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Let (X,.~) be a measurable space, O_~IR an open interval and PolsJ, 0~0 ,  a 
family of probability measures fulfilling certain regularity conditions. Let 2 be a 
prior distribution on O and Rn, x be the posterior distribution for the sample size 
n given x_e X n. 0n denotes the maximum likelihood estimate for the sample size n. 
It is shown that under certain regularity conditions on 2 for every compact K_~ O 
there exists % > 0  such that 

sup P~ {x_E X"l d(R.,_~, Q., x) > c K (log rt) 1/2 n -  1/2 } = o ( n -  1/2), 
,9~K 

where Q.~, ~ is the Borel measure on O having Lebesgue density 

~ (a- 0n(~_)) ~] 
V ~ e x p [  2 a(0) ] 

and d(R .. . .  _ Qn, ~) denotes the variational distance between Rn, _~ and Qn. x �9 

1 .  I n t r o d u c t i o n  

Let (X, sJ) be a measurable space and P~ I ~, 0~ o, a family of probability measures. 
O denotes a parameter set. Let 2 be a a-algebra on O and let A be a prior distri- 
bution on (O, 2). For every hEN we define a probability measure R,, on (X n x O, 
sJ"| 2) by 

R,(A • X)= ~ P~(A) 2(dO), A c d  n, Z ~ ,  

and x ~--~Rn,~_ , x EX  n, denotes a version of the conditional probability of R n under 
the hypothesis ~r Rn, x 12 is called the posterior distribution given x_~ X'.  

Asymptotic properties of posterior distributions are closely related with the 
asymptotic behaviour of Bayes estimates. In 1949 Doob, [1], proved a general 
result concerning consistency of Bayes estimates of a real parameter relative to 
quadratic loss. His result was generalized in 1965 by Lorraine Schwartz, [11], and 
in 1973 by the author, [12] and [13]. Roughly speaking, for every prior distri- 
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bution 2 on a parameter set O any sequence of Bayes estimates is strongly consistent 
~.-almost everywhere, iff there exists a Z-almost exact estimate. The existence of a 
2-almost exact estimate can be interpreted as the possibility to separate the values 
of the parameter by infinitely many observations. It was also shown by Lorraine 
Schwartz, [11], that for those points 0~ O, which can be separated from the com- 
plement U' of any of their open neighbourhoods U by a uniformly consistent test, 
the posterior probabilities R,,x_(U') converge to zero P~-almost everywhere. In 
a recent paper LeCam, [4], 1973, showed that under dimensional restrictions on 
O a similar result is true for a sequence (U,) of neighbourhoods which decreases 
of the order n -ua relative to the Hellinger distance. These results show that even 
in general cases for large sample size the mass of the posterior distribution con- 
centrates in arbitrary small neighbourhoods of the true parameter value. Already 
in 1953 it was shown by LeCam, [3], that in sufficiently regular cases the variational 
distance between the posterior distribution and the normal distribution centered 
in 0,(x) with variance a(O)/n converges to zero P~-a.e. for every 0EO, (cf. also 
Schmetterer, [10], pp. 391 ff.) It is one of the aims of the present paper to estimate 
the speed of convergence of the posterior distribution to the normal distribution. 
Previous results of this kind were given by van der Waerden, [14], and Johnson, 
[2], (cf. Remark 3). 

2. Discussion of the Results 

The results are stated in the framework of minimum contrast estimation. For the 
motivation of this approach confer Pfanzagl, [7]. 

O is assumed to be an open interval of IR and N denotes the Borel a-algebra of 
O. A family of d-measurable functions fo: X ~--~IR, 0e O, (sometimes denoted by 
x~-~f(x, 0)), is a family of contrast functions for {Pal 0e O} if Ps(f,) exists for all 
0 E O, re O, and if 

P~(f~)<P~(f:) for all OeO, ~sO, O~'r. 

A minimum contrast estimate for the sample size n is an d"-measurable function 
0,: X" ~ O satisfying 

~,f~,,~_)(xi)= inf ~=jfo(xi), x_EX". 

