f is right continuous
so is k.

Of the two properties required of the function k(x, y) quasi-monotonicity is
the crucial one in our method, while right continuity can be somewhat weakened.
Of course if k(x, y) is left continuous we can get the same results simply by defin-

ing pu by
p{lx, x)x [y, y)} =A% k.

More importantly, if k(x, y) has left and right limits at every point and if its points
of discontinuity are located on a countable number of parallels to the axes, then
we can obtain the same results provided the points where these parallels cut the
axes are not atoms of the marginal distributions F and G (this is of course always

udv
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satisfied if F and G have densities). This follows from the fact that we can write
k=k, +k, where k; is right continuous and k, equals zero for points not on the
countable number of parallels to the axes. Then &k, (X, Y)=[z.k, dH=0 since
every H in # (F, G) assigns zero measure to every line parallel to the axes cutting
the axis at a point which is not an atom of the corresponding marginal. In this
connection it is interesting to note that if k(x, y) is quasi-monotone and if for
some x, and y,, k(x,,y) and k(x, y,) are of bounded variation in y and x re-
spectively then k(x, y) has left and right limits at every point and its points of
discontinuity are located on a countable number of parallels to the axes (for the
first part see p. 345 of Hobson [ 7] and for the second p. 722 of Adams and Clarkson
[1]). ‘

A function k(x, y) is said to be of bounded variation on a bounded rectangle
[a,b]x[c, d] if for all m,n and points

A=Xg <Xy < <X,=b, c=yo<y,<---<y,=d

the sum Y75 Y25 1A% % k| is bounded. If k is of bounded variation on every
bounded rectangle, it is the difference of two quasi-monotone functions (see
p- 718 of Adams and Clarkson [1]) and if it is also right continuous it determines
by (1) a (unique o-finite) signed measure y. Then under the appropriate inte-
grability assumptions the expressions for £k (X, Y) given by (3) and (5) and by
(7) and (9) remain valid. Since u can now take both positive and negative values
the results of Theorems | and 2 are no longer valid. However, one can still obtain
weaker results some of which we mention briefly.

(i) If the joint distributions H and H’' of (X, Y) and (X', Y’) as in Theorem 1
assign full measure to Borel sets which are positive sets of the signed measure u,
then (10) is valid. Of course this means that k is quasi-monotone with respect
to H and H', i.e., on sets of full H and H' measure rather than on the entire plane.
As an example k(x, y)=|x—yl?, 0<p<1, is quasi-monotone on the complement
of the diagonal of the plane and thus if Pr {X = Y} =0 under Hand Pr {X'=Y'} =0
under H' (i.e. H and H’ assign zero probability to the diagonal), (10) is valid. An
even simpler case arises when with probability one XeA and YeB where the
Borel sets A and B are such that k is quasi-monotone on 4 x B (but not necessarily
on the entire plane). Then Theorems 1 and 2 remain valid without any further
qualifications. As examples, take k(x, y)=(x+y)?, 1<p, and X=0, Y=>0 with
probability one, or k(x, y)=|x—y|?, 0<p<1, and X <a<b<Y with probability
one.

(i) If u=p, —p, is the Jordan decomposition of the signed measure Hasa
difference of two nonnegative measures g, and p,, under appropriate integrability
conditions, one can get upper and lower bounds for &,k(X,Y), H eH(F,G),
like those in Theorem 2. For instance for k symmetric (under appropriate inte-
grability conditions) we have that for all H in #(F, G),

frr Ay dpy—fro A_dpy S26K(X, V)= Ek(X, X)—EK(Y, Y)
_—<_ij A_dp, _fRz A duw

where A, A_ are given by (3) with H replaced by H_ , H _ respectively. However,
these upper and lower bounds are not achieved by some H’s in #(F, G) and more
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important they are not the least upper bound and the greatest lower bound
(whose calculations elude us).

5. Discussion of the Literature

We conclude with a few comments on the literature. For k(x, y)=|x—y|? the
expression of € k(X, Y) given by (3) and (5) has been obtained for p=2 by Hoeffding
[8] (see also p.1139 of Lehmann [9]) and by Bartfai [2], for p=1 by Vallender
[14], and for any p=1 by Dall’Aglio [3] (see also Dall’Aglio [4]). For k(x, y)=xy
the bounds of Theorem 2 are given on p. 278 of Hardy, Littlewood and Pélya [6]
by the method of rearrangements. This work was done independently of Tchen
[13] where the inequality of Theorem 1 is derived for continuous and bounded
quasi-monotone functions.
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