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When k(x, y) is a quasi-monotone function and the random variables X and Y 
have fixed distributions, it is shown under some further mild conditions that 
gk(X, Y) is a monotone functional of the joint distribution function of X and Y. 
Its infimum and supremum are both attained and correspond to explicitly de- 
scribed joint distribution functions. 

1. Introduction 

It is well known that if X and X' are random variables, if X is stochastically 
smaller than X' and if k(x) is a monotone function then k(X) is stochastically 
smaller than k (X') and 

< ~k(x)=~k(X), 

and the ordering is reversed when k (x) is an antitone function (see for instance 
p. 159 of Hardy, Littlewood and P61ya [6] and p. 179 of Veinott [15]). We say 
that X is stochastically smaller than X', and write X c X', if Pr {X < x} > Pr {X' < x} 
for all x. Also k(x) is called monotone (resp. antitone) if k(x)<k(x') (resp. k(x)> 
k (x')) for all x < x'. 

We are interested here in a two-dimensional analog of this result. For pairs 
of random variables (X, Y) and (X', Y') we say that (X, Y) is stochastically smaller 
than (X', Y'), and we write (X, Y)c (X', Y'), if 

Pr {X<x,  Y< y} >= Pr {X' <x, Y' < y} 

for every x and y. It is easy to see that the condition (X, Y)c (X', Y') alone does 
not imply 

Ek(X, Y)<~k(X', ~") (1) 
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for monotone functions k(x, y) of two variables. A simple counter example is 
given by Veinott [151. He goes on to show that (1) holds for monotone functions 
if certain additional conditions, involving the conditional distributions of Y 
given X = x and of Y' given X ' =  ' x ,  are imposed. (In fact this result is n-dimen- 
sional, n > 2. For a slightly weaker set of conditions see Pledger and Proschan 
[111.) Here we are not concerned with monotone functions k(x,y) but with 
quasi-monotone functions, which are analogs to monotone functions of one 
variable as well. The class of quasi-monotone (and quasi-antitone) functions 
contains many important functions which are not monotone (nor antitone). 
Many examples are given in Section 4. Just as the condition (X, Y)c  (X', Y') is 
insufficient to guarantee (1) or its reverse for monotone functions k(x, y), it is 
insufficient for quasi-monotone functions as well. The major additional require- 
ment we impose is that the corresponding marginal distributions of (X, Y) and 
(X', Y') are the same. This requirement, while strong, is both natural and necessary. 

2. The Main Result 

Consider the random variables X and Y defined on a probability space (f2, Y, P) 
and let F(x) and G(y) be their distribution functions respectively and H(x, y) 
their joint distribution function. In studying the dependence of gk(X, Y) on H 
it would be useful to have an appropriate expression, other than its definition 
~R2k(x,y)dH(x,y), and this is now done when k is quasi-monotone (or quasi- 
antitone). In order to produce slightly simpler expressions we assume all distribu- 
tion functions to be left continuous. 

A function k (x, y) is called quasi-monotone if for all x __< x' and y < y' 

A l'x; ''~ . . . .  - x,~k=k(x, y) + k(x, y ) -k (x ,  y ) - k  (x', y)_>0, 

and quasi-antitone if A(Y,Y')k<~O, i.e. if --k is quasi-monotone. If k is quasi- Z a ( x ,  x ' )  - -  

monotone and right continuous then it determines uniquely a (a-finite, non- 
negative) measure # on the Borel subsets N2 of the plane R 2 such that for all 
x<x' and y<y', 

_ (y ,  y ' )  #{(x, x'3 • (y, y 3} -A~x, x,~k, (2) 

(see p. 167 of von Neumann [101). An interchange of the order of integration in 
an appropriate double integral gives then the desired expression for ~k(X, Y). 