For those x_e X" for which it is possible we define the probability measure 

R,,,_~(S)- ~ . , SeN.  

J exp (--i~=tfo(xi)) )b(da) 

Lemma 1 gives conditions under which for every compact K _  O 

s~i~ s u p P ~ { x - e X " s u p e x p ( - ~ f ( x i ' a ) ) = ~ }  i= 1 
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Since in the following these conditions are always imposed we may restrict our 
attention to those x eX" for which R,,~ can be defined. 

In the following we make assertions on the limit behaviour of sequences of 
events. Let E,(x, 0, K) be a statement depending on noN, x~X", 0~O and K_~ O. 
For notational convenience the assertion: "For  every compact K_~ O there exists 
ct(>0 and ~elR such that 

supPj{x_eX" lE , , ( x_ ,O ,K)}<cKn  ~ forall  n ~ N "  
8eK 

is abbreviated by 

E.(~ O, K)~ OK(n- ~). 

If cK can be replaced by a sequence c~ ) > 0, ne N, satisfying lim cO ') = 0, we write 

E,(x,  ~q, K)  ~ OK(n- ~). 

The regularity conditions cited below are listed in the next paragraph which 
also contains several auxiliary results. In order to improve the readibility of the 
paper the proofs of the theorems are collected at the end of the paper. 

The first result estimates the speed of convergence in Theorem 6.1 of Lorraine 
Schwartz, [11]. For every 0 c O define B~ (0) to be the open ball of radius 6 around 0. 

Theorem 1. Assume that regularity conditions (i), (ii), (iii)', (vii) and (j) are satisfied. 
Then for every 6 > 0 and every compact K ~_ 0 there exists ilk > 0 such that 

R,, _~ (B~ (0)') > exp ( - qK n) ~ 0 K (n-  1). 

The next theorem shows that a result similar to Theorem 1 is true when the 
radius of the neighbourhoods decreases of the order (log n) ~/2 n -1/2. It is however 
necessary to replace the true parameter value 0 by the sequence of minimum 
contrast estimates. Let 

l/VnO(x, s) = { ff ~ O [ nl /21ff - 0 (x) l /a(  O) 1/2 ~ (s log n)l/2}, 

if s>0,  0~O, x_EX", n~lN. 

Theorem 2. Assume that regularity conditions (i)-(iv), (v)(b), (vi)-(viii) and (jj) are 
satisfied. Then for every r > 0 and every compact K ~_ 0 there exist s K > 0 and c K > 0 

R,,_~ (W~~ (x_, SK)')>=Ct(n-~OK(n-1).  

Remark  I. If condition (vi) is replaced by (vi)' and if (jj) holds with t = 1/2 for every 
compact K __ O then the assertion of Theorem 2 holds with st( = 1 + 2 r and Ot((n- ~) 
replaced by OK(n-1/Z). This can be proved with the aid of Lemma 5. 
Remark  2. If condition (vi) is replaced by (vi)' then the assertion of Theorem 2 
even holds with 0,(x) replaced by the true parameter 0 and OK(n --z) by ox(n-1/2). 
This can be proved with the aid of Lemma 3 of Pfanzagl, [9]. 

Define 
exp [ - n (~ - 0, (x))Z/2 a (0)] 2 (da) 

(~) v 

-~ ~ exp E - n (~r - 0, (x))2/2 a (~a)] 2 (&r)' 
O 
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E ~ ,  x~X", n~N, OeO ~~ _ �9 d(R,,~, Q,,~) denotes the variational distance of R,,_x 
and 0~. s, _x' 

Theorem 3. Assume that regularity conditions (i)-(v), (vi)', (vii), (viii) and (jj) are 
satisfied. Then for every compact K ~_ 0 there exists c K >0  such that 

d (R,, x_, 0-~, x) >= CK (log n) a/2 n--1/2 ~ OK (n -a/z). 

If stronger regularity conditions on 2 are imposed the assertion of Theorem 3 
can be improved considerably. Let Q,~ x be the measure on O having Lebesgue 
density 

n] /n~a(O)exp[-n(a-On(x) )Z/2a(O)] ,  a~O.  

