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1. Introduction and Results 

Let X be a real valued process with stationary independent increments having 
right continuous paths with left limits. Let X=(f2, v~-,--t, -~- *-,, Y 0,, W) be the usual 
canonical representation of the process X. Then, as is well known, X is determined 
by 

(1.1) E ~ exp(i2 X~)= E ~ exp [i2(Xt+ ~ - Xs) ] = e -'~('~1, 

0.2 

where aelR, a2>0,  and v is a Borel measure on IR not charging {0} such that 
~min(1, y2)v(dy)< oo. We assume throughout this paper that 0 is regular for {0} 
and that either 0 -2 >0  or v(IR)= o0. Under these assumptions each x is regular for 
{x} and there exists a bounded positive continuous function u(x)--ul(x) on IR 
such that 

cO 

(1.3) Ul f(x)=-EX~ e - ' f ( X t ) d t =  ~ u ( y - x ) f ( y ) d y  
0 

for all bounded Borel f.  (The symbol " = "  means "defined to be equal to".) See 
[2] or [11] for these results. Moreover, there exists a local time IX= (I~) at each x 
which we normalize by 

oO 

(1.4) E~Se- tdPt=u( j - -x) .  
0 

Each l ~ is a continuous additive functional of X which is jointly measurable in 
(t, x, co) and satisfies under the normalization (1.4) 

(1.5) i ls(X~)ds=~l~[dx 
0 B 
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almost surely simultaneously for all t > 0 and Borel sets B c IR. See [5]. For each 
x~lR, let Tx=inf{t>0:  Xt=x} be the hitting time of x. Then it is immediate 
from (1.4) that 

(1.6) O(x, y)=-EX{e - r ' } = u ( y -  x)/u(O). 

In particular, 0__< u(x)< u(O) for all x. (See [5] for these facts.) 

L6vy conjectured that if X is Brownian motion and D~(t) is the number of 
times that X crosses down from e > 0  to 0, during [0, t], then lim2eD~(t)=l ~ 

e~O 
almost surely. This result is proved in Ito-McKean [7], although I must confess 
that I do not completely understand their proof. Recently, Chung informed me 
that their proof contains several serious gaps. However, it turns out that this 
result is a simple consequence of"general potential theory", and, in fact, there is an 
analogous result for processes with independent increments satisfying the Condi- 
tions in the previous paragraph. 

Fix a _< 0 _< b with a < b. Define -c o = 0, z 1 = T b, -c2 = ~1 + Ta ~ 0~1, "", 

-c2n+l='r2n q- Tb oOr2,d n~O 
(1.7) 

-c2n+2='C2n+l nt- TaoO~2n+l, n~O. 

Then z2,, n >  1 are the times of successive downcrossings from (a hitting of) b to 
(a hitting of) a. Of course, if the paths are not continuous there will, in general, 
be many downcrossings over the interval [a, b] between ~2, and ~2,+z. Let 

(1.8) D(t)=Da'b(t)-~ l(o,,l(v2k) 
k 

be the number of downcrossings from b to a during the time interval (0, t]. Since 
each ~2 k is a stopping time, D(t) is an adapted, right continuous, increasing process, 
D(0)=0, and D(t)< Go for each t61R +. Note, however, that D is not an additive 
functional of X. We may now state our main result. 

(1.9) Theorem. (i) The function u in (1.3) is uniformly continuous on IR and satisfies 
lira u(x)=0. 

(ii) The increasing process D is previsibIe. 