Let us first illustrate the method in a particular case and then proceed to the 
general case. Let k(x, y) be symmetric, right continuous and quasi-monotone. 
Define the function f(x, y, o) by 

f~ if X(o)<x,y<Y(e))or Y(~)<x,y<X(o~) 
f(x, y, co)= otherwise. k v 

Then f is clearly a measurable function on (R 2 x f2, N2 • i f ,  # x P) and since it 
is nonnegative w e have by Fubini's theorem 

~R2fd#=SR2 o~fd#. 
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But clearly 

~R2fd#=k(X, X)+k(Y, Y)-2k(X, Y), 

o~f =P{X <xA y, Y > x v  y}+P{X>xvy,  Y<xA y} 

= F ( x / x  y) + G(x  A y) - H (x v y, x A y) - H ( x / x  y, x v y) 

=A(x,y), say, (3) 

and thus 

g{k(X, X)+k(Y, Y)-2k(X, Y)}=~.2Ad#. (4) 

If the expected values o~k(X, X) and 6~k (ii.. Y) are finite we obtain the desired 
expression 

2Ck(X, Y)=Ek(X, X ) + 4 k ( E  Y)--SR~Ad#. (5) 

Now if the marginal distributions F and G are fixed, d k (X, Y) depends on H only 
through A, and since # is a nonnegative measure, increasing H will result in 
increasing ~k(X, Y); in other words 4k(X, Y) is a monotone functional of H. 
(And it is clearly an antitone functional of H when k is an antitone function.) 

The general case of a quasi-monotone, right continuous function k(x,y) 
requires a different choice of f ,  but the idea is of course the same. The appropriate 
function f(x, y, co) is now defined by 

+1 if Xo<X<X(co),yo<y<Y(co ) 
or X(co)<X<Xo, Y(co)<Y<Yo 

f(x,y, co)= - 1  if X(co)<X<Xo, yo<y<Y(co) 
or xo<x<X(co), g(co)<Y<Yo 

0 otherwise 
where xo and Y0 are (appropriate) fixed real numbers. Again f is ~2 x W-measur- 
able. If f + and f -  are the positive and negative parts of f ,  then by Fubini's 
theorem we have 

f yR2 f++- dfl=SRzE f+ d#. 

Proceeding as before, and introducing 

ko (x, y) = k (x, y) - k (x, Yo) - k (Xo, y) + k (Xo, Yo), (6) 

we obtain 

Nk~(X,Y)=~R~B+d# and Nko(X,Y)=~R~B-d#, 

where k~- and k o are the positive and negative parts of ko, and 

[l+H(x,y)-F(x)-G(y) if Xo<X, yo<y 
B + (x, y ) = ~ f  + --~ H(x, y) if X<Xo, y< Yo 

t o otherwise 
(7) 

[F(x)-H(x, y) if X<Xo, Yo <Y 
B-(x, y)=o~ f - =~ G(y)- H(x, y) if xo <x, Y< Yo 

I o otherwise. 
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If Z + and Z -  are the positive and negative parts of a random variable Z, using 
the standard terminology, we say that its expectation g Z  exists (even if infinite 
valued) if at least one of g Z  + and •Z-  is finite, and then g Z  is defined by 
g Z  + -o~Z -. Thus, if the expectation g ko(X, Y) exists (even if infinite valued) 
we have 

Oko (X, r ) =  ~2 d~ (8) 

where B = B + - B - .  By (6), this is guaranteed if g k (X, Y) exists (even if infinite 
valued) and gk(X,  Yo), gk(x0,  Y) are finite, in which case we have 

gk(X,  Y)= gk(X,  yo)+gk(xo, Y ) -  k(xo, Yo)+ ~,2 B d#. (9) 

Hence for fixed F and G, gk(X,  Y) depends on H only through B and thus it is 
a monotone functional of H (antitone when k is antitone). 

d 
Let us now summarize our results. We write X = X' when the random variables 

X and X' have the same distributions. 
d d 

Theorem 1. Let X = X', Y = Y' and (X, Y) ~- (X', Y'). I f  k (x, y) is a quasi-monotone, 
right continuous function then 

gk(X,  Y)>o~k(X ', Y') (10) 

when the expectations in (10) exist (even if infinite valued) and either of the fol- 
lowing is satisfied: 

(i) k(x, y) is symmetric and the expectations C k(X, X) and d k(Y, Y) are finite, 
(ii) the expectations Ck(X, Yo) and Ck(x o, Y) are finite for some Xo and Yo. 

Of course the reverse inequality in (10) holds if k is quasi-antitone. It should 
be noted that the expression in the general case, given by (9) and (7), is greatly 
simplified when k is a multiple of a distribution function by taking the reference 
points Xo, Y0 at - o o .  However, in most interesting examples k is not a multiple 
of a distribution function (in fact # is not even finite). 