Theorem 4. Assume that regularity conditions ( i ) -  (v), (vi)', (vii), (viii) and (jjj) are 
satisfied. Then for every compact K ~_ 0 there exists c K > 0 such that 

d(R,,~, Q~,~_)>cK(log n)1/2 n-1/2 oK(n 1/2). 

In Theorems 1 and 2 conditions on second moments and in Theorems 3 and 4 
conditions on third moments are involved. The respective estimates of speed of 
convergence are OK(n-1) and o~ (n-1/2). Speed of convergence of higher order can 
be achieved by modifying the regularity conditions (towards existence of higher 
moments) and applying Lemmas 1 and 2 of Pfanzagl, [9]. 

Remark3.  Theorem4 is related to a result of Johnson, [2]. Assume that Ps</~ 
for every 0~O, where # is a o-finite measure on d ,  and let ha~dPs/dl4 OcO. Let 
F~ _~ be the distribution function of the measure induced by R,, _~ and 

T~_~: a~--~nl/2(a-O,(x_.)) b,,~(O,(x)), ae lR ,  

where 

b,,_~(0)= ' i=1~ ~5~al~ 

Then under certain regularity conditions (involving fourth continuous partial 
derivatives of log ha(x ) with respect to 0 and second derivatives of the density of 2) 
Theorem 2 in [2] implies that 

lim sup I n 1/2 (F~ ~ (t) - q) (t)) - r (t) (a_~ t 2 + b~)[ = 0 Po~- a. e. 
n~N teN. 

for every 0EO. The constants % and b~ depend on x_EX" through 0,(x ). If in the 
definition of F~r the term b,,~_(On(x_.)) is replaced by a(O) -~/2, where 

a(O) = - P~ log h~ , 

then Johnson's result leads to the conjecture that for the so modified distributions 
F~ ~ the P~-probability of deviations 

sup n 1/2 IF~( t )  - ~(t) l > c(log n) 1/2 
t~N. 

converges to zero for every 0~O (4~ denotes the distribution function of the stan- 
dard normal distribution). Theorem 4 proves this assertion even for the variational 
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distance of F~x and ~, and establishes an estimate for the speed of convergence. 
The imposed regularity conditions do neither involve differentiability assumptions 
on a density of 2 nor higher partial derivatives of log ho than of second order. 

3. Auxiliary Results 

Regularity conditions. (i) O~--,P~ is continuous in O with respect to the supremum 
metric. 

(ii) For each xeX, 0 ~f~(x) is continuous on O. 

(iii) For every OeO there exists a neighbourhood W~ of 0 such that 
sup p~(f2)< oo. 

~ WO 

(iv) For each xeX, O~--~fo(x) is twice differentiable in O. With 

0 2 

f'(x,O):=fofo(x) and f"(x ,O) ' .=~fa(x ) 

we have for all 0cO:  Pa(f'(., 0))=0. 

(v) For every compact K_= O: 
(a) infPo((f'(.  0))2)>0, 

8~K 
(b) inf Pa ( f " ( . ,  0) > 0. 

,~eK 

(vi) For every compact K _  O: 
(a) sup Po((f'(., 0)) 2) < ~ ,  

O e K  

(b) sup Pa((f"(., 0)) 2) < oo. 
~eK 

(vii) For every 0 c O  there exists a neighbourhood Ua of 0 such that for every 
neighbourhood U of 0, U_c Ua, and every compact K__ 8, sup P~((inff~) 2) < oo. 

veK 

(viii) For every 0e O there exists an open neighbourhood Vo of 0 and a measur- 
able function ko: X -~ IR such that sup P~(k~) < oo for every compact K _c O and 

veV~ 

]f"(x,z')-f"(x,z)[<[z'--clk~(x) for all ~',zeVo, xeX.  