(iii) Let 

(1.10) g(x)= 1 ~ (1-cosx2)Re([ l+(D(2)]- l )d2 .  
TO_co 

Then for each finite T, sup [g(b - a)D ~ b(t) - l~ approaches zero in Lz(P ~ as a T O, 
b~O with b - a> O,  t<=r 

(iv) Let 6 be the modulus of continuity of u. Let (a") and (b") be sequences with 
a"T 0, b" ~O, b" -a '>O and satisfying ~ 6(b"-a" )<  ~ .  Then for each finite T, 

sup lg(b" - a") D ~ b"(t)- lot] --* 0 
t<T 

almost surely pO as n ~ oe. 
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Remark. It is welt known (see [2] or [8]) that under the present assumptions 
Re( [ l+ r  -~) is integrable over IR. Also it is immediate from (1.2) that 
R e ( [ l + r  and that this is an even function of 2. Consequently g(x) 
defined in (1.10) is an even, continuous, nonnegative function of x satisfying 
g(x) ~ 0 as x-*0,  and one has 

c o  

(1,11) g ( x ) = 2  ~ (1 - c o s  x2)Re(J1 + q5(2)]-*)d2. 
TC 0 

Of course, in Theorem (1.9) one may replace the normalizing function g(x) 
by any function h(x) defined for x > 0  which satisfies g(e)~h(e) as e+0. With this 
in mind we list the following examples, all of which satisfy our hypotheses. 

(1.12) Let X be Brownian motion; that is, q ~ ( 2 ) = 2 2 / 2 .  Then g(e)~2e as e~,0. 

(1.13) Let X be a stable process of index c~, 1 < ~ < 2; that is 

r = c 12]~ [1+ i/~ sgn(2) tan ~ ]  

a.d 
7Z~ 

h--/~ tan 2 

where 

(1.14) Let X be an asymmetric Cauchy process; that is, 

r = c 12[ [1 + ifl sgn(2)log [2]] 

where c > 0, 0 < [/3[ < 2 .  Then g(e) ~ 2 [c rt/~2 [log eli - i. 
~r 

In the case of Brownian motion there is a simple martingale argument (see 
p. 48 of [7]) that enables one to conclude that almost surely for all t, 2e D o, ~(t) --* l ~ 
as e+0. Notice that in [7], the local time is normalized to satisfy (1.5) with dx 
replace by 2 dx. Consequently in [7] the normalizing factor is "e" rather than ~ 2 e". 

We have confined our attention entirely to real valued processes with stationary 
independent increments since these are by far the most interesting examples of 
our results. However, our methods obviously extend to a wider class of processes. 
We leave such extensions to the interested reader. 

Other limit theorems for local time are contained in [6]. For example, let X 
be a stable process with index e, 1 <c~<2, and f l+ - 1. Let N~(t) be the number of 
jumps from the interval J~=(e, 2~), 2 >  1 to ( - 2 e , - e )  in [0, t], that is, N~(t)= 
s~_tlj~(Xs_) 1j~(- Xs). Then it follows from (2.1) of [6], that sup Ike ~-1N~(t)- l~ -* 0 

= t < T  

in LZ(P ~ as e~,0 for each T<  o% where 

k=~(~- l) {2c(l + fi)F(~)sin-~-[2-~(l + ~) -~)-(l + 2)1-~]} -1. 

This should be compared with (1.13). Note also the limiting value ofk as 2 ~  oo. 
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2. P r o o f s  

We begin with (1.9i). Recall from (4.9) of I-5] that under our assumptions on X 

(2.1) u(x) + u ( -  x) = + ; cos x 2 Re ([ 1 + 05(2)]- 1) d2 
i i ,  - -oO 

where 05 is the exponent of X defined in (1.2) and Re([l+05] -I) is integrable. 
Thus by the Riemann Lebesgue lemma u(x )+u( -x ) - - .0  as x--* _+ oo and since 
u > 0 this implies that u(x) ~ 0 as x --, + oo. Consequently u is uniformly continuous 
on lR establishing (1.9i). 

Next we shall prove (1.9ii). To this end we fix a and b with a<_O<b and a<b. 
Using the notation of (1.6) and (1.7) we have for k > 2  

E:' {e - ~ }  = E  ~ {e - ' ~ - '  E x(*~ ')(e- r~ 

= O(b,  a) E ~ { e -  ~ -~ E ~ ( ~  - ~ ) (e -  ~ ) }  

=O(b, a) O(a, b)EX{e-~2k-2}, 

and similarly U { e - ~ } = O ( b ,  a)O(x, b). As a result for all k > l  

(2.2) E ~ {e-~2~} = [0(b, a) ~]s(a, b)] k-~ O(b, a) O(x, b). 