It should be remarked that (X, Y)c(X' ,  Y') and k quasi-monotone do not 
necessarily imply that k(X, Y)~k(X' ,  Y'), from which (10) would follow trivially. 

d d 
This is seen by the following example. Let (X, Y)=(B, B) and (X', Y')= (B, B') 
where B, B' are independent Bernoulli random variables each with mean �89 and 
let k(x,y)=(x+y) a (quasi-monotone). St is easily seen that (X, Y)c(X' ,Y') ,  
Ck(X, Y ) = 2 >  1 .5=gk(X' ,  Y') and that neither k(X, Y)Dk(X', Y') nor k(X, Y)~ 
k(X', Y) is true. 

The result as stated in Theorem I is not in its weakest form. It may be that 
inequality (10) holds assuming only that the expectations in (10) exist (even if 
infinite valued); however, at present, we can neither prove nor disprove this 
statement. Instead we offer the following remarks. When k is symmetric, intro- 
ducing 

ks(x, y)=k(x, x)+ k(y, y ) - 2 k ( x ,  y)>O, 

we have 

2k(x, y)=k(x, x)+ k(y, y)-ks(x, y) 

= k + (x, x)  + k + (y, y) - k -  (x, x)  - k -  (y, y) - Q (x, y) 
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and from (3) and (4), 

O<Eks(X, g)<=Eks(X', Y')< + oo. 

It then follows that assumption (i) may be weakened to 

(i)' k(x, y) is symmetric and either the expectations ~ k + (X, X) and o~k + (Y, Y) 
are finite, or the expectations Ck- (X ,  X), Ck-(Y,  Y), and Cks(X, Y) are finite. 

Similarly condition (ii) for general k may be omitted whenever an appropriate 
truncation argument can be applied. At present we do not have a truncation 
argument to eliminate (ii) altogether. However the following truncation argu- 
ments clearly work for some specific k's mentioned in Section 4. It is clear that 
if all random variables X, Y, X', Y' are bounded and if k is locally bounded than 
(ii) is satisfied. Now for a function f(x)  and c>0 ,  define fC(x)= - c  if f ( x ) <  - c ,  
= f ( x )  if - c <  f(x)<= c, = c if c <  f(x). Notice that from (6) we have k(x, y)= 
ko (x, y) + f (x) + g (y) where f (x) = k (x, Yo) and g (y) = k (Xo, y ) -  k (Xo, Yo). For c > 0 
let 

U (x, y) = k o (x c, S)  + fc (x) + g~ (y). 

Then as cTc~ we have U(x,y)-+k(x,y) as well as k(xr162 (with 
ko ( x~, Y~)T ko (x, y) on the first and third quadrants of the plane around (Xo, Yo) 
and ko (x ~, y~) ,L ko ix, y) on the second and fourth quadrants). Assuming k is locally 
bounded, we clearly have 

EU(X, Y)>=EU(X', Y') and Ok(X c, YC)>o~k(X'~, Y'c) 

and thus assumption (ii) may be replaced by 

(ii)' k is locally bounded and such that as c'F oo, either ~U(X,  Y)-~o~k(X, Y) 
and o~U(X ', Y ' ) ~ g k ( X ' ,  Y') for some Xo and Yo, or g k ( X  ~, YC)+gk(X,  Y) and 
~ k ( x  '~, Y'c)--, ~k(x ' ,  Y'). 

Condition (ii)' is easily seen to be satisfied for several simple k's, e.g. xy, 
(x + y)2, etc. 

3. An Application to the Set of Values of ~ k (X, Y) 

In this section we denote by ~ ( F ,  G) the class of all joint distribution functions 
H(x, y) with fixed marginals F(x) and G(y), and by •Hk(X, Y) the expected value 
when H is the joint distribution function of X and Y. It is well known that H ( F ,  G) 
has an upper and lower bound. In fact a distribution function H(x, y) belongs to 
~ ( F ,  G) if and only if 

H (x, y )~H(x ,  y ) ~ H +  (x, y) 

for all x and y, where the distribution functions H and H+ are given by 

H (x ,y)=max{F(x)+G(y)- l ,O} ,  H+(x,y)=min{F(x),G(y)} 

(see Hoeffding [8] and Fr6chet [5]). ~ ( F ,  G) is clearly a convex family of distri- 
bution functions. 
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Now let ~ be any convex family of bivariate distribution functions. If 
H, H'E~(~ are such that gHK(X, Y) and o~H,k(X, Y) exist and are finite then each 
number in the closed (bounded) interval with endpoints gHk(X, Y) and gH' k(X, Y) 
is equal to gH,,k'(X, Y) for some H"~X.  Indeed, if for each ee l0 ,  1] we define 
H~=c~H+(1-e)H', then H ~  and the conclusion follows from 

~H k(X, Y)----~Hk(X, Y)+(1-~)~,k(X, Y). 