Conditions for the prior distribution. 
(j) For every 6 > 0 and every compact K_c O 

inf 2 {~ eO I la-Ol < g~} >O. 
g ~ K  

(jj) For every compact K__ O there exists t > 0 (depending on K) such that 

lim inf infn t 2 {o-e O [ [o'-0] < n -1/2} >0.  
hen ~ K  

(jjj))t has a continuous, positive density p on O with respect to the Lebesgue 
measure satisfying the following condition: For every compact K c_O there exist 
constants dK>0, % > 0 ,  such that aeO,  OeK, and la-O[<d~ imply 

p(o)P(a)-i <CKla--O]" 
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Obviously we have (jjj) ~ (jj) ~ (j). 

Remark 4. Simple Taylor expansion arguments show that conditions (iii), (iv), (vi) 
and (viii) imply the following condition: 

(iii)' For every 0EO there exists a neighbourhood W~ of 0 such that 

sup P:(sup f 2) < oo. 
~ W a  a~Wa 

In order to avoid differentiability assumptions where it is not necessary we some- 
times propose condition (iii)' instead of conditions (iii), (iv), (vi) and (viii). 

Remark 5. In Theorems 3 and 4 it is necessary to replace condition (vi) by 

(vi)' For every compact K __ O 
(a) sup P~(lf'(., 0)13) < o0, 

`9~K 
(b) sup P`9(If"(., 0)[3) < oo. 

`gsK 

The proof of the following Lemma 1 is strongly inspired by the proof of 
Lemma4 in Michel and Pfanzagl, [5]. Conversely, Lemma4 in Michel and 
Pfanzagl, [5], is an easy consequence of Lemma 1. 

Lemma 1. Let conditions (i)-(iii) and (vii) be satisfied. Then for every 6 >0 and 
every compact K ~_ O there exists eK>O such that 

n 

inf _1 ~f (x i ,  (r)<=P`9(f̀ 9)+ eK~OK(n -1) 
la ,91>5 n i~ l  

Proof Let C = {(0, z) ~ K x Oil 0 -  z] > 6}. Obviously, (0, z) E C implies P0 (f`9) < P~(f~). 
Because of conditions (ii) and (vii)(b), Lemma 3 of Michel and Pfanzagl, [5], yields 
the existence of an open neighbourhood U(̀ 9,~) _~ U~ of z such that 

P̀ 9 (f`9) < P̀ 9 (inff(. ,  U(̀ 9, 0)" 

Because of conditions (i), (iii) and (vii), Lemma 2 of Michel and Pfanzagl, [5], 
implies that 7~--~PT(f`9) is continuous and 7~--~P~ (inff(.,  U(̀ 9,~))) is lower semi- 
continuous. Hence there exists a compact neighbourhood C(̀ 9,~)_~ (9 of 0 such that 

PT(fo) <P~(inff(., U(̀ 9,~))) if ?E C(̀ 9,~). 

Since {C(`9,~)x U(o,~)I(O, r)e C} is an open cover of C, there exists a finite subcover 
determined by (0j, zj)e C, j = 1 . . . . .  m. Let C a = C(oj, ~j) and Uj = U(`gj, w' Then o-E Uj 
implies 

f(x, a)> inf f (x ,  Uj), x~X,  

and 0c C a implies 

P`9(f̀ 9) < P`9(f̀ gj) < P`9(inff(., Uj)). 

For every (0, a)e C there existsjE {1, ..., m} such that 0e Cj and ae  U~. This implies 
n n 

1 Z inff(x~, Ua)- Ps(f`9) <-1 ~=f(x~, a)-P`9(f`9). 
n i =  1 : Y l i =  
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Since 7~-,P~(inff(., U~))-P~,(f~j)is lower semicontinuous and positive on Ci, it 
follows that 

a t=  inf(P~(inff(., Ur))-P~(foj))>O , j = l , .  m. 

Hence we obtain that 
n 

inf -1 ~f(x,,a)_p~(fo)<~K 
{~-~{>,5 n i = l  

implies 

_1 n 

i E=I inff(xi '  Uj ) ,  Pa (inff(.,  Uj)) =< ~K -- aj 
n _ 

for at least one ja{1, . . . ,m}.  Choosing ~K< min a r and applying Ceby~ev's 
inequality proves the assertion. [] l<=r<=m 

Lemma 2. Let conditions (i), (ii) and (iii)' be satisfied. Then for every e>0  and every 
compact K ~_ 0 there exists c~ K >0 such that 

1 " 

to-ol<~sup n i=~=i f(xi'a)>P~(f~)+e~O~(n-i)" 

Proof Conditions (ii) and (iii)' imply by Lemma 3 of Michel and Pfanzagl, [5], 
that for every OaK there exists an open neighbourhood V~ of 0, Vo-c W~, such that 

P~(supf(., V~)) <P~(fs)+ ~ .  

