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Let {&,} be a strictly stationary, absolutely regular processes, i.e., the process
satisfying the condition

ﬂ(n)=E{Aseu}l)wIP{AI///EOO}—P{A}IHO (n— o0)

where .#"(a<b) is the o-algebra of events generated by &,, ..., ;.

If the suitable processes are constructed from the sequence of W. Hoeffding’s
[Ann. Math. Statistics 19, 293-325 (1947; this Zbl. 32, 41)] U-statistics for the
absolutely regular processes, then weak convergence to Brownian motion pro-
cesses and the Strassen’s version of the law of the iterated logarithm [Z. Wahr-
scheinlichkeitstheorie verw. Gebiete 3, 211-226 (1964, this Zbl. 132, 129)] are
established. The results are extensions of Sen’s ones [ibid. 25, 71-82 (1972; this
Zbl. 238, 6097)]. Weak convergence of the processes constructed by generalized
U-statistics analogous to Sen’s [Ann. Probab. 2, 90-102 (1974)] and almost sure
invariance principle and integral tests [Sen; Ann. Statistics 2, 387-395 (1974),
Jain etal; Ann. Probab. 3, 119-145, (1975)] for U-statistics defined by some
¢-mixing sequences are considered. Analogous problems for R. von Mises’
[Ann. Math. Statistics 18, 309-348 (1947: this Zbl. 37, 84)] differentiable statistical
functionals are also treated.

1. Introduction

Let {¢;,, — o <i< o} be a p-dimensional strictly stationary sequence of stochastic
vectors defined on a probability space (Q, o, P). For a<b, let .#° denote the
o-algebra of events generated by &, ..., &,. Asin [3], we shall say that the sequence
is absolutely regular, if

ﬁ(n)=E{ASelf4r;mIP{AI%EOO}*P{A}IHO (1.1)
as n— oo (see [4] and [11]). In [11], Rozanov and Volkonskii found that
Bn)=3V (R, B,)=%Var [F,—A,] (1.2)
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where Py, is the measure induced by the process {¢,} on the o-algebra 4° , L 4,
and P,, the measure defined for Ae.Z®, Be.#° , by the equality

B,(AnB)=F,,(4) F(B). (1.3)

Further, we shall say that {&;} satisfies the ¢-mixing condition if

b= sup

Bed. ,,, Ac HF P()n(B) ,POn(AnB) P1,,(A mB)H,O (1.4)

and that {&,} satisfies the strong mixing condition, if

a(n)=B P |Fon(A N B)—F (AN B)|10. (L.5)
Since a(n) < ﬂ(n)<¢(n) it follows that if {&;} is qb -mixing, then, it is absolutely
regular and if {£;} is absolutely regular, then it is strong mixing. By the way,
we note that in [4] Ibragimov and Solev obtained a complete description of
stationary Gaussian processes satisfying Condition (1.1).

Next, we denote the distribution function (df) of &, by F(x), xeR?, the p-
dimensional Euclidean space. Consider a functional

O(F)= f jg(x1 s ooy X)) dF(xy) ... dF(x,) (1.6)
defined over & ={F: |0(F)| < oo}, where g(x,, ..., x,) is symmetric in its m(=1)
arguments. As an estimator of 6(F), we define a U-statistic

n 1 (n)
U,,:( ) S e nly) nZm (0.7
m/ G

(n)
where the summation Y extends over all possible 1<i, <--- <i,,<n. As another

@
estimator of 8(F), we shall consider a von Mises’ differentiable statistical functional
6(E,) defined by

OE)=1 ... [80crs o X dE(x)) .. dEy(x,)

Y Y 8 ). (1.8)
ip=1 Im=1

In [6], Miller and Sen proved a Donsker-type invariance principle for one-
sample U-statistics. But, the treatment, they used, does not work out when we
consider U-statistics for general weakly dependent processes. In [12], Sen proved
a weak convergence theorem and the law of iterated logarithm for U-statistics
defined by =-mixing processes. The proof rested on certain basic lemmas on
Bernoullian random variables in a =-mixing process and those lemmas did not
hold for general ¢-mixing processes and hence, the same technique of proof
was not applicable for the latter processes.

On the other hand, in [13], Sen extended Strassens invariance principle on
the a.s. convergence of partial sums of independent random variables to a class
of {U,} and {6(F,)}.

In this paper, proving a fundamental lemma (Lemma 1), we shall extend
above results to a broad class of {U,} and {6(F,)} for strictly stationary, absolutely
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regular processes. More specifically, we shall prove the following theorems under
suitable conditions on g and S(n):

(i) asymptotic normality of n*(U,—8(F)) and n*(0(E)—0(F)) (Theorem 1),

(i) weak convergence of continuous sample versions of the processes
{n=*k(U,— 8(F)), k=m} and {n~*k(6(F,)— 0(F)), k=1} to processes of Brownian
motion (Theorem 2),

(iii) Strassen’s versions of the law of the iterated logarithm for U, and 6(F)
(Theorem 3),

(iv) almost sure invariance principles and integral tests for U, and 8(F)
defined by some strictly stationary ¢-mixing processes (Theorems 4, 5, 6).