This conclusion is no longer valid if 

- o o  <~Hk(X, Y)<CH, k(X, Y)= + oo 

as is seen by the example ~ = {Ha, 0 =< e =< 1 }. Hence, in general, the set of values 
of gH k (X, Y) when H ranges over a convex family of distributions is not neces- 
sarily convex; in fact it has one of the following forms I, { -  ~}  w I, I u { + oo }, 
{-oo} w l w  {+ oo}, where I is an interval. (I may be open, semi-open, or closed 
as well as bounded or unbounded.) We now show in Theorem 2 that if k is quasi- 
monotone and some further assumptions are satisfied, when H ranges over 
~/d(F, G) the set of values of NHk(X, Y) is closed and convex and its supremum 
and infimum are determined. 

The proof of Theorem 2 rests on the following property which is stated 
separately since it does not require k to be quasi-monotone. 

Lemma. Let X and Y be random variables with distribution functions F and G 
respectively and joint distribution function H, and let k (x, y) be a Borel measurable, 
locally bounded function on the plane. I f  the expectations gu+k(X, Y) and 
gH k(X, Y) exist and at least one of them is finite, then the (possibly unbounded) 
closed interval with endpoints gH+ k(X, Y) and CH_ k(X, Y) belongs to the set of 
values of o~Hk(Xi Y) when H ranges over ~(F,  G). 

Proof. According to the discussion preceeding the lemma it suffices to show that 
if for instance 

-oo  <EH+ k(X, Y ) < ~  k(X, Y)= + ~  

there is a sequence H,e~(F,G), n = l ,  2 . . . . .  such that ~Hk(X, Y)~  +oo (all 
remaining cases can be treated similarly). From the definition of H+ and H_ we 

have that under H+, (X, Y) ~=(F -1 (U), G-I(U)), and under H ,  
d 

(X, Y) = (F -1 (U), G-1 (1 - U)), 

where U is a uniform random variable on (0,1) and F-'(u)=inf{t:F(t)>u}. 
Also, by assumption, we have 

gH_ k(X, Y)=g k(F -1 (U), G -~ (1 - U)) = ~o ~ k(F -~ (u), G -1 (1 -u))du= + oo. 

Now for each 0_<c~<�89 define g~(u) on 1-0, 1] by 

~G -1 ( l - u )  if c~<u< 1 - a  

g~(u)=[G-l(u) if 0<u_<c~ or 1-c~__<u_<l, 
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and let Ha be the distribution function of the pair (F 1 (U), G~(U)). For each x 
we have 

Pr {g~ (U) < x } = Leb { (c~, 1 - e) r~ (1 - G (x), 1 ] } 

+Leb  {frO, c~] • I-e- 1, 1])r~ [0, G(x))} =G(x) 

and thus H~eYF(F, G). We also have 

#u k(X, Y)=#k(F-I(U),  g~(U)) 

= 5~-~ k(F-X (u), G-l (1-u))du + (5g + 5~ ~)k(F-l (u), G-l (u)) du. 

Since for ue[c~, 1-c~], F -1 (u) and G -1 (1-u)  are bounded, and since k is locally 
bounded, it follows that the first integral is finite and 

lim t~ - = k (F-1 (u), G-1 (1 - u)) du = 5~ k (F-1 (u), G ' I  (1 - u)) du 
~$0 

=~._k(x, Y)= +oo. 

On the other hand, since ~o 1 ]k (F-1 (u), G-1 (u))[ du = #n.  [k (X, Y) I < + oo, we have 

1 lim ( ~) + ~ _~) k (F-1 (u), G-1 (u)) du = 0. 
~$0 

It follows that lim #~r k(X, Y)= + o9, and thus the proof is complete. 
~$0 

Theorem 2. Let X and Y be random variables with distribution functions F and G 
respectively and joint distribution function H, and let k (x, y) be quasi-monotone and 
right continuous. I f  the expectations #u-k(X,  Y) and #~+ k(X, Y) exist (even if 
infinite valued), then the set of values of o~uk(X, Y) when H ranges over Jr(F, G) 
is the (possibly unbounded) closed interval [#u_ k(X, Y), #n+ k(X, Y)] when either 
of the following is satisfied: 

(a) k(x,y) is symmetric and (i) holds (in this case - o o < E u _ k ( X , Y ) <  
~.+k(x, Y)< +~), 

(b) for some x o and Yo, (ii) holds and at least one of En + k(X, Y) and #H_ k(X, Y) 
is finite. 