Lemma 2 of Michel and Pfanzagl, [5], and condition (iii)' imply that 
u~-*P~(supf(., Vo)) is continuous on W~. Lemma5 of Michel and Pfanzagl, [6], 
and condition (iii)' imply that u ~--~Po(f~) is lower semicontinuous. Therefore 

03=  {aE Vo] P~(supf(., Vo) ) <P~(fo)+e/2} 

is an open neighbourhood ofg. Since K is compact there exist 0t . . . . .  0,, such that 
the sets Or=Ooj , l<j<m, cover K. Let cSK>0 be such that for every OaK the 
6K-neighbourhood of 0 is contained in at least one O j, 1 <j<m. Then for every 
0EK 

1 " 
sup - ~ f(xi, u)>=Po(fo)+e 

[a ~[ <6zr 1~ i=----1 

implies 

1 " 
- E sup f(xi, Oj) > ro (sup f(.,  Or) ) + e/2 
Y l i =  1 

for a certain j a  {1 . . . . .  m}. Hence for every OaK there exists 0i, 1 ~j<__m, such that 

P~g fs x ~ X" sup 1 " } - F, f (x~ ,  ~)_-__P~(f~)+~ 

1 n 

Or)) + e/@. <sugP~"{x-eX"n,~'=,supf(xi'Or)>P~(supf(" ) [] 
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Lemma 3. Conditions (vi)(b) and (viii) imply that for every compact Kc_O there 
exist constants bK>0, dK>O, and for every OcK, ncN a set An,~Ked" such that 

(a) sup P~(X~\A,,~,K) =O(n-1), 
,9~K 

(b) x_~A,,~,K, zEO and [z-O[ <__d~ imply 

i=1 ~ f"(xi '  z ) -~  i=1 ~ f"(xi, O) <,z-O, bK. 

Proof Confer Lemma 5 of Pfanzagl, [-9]. [] 

Lemma 4. Let conditions (iv), (vi)(b) and (viii) be satisfied. Then .for every e>0  and 
every compact K ~_ 0 there exists a 6 K > 0 such that 

sup _1" ~9)) Z f"(xi,  a)-Po(f"(. ,  >e~OK(n 1). 
la-gl:<~Kln i=l  

Proof Choose b K and d K according to Lemma 3. For every x E A,, s, K, 6 > 0, 6 < dK, 
we have 

" 1 " O)) 
sup _1 ~, f"(x~, a)-Po(f"(. ,  0)) < Z f"(xi,  O)-Ps(f"(., +6bK. 

I~-Sl--<~[ n i=1 n i=1 

According to 12eby~ev's inequality condition (vi)(b) implies 

,=lf"(x, ,O)-Ps(f"(. ,  >5~OK(n ). 

Choosing 6 < - -  proves the assertion. [] 
=2bK 

Lemma 5. Let conditions (i)-(v), (vi)', (vii) and (viii) be satisfied. Then for every 
compact Kc_O and every s>0  there exists CK>O such that 

sup 1- ~ f"(xi, a)-Po(f"( . ,O))  >%(log  n) 112 I/2 ~ OK(n-- ll 2 ) n 
aeW,~(x,s)[n i=1 

Proof Choose d K, bK according to Lemma 3. Then 

1 ~  ,, 0)) ~ 1 n P, " O)) 
sup f (x,, a)-P~(f"(. ,  - ~ f"(xi, ~9)- s ( f  (., 

a~W#(x,s) f/i--% t'1 i=1 

+ b~:([ 0 - 0, (x_)[ + (s a (0)) 1/2 (log n) 1/2 n- 1/2). 