Now define A = A a' b by 

(2.3) A,= ~ e -~dD(s). 
(0, t] 

Then A = (A~) is a right continuous, increasing, adapted process which is integrable 
since by (2.2) 

E0(A~) = y, EO{e . . . .  } _ ~(b, a) 0(0, b) 
k>__l 1-~b(b, a) ~(a, b) < m "  

Note that O(x, y) < 1 if x 4= y. 
Statement (ii) of Theorem (1.9) is contained in the following lemma. 

(2.4) Lemma. D and A are previsible. 

Proof. Clearly it suffices to show that D is previsible. Of course, this means that 
D is ((2, ~-u, o~tu, pu) previsible for each #. (Our terminology for the general theory 
of processes follows [3], and for Markov processes [1] and [4].) From (1.8) 

D =  ~ 1[[~2~, ~)), 
k > = l  

and so it suffices to show that each T2k is a previsible stopping time. But this is 
immediate once we show that T a is a previsible stopping time. The fact that Ta is 
previsible under our present assumptions is certainly known, but we shall give 
a proof for the convenience of the reader. 

It is well known that T~ is previsible if and only if X(T~)=X(Ta-)  almost 
surely on {0 < T~ < oo }. See, for example, (7.6) of [4]. We shall prove the continuity 
t ~ X t at T~ by an appeal to the theory of L6vy systems which is especially simple for 
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processes with independent increments. For each x~lR let vx( C)= v( C -  x) be 
the translate by x of the Ldvy measure v defined in (1.2). Let B be the set of atoms 
of v, that is, 

B = {x~lR: v ( { x } ) > 0 } .  

Then B is countable. Fix r/>0 and let G={x:  (x-al>rl} .  Let 1~ and 1~ be the 
indicators of {a} and G respectively. Then the result on Ldvy systems (see [10] or 
[12]) tells us that for each xelR 

~3 

E ~ ~ e-t  1, (X,) 1G (X t _ ) = E x ~ e-t  ~ 1 (y) 16 (Xt) v x(~ (dy) d t 
t 0 

o3 

-=E x ~ e -~ la(Xt) vX(t)({a}) dt. 
o 

But vX~t)({a})=v({a-Xt})>O if and only if X t 6 ( - B ) + a - B  a. Of course, B a is 
countable. Also if Xt~G, then ]a-Xt l>t l  and so 

1G(Xt) vX(~ [y l> r /} )=M< oo. 

Combining these observations with X(T~)=a almost surely on {T o < oo} we find 

E x { e-  Ta 1G (Xro _)} < E x ~ e - '  1~ (Xt) 1G (X t_) 
t 

co 

_GM E x ~ e - t  16~B~(Xt) dt 
o 

= M  ~ u ( y - x )  dy=O, 
G n B a  

because Gc~Ba is countable. Letting r/S0 we see that px[X(Ta-)~=a , T~< oo] =0, 
completing the proof of Lemma (2.4). 

We are now going to compute the potential, in the sense of martingale theory, 
of the process A defined in (2.3) relative to the measure p0, that is 

(2.5) Y,--E~ - A ~ [ ~ , } = E ~  ~ e-~dD(s) l~} .  
(t, oo) 

See [3] or [9]. Actually we need a right continuous version of the martingale 
defined in (2.5) and that is what we shall obtain. For the computation one first 
observes that if n>k>_l and " E 2 k _ 2 ~ t ~ _ ~ Z 2 k _ l  , then 

(2.6) z2 =t+~2(~+l_k)o0t, 

while if n>_k>_l and rzk_ ~ <t<~2k,  then 

(2.7) "C2n=t + TaoOt +'C2(n_k) oOr oOt. 