Thus under the assumptions of Theorem 2 the infimum and the supremum 
of o~uk(X, Y) for HeW(F,  G) are achieved by H and H+ respectively and they 
are given by 

~H+k(X, g ) = ~ o l k ( F  l ( u ) , G  l(u))du, 

#H k(X, y ) = y l  k(F-l(u), G-l(1 -u))du. 

Of course if k is quasi-antitone the infimum is achieved by H+ and the supremum 
by H .  

Proof. (a) It is clear from (3) and (5) that for all HeW(F,  G), #nk(X, Y) exists 
(even if infinite valued) and satisfies 

- ~ <=dH_ k(X, Y)<=gnk(X, Y)<-_C~t+ k(X, Y)< + ~ .  

If#H+k(X, Y)= - ~  then gHk(X, Y)= - - ~  for all HeJ~'7(F,G). If 

- ~ <#~+ k(X, Y)< + ~  
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the result follows trivially when -co < gH-k(X, Y), and from the Lemma when 
~_k(X,  Y)= - c o .  

(b) is shown similarly. 

It is clear from the discussion in Section 2 that (i) and (ii) in (a) and (b) can be 
replaced by (i)' and (ii)' and the result of Theorem 2 remains valid provided H 
is restricted to range only over those members of .]F(F, G) for which (i)' and (ii)' 
are satisfied (otherwise gHk(X, Y) may not exist). 

It should be clear that the result of Theorem 2 is no longer true when k is not 
quasi-monotone (or quasi-antitone), i.e. for general k the closed interval with 
endpoints gH k(X, Y) and C~/+ k(X, Y) is a proper subset of the set of values 
of gHk(X, Y) when H ranges over ~ (F ,G) .  As an example take k(x,y)= 
(x-�89 z and F, G to be the uniform distributions on (0, 1). Then under  
H+, X= Y, and under H , X = -  Y, and thus CH+ k(X, Y)=gH_k(X, Y)= 
d~189 = sx 6. On the other hand when H(x, y)=F(x)G(y) we have E H k ( X  , Y)= 
{~(x_�89 1 4 4  �9 

4.  E x a m p l e s  a n d  D i s c u s s i o n  

Some simple examples of continuous quasi-monotone and quasi-antitone func- 
tions are the following. Quasi-monotone functions: x y, (x + y)2, min (x, y), f ( x -  y) 
where f is concave and continuous. Quasi-antitone functions: I x - y t  p for p>  1, 
max (x, y), f ( x - y )  where f is convex and continuous. 

02 k (x, y) 
If k(x,y) is absolutely continuous then exists a.e. [Lebl and is 

_ < , OxOy locally integrable and for all x < x' and y = y ,  

0 2 k(u, v) du dv ( y , y ' )  - -  X' y '  ~x,x'~k-S; S~ auav 

(see Hobson E71). Hence when k(x,y) is absolutely continuous, it is quasi- 
monotone if and only if 02k(x,y)/OxOy>O a.e. Thus starting from any non- 
negative locally Lebesgue integrable function one can generate (absolutely con- 
tinuous) quasi-monotone functions. 

An example of a quasi-antitone function which is not necessarily continuous 
is k(x, y)= If (x)- f (y)[ where f is nondecreasing, say; when f is right continuous 
so is k. 

Of the two properties required of the function k(x, y) quasi-monotonicity is 
the crucial one in our method, while right continuity can be somewhat weakened. 
Of course if k (x, y) is left continuous we can get the same results simply by defin- 
ing # by 

X; X " #{[x, ) [y,y)}_A{,,y'~l. - -  J ( x ,  x ' ) ' ~ .  