Lemma 1 of Pfanzagl, I-9], implies that there exists c~:>0 such that 

,=1 ~ f"(xi '  O)- P~(f"(" O)) >=~(l~ n)'/2 n-X/2~~ 

Lemma 3 of Pfanzagl, [9], implies that for sufficiently large cK > 0 

(CKzoK ) [O.(x)-O[ > x v - - ( s  a(O)) i/2 (log n) 1/z n -1/2 ~ oK(n-l/2). [] 
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Lemma 6. Let conditions (i)-(iii) and (vii) be satisfied. For a BoreI set N c IR define 

V~(x~ Z):={t~eO]ni/2(tr-O.(x_))/a(O)l/2~X}, x s X " ,  n e N .  

Then for every s > O, every sequence (?.) _~ IR, [7. [< 1/2, ne N, and for every compact 
K~_O there exists CK>O such that 

sup] ~ e x p [ - n ( l  + 7.)(a-O.(x))Z/Za(O)] da 
Y.e~ v,?(x_,~)(~ W#(x,s) 

- a ( 0 )  1/2 n -1/2 ~ exp(-za /2)  dz] > c K ]7,1 n -1/2 ~ OK(n-l). 
r~ 

Proof Let PK > 0 such that {o'e IR ] dist (o-, K) < p~} is a subset of O. There exists n K 
such that n>nK implies for every OeK 

(s a(O))l/2(log n) 1/2 n- i/2 < prr 

Since 

]0.(x_)-0[ > pK/2~ OK(n - ~) 

we may restrict our attention to those x eX" for which n> n~ implies 

{a e IR [ - (s log n) 1/: < n 1/2 (a - O. (x_))/a (O) 1/2 < (s log n) t/2 } _~ O. 

Let n > nK. A simple substitution yields 

e x p [ - n ( !  + Tn)(cr-O.(x))Z/2a(O)] da 
g~ (x, ~) r~ w,~ (_x, s) 

= a ( 0 ) 1 / 2  n - U 2  f exp(-  r2(1 + ~,,)/2) dz 
v~c~{t2 <=slogn} 

for every Ze.~. Thus the proof is finished since for every yelP,, I,/I < 1/2, there 
exists c > 0 such that 

supl ~ e x p [ - z Z ( l + y ) / 2 ] d z  - ~exp[-z2/2]dzl<__cly[. [] 
XE~ Z~{~2<slogn) v 

4. Proofs 

Proof of Theorem1. Let 3 > 0  and choose eK>O according to Lemmal .  Let 
rllr < eK, ~/K > 0. It is easy to see that for every 61 > 0 

a = ~ 2 ~ ( l ~  ;~ {o ~ o i l  o - 0 I <  3 ,  } - l o g  ~ ( o 3 )  > - oo .  

The inequality 

Rn,_x{gEO I ]or--0] >3} > exp(--r/K n) 

is equivalent with 

l log ,[ exp [ -  ~ f (x i ,  ~r)] 2(do) 
n l~_,gl=> o i=1 

1 log j" exp F, f ( x i ,  a 2(da)> -r/K 
n o i=1 
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which implies for arbitrary 31 >0 and OeK that 

1 ~  ~ a 
sup - f (xi ,  a ) -  inf -1 f (xi ,  a)> --rlK+--. 

[ a - 8 1 < 5 1  /'Z i=1  la 81~5  H i=1  n 

From Lemma i we obtain 

n 

--Ps(f~)--eK<--_-- inf 1 ~=lf(xi, a)~OK( n 1) 
1,5-~t>=~ n i= 

Therefore we have only to show that 

1 ~. a -1 
sup - a. f (x i ,a)- -G(f . )>eK--r l~+n~OK(n )" 

la- ,91<~1 n i=1  

But this assertion follows from Lemma 2 choosing 61 sufficiently small. [] 
Lemma 4 of Michel and Pfanzagl, [5], implies that under regularity conditions 

(i)-(iii) and (vii) 