In Section 6, we shall extend Theorem 2 to the case of generalized U-statistics.
The results are also generalizations of Sen’s theorems in [13] (Theorems 7 and 8).

2. Basic Lemmas

In what follows we suppose that {&;} is a p-dimensional strictly stationary, abso-
lutely regular process with df F(x).
Asin [12], for every c(0Zc<m), let

g(xs, .., x)=] fglxy, ..., x,)dF(x,, ) ...dF(x,,) (2.1)

R(m-o)p

so that g,=6(F) and g,,=g. Let

0% =c*(F)={Egi({,)— 0*(F)} + 2;’,1 {Eg1 (1) 81 (&) — O2(F)}. (2:2)
We assume that for some r>2(i)

“’:jR};;ﬂ“gl (X1, s X ) dF(xq) ... dF (x,) £ My < 0 (2.3)
and (i) for all integers i;, i,, ..., i, (iy <i, <--- <i,)

vo=E|g(&,,&,, ... & N SMy<oo. (2.4)

Let i; <i, <+ <i, be arbitrary integers. For any j(1<j<k-1), put

PED < E* N=P(&,, ...  )e ENYP(E,,,, ..., & eEXT) (2.5)
and
FUE®)=P(&,, ..., &,)€E®) (2.6)

where E? is a Borel set in R'2.
From now on, we shall agree to denote by the letter M some quantity bounded
in absolute value.

Lemma 1. For any j0<j<k—1), let h(x,, ..., x,) be a Borel function such that

j‘l'?’.(.P th(xl, cees xk)|1+5de(k)§M
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for some 6>0. Then
Uék;jh(xl, ey X) d}’ék)—jl.z%jh(xl, ooy %) dP®)
SAMIATO I — i), 2.7
Proof. Let j(1<j=<k) be fixed. Let y=1/(1+0) and put
B={(xy,...,x0): |h(xy, ..., )| S M"B~(d)}
where d=i; , —i;. Then, it follows from the definition of absolute regularity that

I§ o [h(xq, ..., x) AP — | .l.;.jh(x1 e Xg) AP
SM?B~(d) V(B", B¥)<2M" ' =7 (d)=2M" §7°(d). 2.3
Next, let B’ be the complementary set of B. Then
If .}éy.jh(x1 s X ABP| S M 7B (d) | }i"j |h(xy s ..., x )1 +0dP®
MR d)=MYBd) (=0, )). (29)
Combining (2.8) and (2.9), we have the lemma.
Let
nM={nmn-1)..(n—r+1)}"L
As in [12], we put

UP=pl0 Y

. : cp
12ih1<...<icEn R

[ gxrr s xc)__flld[u(x,-—éig—F(x,-)] (2.10)

where u(v) is equal to one when all the p components of v are non-negative;
otherwise, u(v)=0. Then

U, =0(F)+ i (':) Ue, @.11)

Lemma 2. If there is a positive number & such that for r=2+0 (2.3) and (2.4)

hold, and for some §'(0<& < 8)B(n)=0(n=2+°"%), then we have
EUP?=00""") (=<c<m) (2.12)

where y=2(6—9")/6'(2+ 6)>0.

Proof. We shall only consider the case ¢=2. The proofs in the cases c=3, ...,m

are analogous and so are omitted.
We first note that

UP =Y (g6, )= i)~ ) +OUP).

1gi1<iagn

So, we have

EUY)?= ) Y Iy, ia) Grsf2) (2.13)

1shi<izgn 15ji<j25n
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where
J((i15 1), Gy a]lz)):E‘{gz(iil s ‘fiz)_gl(‘fil)—&(fiz)‘f'e(F)}
{82085, €50 — 81(8;) — 81(&),) + O(F)}. (2.14)
Since

[ 148206 9) = 8:(x)— g, (1) + O(F)} dF (x)=0,
so from Lemma 1 we have the following inequalities:

(i) If 1=i, <i,<jy<j,Snand j,—j; =i, —i;, then

TGy, 12), Gy, ) SM B2 +2(i, — 1) (2.15)
and similarly, if 1<i, <i, <j; <j,<n and i,~i, =j,—j,, then
J((iy, 1), Gr, L) S MB2+2i, — 1), (2.16)

Thus, from (2.15), (2.16) and the assumption on B(n)
| 2 (RN )]

1sii<izSfi<jagn

é{ Z + Z }’J((llyl2)7 (jl ’]2))|

1Zii<izSji<j2sn 1Sii<i2Eji<j2s5n

=i 2j2~j1 i2—i1Sj2a—j1
<Mn? Y (k+1)p2+(k)= 0 (n*~). 2.17)
k=1

(i) Similarly, we have

l Z J((il s iz): (jl :]2))’

I12ii<phifiz<jasn

={ ) + > HI(Gy, 12), Gy, j2) = 0@ ), (2.18)