The reader will find a picture helpful in verifying (2.6) and (2.7). Also recall that b 
is regular for {b}. Now 

(2.8) Y~=E~ f e - ~ d D s l ~ t } = ~ , E ~  e ..... ;~2 ,>t l~ t}  
(t ,  m )  n > l  

= Z ZE~ e-~'; z2k-e~t<'c2kl~}' 
k>_1 n>>_k 
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Let I(k, t) be the indicator of {Z:k_zGtGr2k_l} and J(k, t) be the indicator of 
{rZk_l<t<Zzk}. Then I(k, t) and J(k, t) are J~ measurable since each rj is a 
stopping time. Using (2.6) and (2.2) one finds 

E~ {e-~"; "Czk-2 ~ t<_ Z2k_ 11~} = e - t  I(k, t) E TM { e -~2' . . . .  '} 

= e  - t  I(k, t)[0(b, a) ~9(a, b)] "-k O(b, a) 0(Xt, b). 

Similarly using (2.7) 

E ~ {e- ~a"; Z2k_ 1 < t < Z2k_ 2 I~} = e-t  J(k, t) [0(b, a) 0(a, b)] "-k 0(X t, a). 

Finally let I(t) = ~, I(k, t) and J(t) = ~ J(k, t) so that I(t) + J(t) =- 1. Combining these 
k > l  k ~ l  

last two computations with (2.8) gives 

(2.9) Yt = e-t K(a,  b) [I(t) O(b, a) O(X, ,  b) + J(t) O(X, ,  a)] 

where using (1.6) 

1 u(0)  2 
(2.10) K(a ,b )  = - 

1 - tp(a, b) O(b, a) - u(O) 2 - u(b - a) u ( a -  b)" 

Since x ~ O ( x , y )  is continuous, both t - - , O ( X ,  a) and t - - , O ( X , , b )  are right 
continuous. Moreover we claim that the term in square brackets in (2.9) is right 
continuous. It is clearly right continuous at any t + ~2 k-1 for some k > 1, but using 
O(b, b)= 1 one easily checks right continuity at z2k_ 1. Consequently the right side 
of (2.9) is a right continuous version of the potential Y defined in (2.5). From here 
on Y will denote the process on the right side of (2.9). Clearly Y is bounded. 

Let 

(2.11) k ( b - a ) ~ [ K ( a , b ) ]  1 u ( O ) 2 - u ( b - a ) u ( a - b )  
= u(0)2 

The k(b - a) ~ 0 as b - a -~ 0. From (2.9), 0(0, 0) = 1, and I(t) + d(t) = 1 we see that 

(2.12) k ( b - a )  Y t ~  G = e  - '  ~ (X t ,  O) 

as b - a ~ 0 with a_< 0_< b. Also writing ya, b -- Yto denote its dependence on a and b 

(2.13) k ( b - a )  y~,b W = e - ,  i ( t )[O(b ' a) tp(X t, b ) - O ( X  t, 0)] 

+ e - t  d(t) [~b(Xt, a ) -  O(Xt ,  0)], 

and so [ k ( b - a )  Yt a ' b -  Wt l<4 .  

t 

Next let L t = ~ e -~ dl ~ where lO= (i o) is the local time at 0. Then using (1.4) and 
(1.6) o 

{; } 0 aT; (2.14) E ~  ~ e - S d l ~ l G  

=e-' u(- X,)=u(O) W,. 
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Finally let 

(2.15) B~ 'b =- u(O) k(b - a) At = u(O) k(b - a) ~ e-~ dD(s). 
(o, tl 

Then Z~' b = u(0) k(b - a) Yt ~' b is a right continuous version of the potential generated 
by B "'b, and by (2.12) and (2.14), Z~'b-+Zt=-u(O) W t as b - a - * O  with a<O<_b and 
Z = (Zt) is the potential generated by L = (L,). Of course, Z is continuous. 

Let 6(h) be the modulus of continuity of u. It now follows readily from (2.13) 
and the definitions of Z ~' ~ and Z that 

(2.16) 
I Z ~ ' b - Z t l < K a ( b - a )  

IZ~'bi<K and IZ~I<K, 

where K is a constant independent of a, b, and t. In the sequel K, K t , K 2 , etc. will 
always denote such a constant. 