S,,(x)r 
Hence we may assume 0.(x_)eO. In the following we use repeatedly a Taylor 
expansion argument which runs as follows: For every a e O  

n _O.(x))2 ,~l f"(xi ,  g.(x_,a)), y(x,,.t= f(x,, 
i=1  i = l  "~ 

where I 0. (x) - g. (x_, cr)[ < 10. (x) - al. For notational convenience define 

A.(x~ a)=exp - (a-S.(x_)) e 1 2 f"(x i ,  g.(x_, a)) , 
F / i =  1 

xsX",  neN. It follows that for every S e N  

A,(x_, a) 
R .  :,(Z) = 

"- ~ A,(x_, a) 2(da)" 
0 

Easy computations show that Theorem 1 implies that for every 5 >0 there exists 
r/K > 0 such that 

R,,~(Z) ~ ~ A,(x~ a),~(da) 
sup "~B~(a),---V--~;-~,~, I>exp( - t&  n)--OK(n-1). 
z ~  j A,,tx_. a) 4taa) I 

Be, (~) 
Proof of Theorem 2. Lemma 4 of Michel and Pfanzagl, [5], and Theorem I imply 
that for every 6 >0 there exists t/K>0 such that 

R.,~{cr~O I I~r- 9.(x_)l >5} > exp(--r/K n)~OK(n-1). 

Hence it is sufficient to prove that for every r > 0  and every compact K _  O there 
exist sK>0, % and 6~:>0 such that 

R.,~, {aeO] 3K>Ia--O.(X_)[ >(SK a(O) log n) 1/2 r/ 1/2} >=CK n-~~O~z(n-1). 
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It follows from Lemma4 that for every e > 0  there exists 6K>0 such that 

sup l I I~- s,, r <~ n i=1 ~ f " ( x i '  g,(x., a)) - Po(f"(., 0)) > e ~ OK(n-i), 

(use Lemma 4 of Michel and Pfanzagl, [-5]). The set of all x cX" such that the in- 
equality on the left hand is true will be denoted by M~*)(e, 6K, ~9). 

Let s > 0  and define 

S.~ s)= {O-col 5K>Io--O. (~[>(sa(O ) log n) ~/2 n -I/2} 

and 

Vn(X,)~- { o - c O  I [ o - 0 n ( X )  [ < F/- 1/2}. 

It follows that x_~M(,~)(e, 6K, O) and n>nK imply 

A.(x_, o) 
,9 _x~ S~ (_x. s) 

O 

exp [ -~ (O . ( x ) -o - )2 (a (O) - ' - e ) ]  2(da) 
< s~ (_x. s) k z J 

 exp[ ] v,,(x) - - 2 ( O n ( X - ) - - o - ) Z ( a ( O ) - I  +g') ) .(do')  

< exp [ - � 8 9  (log n) s(1 - e  a(0))J 
= 2(V,(x)) exp [ -�89 -~ + e)]" 

Let p > 0  be such that K~ = {o-eOf dist(a, K)<p}  is a compact subset of O. Let 
M(,2)(p, O)= {xeX']  ]0,,(x)-0l >p}. Then sup P g (M~(2)(p, 0))_<c K/./- 1. x CMj2)(p,O) 
implies a~k 

lim infn t 2(V. (x_))=lira infn t inf2 {aEO I l a -01  <n-1/2} > 0  
n6N n~N 8eK1 

according to condition (j j). Thus it follows that there exists c K >0 with 

R,,,_~( SO~ (G s)) > % n (2'- "(1- ~ 0(~)))/2..~ OK(n_ 1). 

It is obvious that for every r > 0, s > 0 can be chosen such that the assertion of the 
theorem holds [] 

Easy computations show that Theorem2 implies that for every r > 0  and 
every compact K~_O there exist sK>0 and cK>__0 such that 

R,,,;(z) S 
z ~ w # ( _ ~ , , ~ _ _ _ _ _  > n ~~OK(n-~). 

The proof of the next theorem is related to the proof of Satz 3.11 in Schmetterer, 
[10J. In the following we denote by M(,,3)(s, c, ,9) the set of all x_cX" such that 

1 ~f,, 0)) sup (xi, O,(x, o-))-Po(f"( . ,  ->c(log n) 1/2 n -1,'2 
a~W#(x.s) ;~ i --  " 
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It follows from Lemma 5 that for every compact K_~ O there exists % > 0  such 
that 

x EM(3)(S ,  CK ' O),.~OK( ~ -  1/2). 