More importantly, if k(x, y) has left and right limits at every point and if its points 
of discontinuity are located on a countable number of parallels to the axes, then 
we can obtain the same results provided the points where these parallels cut the 
axes are not atoms of the marginal distributions F and G (this is of course always 



Inequalities for ~ k (X, Y) when the Marginals are Fixed 293 

satisfied if F and G have densities). This follows from the fact that we can write 
k = kl + k2 where k 1 is right continuous and k 2 equals zero for points not on the 
countable number of parallels to the axes. Then ~k2(X , Y)=~R2k2 dH=O since 
every/- / in  J r (F ,  G) assigns zero measure to every line parallel to the axes cutting 
the axis at a point which is not an atom of the corresponding marginal. In this 
connection it is interesting to note that if k(x, y) is quasi-monotone and if for 
some x0 and Yo, k(Xo, y) and k(x, yo) are of bounded variation in y and x re- 
spectively then k(x, y) has left and right limits at every point and its points of 
discontinuity are located on a countable number of parallels to the axes (for the 
first part see p. 345 of Hobson [7] and for the second p. 722 of Adams and Clarkson 
Eli). 

A function k(x, y) is said to be of bounded variation on a bounded rectangle 
[a, b] • [c, d] if for all m, n and points 

a=xo<xl<. . .<xm=b , c=yo<yl<. . .<yn=d 

m--1 A(y~, y~+~) 1:1 the sum ~i=o ~ - ~  (Xi, Xi+I)'•[ is bounded. If k is of bounded variation on every 
bounded rectangle, it is the difference of two quasi-monotone functions (see 
p. 718 of Adams and Clarkson [-1]) and if it is also right continuous it determines 
by (1) a (unique o--finite) signed measure #. Then under the appropriate inte- 
grability assumptions the expressions for Ek(X, Y) given by (3) and (5) and by 
(7) and (9) remain valid. Since # can now take both positive and negative values 
the results of Theorems 1 and 2 are no longer valid. However, one can still obtain 
weaker results some of which we mention briefly. 

(i) If the joint distributions H and H' of (X, Y) and (X', Y') as in Theorem 1 
assign full measure to Borel sets which are positive sets of the signed measure #, 
then (10) is valid. Of course this means that k is quasi-monotone with respect 
to H and H', i.e., on sets of full H and H' measure rather than on the entire plane. 
As an example k(x, y)= [x-y[P, 0 < p  < 1, is quasi-monotone on the complement 
of the diagonal of the plane and thus if Pr {X = Y} = 0 under H and Pr {X' = Y'} = 0 
under H' (i.e. H and H' assign zero probability to the diagonal), (10) is valid. An 
even simpler case arises when with probability one X e A  and YeB where the 
Borel sets A and B are such that k is quasi-monotone on A x B (but not necessarily 
on the entire plane). Then Theorems 1 and 2 remain valid without any further 
qualifications. As examples, take k (x, y) = (x + y)V, 1 < p, and X > O, Y > 0 with 
probability one, or k(x, y)=[x-y[ p, O < p <  1, and X < a < b <  Y with probability 
one. 

(ii) If # = # 1 - # 2  is the Jordan decomposition of the signed measure # as a 
difference of two nonnegative measures #1 and #2, under appropriate integrability 
conditions, one can get upper and lower bounds for NHk(X, Y), H~Jf(F, G), 
like those in Theorem 2. For instance for k symmetric (under appropriate inte- 
grability conditions) we have that for all H in ~ ( F ,  G), 

SR2 A+ d#2 -YR~ A_ d#l <2gk(X,  Y ) - g k ( X ,  X ) -  gk(Y, Y) 

~ R 2 A _ d # 2 - S R z A + d # 1  

where A+, A are given by (3) with H replaced by H+, H respectively. However, 
these upper and lower bounds are not achieved by some H's in W(F, G) and more 
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important they are not the least 
(whose calculations elude us). 

S. Cambanis et al. 

upper bound and the greatest lower bound 

5. Discussion of the Literature 

We conclude with a few comments on the literature. For k(x,y)=lx-yf the 
expression of E k (X, Y) given by (3) and (5) has been obtained for p = 2 by Hoeffding 
[8] (see also p. 1139 of Lehmann 1,9]) and by Bfirtfai [-2], for p = l  by Vallender 
1,,14], and for any p> 1 by Dall'Aglio I-3] (see also Dall'Aglio 1,4]). For k(x, y)=xy  
the bounds of Theorem 2 are given on p. 278 of Hardy, Littlewood and P61ya [6] 
by the method of rearrangements. This work was done independently of Tchen 
1-13] where the inequality of Theorem 1 is derived for continuous and bounded 
quasi-monotone functions. 
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