Now B ~" b and L are integrable previsible increasing processes with potentials 
Z ~, b and Z respectively. It follows from the energy inequality (T24, p. 116 of [9]) 
and (2.16) that E~ b] 2)< 2 K 2 and E(L~)< 2 K 2. It is now a standard argument 
(see the top of p. 126 of [9]) that 

(2.17) 
oo 

E o a b 2 = E  0 a ,b  a ,b  a,b [(B;; -L~o ) ] ~ (Z, - Z , + Z , _  - Z t _ ) d ( B  , - L t )  
0 

< 2 K c S ( b - a )  E~ + Lo~)<4 K 2 ~ ( b - a ) ,  

where we have used (2.16) and the fact that E~ = E~ and E~ b) = E~ ' b). 
Introducing the martingales 

M~' b_ EOtB a, b I ~  -- Z ~, b + B~' b, 

Mt= E~ ~lo~t)= Z, + L ~, 

it follows from Doob's maximal inequality and (2.17) that 

(2.18) E~ I M ~ ' b - M t l Z ) < 1 6 K 2 6 ( b - a ) ,  
t 

and combining this with (2.16) it is easy to see that 

(2.19) E~ ]BT, b-L,]  2] < K  1 cS(b-a). 
t 

Let (a ~) and (b ") be sequences such that 

(2.20) a~]'0, b".~0, e~ - -b" - a ">0 ,  and ~ c ~ ( b n - a n ) = ~ ( e , ) < o o .  

Now it is an immediate consequence of (2.19), the Ceby~ev inequality, and the 
Borel-Cantelli lemma that 

(2.21) supIB~'b~--Lt[--,0 
t 

almost surely pO as n -~ oo whenever (a s) and (b") are sequences satisfying (2.20). 
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It remains to t ransform (2.19) and (2.21) into statements about  D a'b and l ~ 
Using the definition of B"' b and L and integrating by parts one finds 

t t 

l ~  
0 0 

t 

u(O)k(b-a)D'~ 'b= f eSdB~'b=e'B~ ' b -  ~e~B~ "bds" 
(0, q 0 

Statements (iii) and (iv) of Theorem (1.9) are an immediate  consequence of these 
relationships, (2.19), (2.21), and the following lemma. 

(2.22) Lemma.  As x ~ 0, 

u(O) k(x) ~ 2 u(O) - (u(x) + u( - x)) = 1 ~ (1 - cos x 2) Re ([ 1 + q5 (2)3 - t) d2. 
TC - c o  

Proof Recall from (2.11) that  u(0) 2 k(x)= u(0) 2 - u ( x )  u( -x ) .  Making use of the 
identity 

valid for all real numbers  a, fi, and 7, we see that  in light of (2.1) the desired con- 
clusion will follow once we show that  

[ u ( x ) - u ( - x ) ]  ~ [ u ( x ) - u ( - x ) l [ u ( O ) - u ( - x ) - ( u ( O ) - u ( x ) ) ]  - ~ 0  

2 u(O) - u(x) - u ( -  x) u(O) - u( - x) + u(O) - u(x) 

as x ~ 0. But u(0)> u(y) for all y 4= 0 and so the quant i ty  in the previous display is 
dominated by ]u(x) -u( -x)[  which approaches  zero as x ~ 0. Thus Lemma  (2.22) 
and Theorem (1.9) are established. 

7ca 
Next  we turn our  at tent ion to the examples. For  (1.13) with h = f i t a n - -  

1<~=<2 2 ' 

2 c~~ (1 - c o s  x 2)(1 + c  U) 
g(x)=~-oJ ( 1 + c U ) 2 + c 2  h 2 2 2a 

d2 

2 x ~-1 Y(1 - c o s  2)(x~+ c 2 ~) d2 

2 x  ~-1 ~ ( 1 - c o s  2) d2 

Note  that  (1.12) is a special case of this: take •=2 and c =  1/2. 
Lastly we consider (1.14). The  computa t ion  here seems to be a bit more  involved 

and since I do not  know an explicit reference I shall give the argument.  In this case 