Proof of Theorem 3. For simplicity of notations we introduce the following ab- 
breviation 

B~(x_, a) = exp( - n(o- - O. (x_))2/2 a (O)). 

According to Theorem 2 there exists s > 0  such that 

.~ A.(x,a) 2(da) 1 
w# (x, SK) 

~ A.(x_,a))o(da) >CKn-1/2"OK(n-1) 
o 

and similar to the proof of Theorem 2 it can be shown that s~>0 may be chosen 
in such a way that 

w,~ (x_ , s~) 

S~.(x_, ,~) ,~(d~) 
o 

Therefore we need only show that 

1 >=c K n-1/2~OK(n-1). 

A. (x, a) B~ (x__, cr) 

W# (x_ , SK) W# (x, SK) 

> %(log n) 3/2 n -  1/2 ~ o K ( n -  1/2). 

It follows that (with simplified notation) 

A. B~ d2 
w# 

w,? w~? 

w,e (fA,,dO( ~B~. A.d;~-me~B~.d.~[+ 
w,? w,e 

w,~ 

B~(x__, a) 2(da) 
;.(d~) 

1 -B~I] dR 
B. ~ dR IA. 

w,? 

Let s K and c K be such that x_EM~.3)(SK, CK, O)~or((n-1/2). For x_~M(3)(SK, CK, O) 

we have 
A.(x, ~) 

sup log ~ 1  
~e(_~.~K,I B~ ~)1 

2 (o-0.(xA)2 ~ ] = sup [a(O) 1- ~ f"(xi ,  ,~.(x_, a ) ) -  1 
aew#(_x,sK) a(O) L rt i=1 

< ~ a ( 0 ) ( l o g  n) 3/2 n 1/2 



Asymptotic Properties of Posterior Distributions 281 

From ler l l < c  ]~t for some c > 0  and sufficiently small 1~1 the assertion follows 
immediately. [] 

Proof of Theorem 4. Let V.O(x~ 2;) for any ZEN be defined as in Lemma 6. We have 
to show that 

sup ]R,,_~(V~(x, 22) c~ Wf(x, s / 0 ) - l / ~  ~ e x p ( -  "c2/2) dr] 

> c~: (log n) 1/2 n-1/2 ~ oK (n-1/2). 

Theorem 2 implies that we need only show 

An(x, 
sup v,r w#(_x.,,~) ] / f ~  ~ exp(-r2/2)  dr 

w,~ (x, sic) 

=> CK(1og n) 1''2 n- 1/2 ~ oK(n- 1/2). 

Choose s K such that x eM(~3)(s~;, %, O)~OK(n-X/2). Choose nK such that n>ni( 
implies 

(sr~ a(O) log n) 1/2 n- 1/2 < dK/2 

for every O~K (where d K is chosen according to condition (jjj)). Since [0,(x_)-01 
>diU2~O~:(n -1) we may restrict our attention to those x_EX" for which n>-nK 
and a~ Wf(x, sK) imply ]a-OI <d K. Then we obtain from condition (jjj) that for 
n-_>n K and Z ~  

I ~ A. d2-p(O) ~ A, dal<p(O)%(logn)t/2n-aJ2 ~ A, da 

which implies 

A. d2 ~ A, da(l+e;,) 

~ A,,d2 ~ A. da(l +~f.) 
w,? w# 

where max ([ e'. l, ]r/;]} < cK (log n) I/2 n- 1/z. 
Define 7. = sup a (0) % (log n) l'z n-  1;2. Then x_~M. (3) (SK, %, 0) implies 

8 e K  

We obtain with the aid of Lemma 6 that n>  nK, Z ~  and .~r CK, O) imply 

A,,d2 (l+e'. l(~exp(-r2/2)dz+e.) 
v,? A w,? z 

iA dX (1 
w~ 

where max {I e.I, I t/.I} < CK 17.1. Now easy computations finish the proof. [] 
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