2 r~176 (1 - c o s  x 2)(1 + c  2) d2 
(2.23) g(x) 

~-  o J (1 + c 2) 2 + (c fl 2 log 2) z 
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where c > 0  and 0<]fl l~2/Tc. Let L(x)=(- logx)- l=l logx1-1  for 0 < x < l  and 
let M(x)=(L(x))~=llogxl -~ where 1/2<c~<1. Split the integral defining g in 
(2.23) into an integral over (0, M(x)/x) denoted by gl(x) and an integral over 
(M(x)/x,~) denoted by g2(x) so that g(x)=g~(x)+g2(x). Using the inequality 
1 - c o s u < K u  2 it is easy to see that  

M(x)/x 
gl(x)<= gx2 ~ )~d)v<=KM(x)2=K(L(x)) 2~ 

0 
and consequent ly  gl(x) = o(L(x)) as x $ 0 since c~ > 1/2. Next  write g2 = g3 + g4 where 

2 ~ (1 -cos2x )d2  ~ d2 x 
!, <=KM( ~ ~ = K  g3(X)=-~-M( /x ( l + c 2 ) 2 + ( c f i 2 1 ~  2 /x M(x) '  

and so g3(x)=o(L(x)). Thus it remains to s tudy 

(2.24) g 4 ( x ) = ~  ~- f 2 ( l - c o s x 2 )  d2 
~( )/x (1 + c 2) 2 + (c/3 2 log 2) 2. 

The following lemma is the heart  of the matter .  

(2.25) Lemma.  Let 

(1 - cos 2 x) d2 
h(x) ~t(x)/x ) L [ l + ( 7 1 ~  2] where ~#0.  

Then h(x)~ ~/- 2 L(x) as x j, O. 

Proof As x --* O, M(x)/x --* oo and so we shall suppose th roughout  this p roof  that  
x is small enough so that log 2 > 1 for 2 > M(x)/x. Write h = h 1 - h 2 where 

d,t . h2(x) = ~ cos x 2 d x  
h l(x) = 2 [ 1 + (~ log 2) 2] ' M(~)/~ M(~)/~ 211 +(7 log 2) 2] 

In h~ make the change of variable u = l o g  2 to obtain 

hi(x) = log (M(~I/~; 1 +du72 u 2 _ ? - 1 Ire/2 - arctan (7 log m(x)/x)] 

But rc/2-arctant~t  -1 as t -- ,oo and ( l o g M ( x ) / x ) - l ~ ( - l o g x ) - l = L ( x ) a s  
x ~ 0, and so h~(x) ~ 7-  2 L(X) aS x ~ 0. In h 2 we integrate by parts, integrating 
cos x 2 and differentiating (211 +(7 log )~)2])-1. We obtain a " b o u n d a r y  t e rm"  
B(x) and a new integral I(x). 

-B(x)= sinM(x) { - - ~  [ l+ (71og M~X))2]} -~ 

M(x) 

~ ~-  2(L(x))2 as x - , 0 .  
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Consequently B(x) = o(L(x)) as x ~ 0. Finally 

; sinx)~ 1+ (T log2 )2+2721og2  
I(x)= 

M(~)/~ x 22 [-1 + (y log .~)212 d2. 

But log 2 < (log J02 since log 2 > 1, and so 

K ~ K II(x)[ < - -  j (7 log 2s d2~ _-<-- j dS~ 
x U(x)/x 2 2 [ 1 + ( 7 1 o g 2 ) 2 ]  2 XM(x)/x 2 2 1 1 + ( 7 1 o g 2 )  2] 

K L(x) 2 
< - -  (7 log m(x) /x ) -  2 x _ ~ K 7  -2  -KT-ZL(x) 2-~. 

x M(x) M(x) 

Consequently ]I(x)i/L(x)--, 0 as x ~ 0 since e <  1. This completes the proof of 
Lemma 2.25. 

We leave it to the reader to verify that (2.25) implies that g4 defined in (2.24) 
satisfies g4(x )~  2(g C f12)-1 L(x). This completes the verification in example (1.14). 
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