1si<jiSiz<jasn 1Zii<jiSia<j,=n
Ji—ir2j2—iz Jt=itSja—iz

‘ Z J((ll H iz)a (jl a]2))l

1sii<ji<ja<izZn

<{ > + > F1I((05 1), (1bd o) =03~ 7), (2.19)
l=ii<ji<ja<izZ=n 1Sii<ji<ja<izZn
i—iziz—j Ji—iiSiz—j2

S Y I i), G0, i)

150, h2n iz=1

<3 Y i G i)42 Y Y G i G, i)

ii=1 iz=1 121 <jifn iz=1

<Mn* (1+ Y
k=

m““wﬁ=om%, (2.20)

1

Yo Y TGy ig) (. 2)

1=iz,j25n =1

<Mn? Z B2 +3(k) = O(n?). 2.21)

Hence, from (2.17)~(2.21) and (2.13), we have (2.12) with ¢=2.
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Lemma 3. If there is a positive number O such that for r=4+09 (2.3) and (2.4)
hold and for some &(0< 8 <8)B(n)=0(n"3“+>Y2+ then we have

E(UP*=0n">"") (2.22)
where y'=6(6—0)/(4+6)(2+6)>0 and
EU)?=0(n"3% (BZc<m). (2.23)

Proof. Let i, (Zn) (r=1,...,4; s=1,2) be mutually different positive integers.
Reorder {i,,} as

12k, <k, <--<kg=<n
and put
4 .
B[ TTHealéi,n 6,0 =£1(65,)— (6, + 0P |

=E[H(,, ... &)= Ik, ..., k). (2.24)
Let d be the c-th largest difference among (k;,, —k;) (j=1,...,7). Since

f

so from Lemma 1

CfH(X, o xg) dB®(Xy, ., xg) =0 (i=1,7),

RSP

J(ky,y ooy kg) SM B2+ ke — ko) if kg—k,=d® (2.25)
and
Jhyy oo k) SMPB204+3(, — k) if ky—k,=d®. (2.26)
Hence
2 J(kl,...,ks)gMn“é:l(H-1)3,8“"/4”(]'). (2.27)

kg—ky=dW or ky —ky =dV

If for some j,(2<j,<6; 1Sa<4) k; ,, —k; =d® (1<a<4), then from Lemma 1

4
Jky, .o kg)EM Z ﬁ2+5/4+5(kh+1 —k;,), (2.28)
a=1
and hence
J(ky, o, kg) SAMR* Y (G4 1) 204495, (2.29)
1ski<...<kg<n ji=1

kfa"'l_kfu:d(a)(l Sasd)

Consequently
Ty, ..o kg)SMn* Y (j+1)* BRI+ S M7 (2.30)
18ki<...<ks<n j=1

We can use the similar method to estimate the sums in the other cases, and so
we have (2.22).
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The proof of (2.23) is analogous and so is omitted.
Finally, we define for every c(1<c<m)

V9= [ Ty, s [TAIE G~ FO)). 2.31)
j=1
Then, we have
ory=o)+ Y, (T)re, nz1 (232
c=1 c

(cf. [12]). Note that
V0= UD =11 Y (,(E)0(F)). 2.33)

The proofs of the following lemmas are the same as those of Lemmas 2 and 3,
respectively.

Lemma 4. If the conditions of Lemma 2 are satisfied, then
EVO)?=0mn"1"") (12c<m) (2.34)
where vy is the same number in (2.12).

Lemma 5. If the conditions of Lemma 3 are satisfied, then

EV 2 =0(n">"") (2.35)
where v is the same number in (2.22)
E(JV9P=0m"% (3=c<m), (2.36)

3. Weak Convergence of U, and 8 (F,)

The following theorem is an extension of Theorem 1 in [12].

Theorem 1. If there is a positive number 6 such that for r=2+6 (2.3) and (2.4)
hold and

Bn)=0(mn=2+7)  for some §(0<d <9) (3.1)
then the series (2.2) converges absolutely; if ¢*>0 holds,
12
lim P {n*(U,—0(F))Szmo}=2n)"* [ e 2dt (3.2)

— 0

Jor all z(— o0 <z< ) and
n*|0(E)— U,| — 0 in probability. (3.3)
Hence, (3.2) also holds for U, being replaced by O(E).

Proof. Since from the central limit theorem for strong mixing (and hence, absolutely
regular) processes (cf. [8] mn® UM converges in law to a normal distribution with
mean zero and variance m?¢?, so the proof of Theorem 1 is obtained from
Lemmas 2 and 4 using the method of the proof of Theorem 1 in [12].
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Secondly, let C be the space of all continuous real-valued functions on [0, 1],
where we give C the uniform topology, ie., for g, he C

p(g, h)= Sup |g(t)—h(t)]. (34)

Let 0>0. For every nzm, let X,={X (t),0=t<1} be a random element in C
defined by
0 for 0st=(m—1)/n,
X, O)={ k(U,— 6(F))/(mon®) for t=k/n, m=<k<n, (3.5)
linearly interpolated for  te[k/n,(k+1)/n], m—1Zk<n—1.
Similarly, let X ={X*(¢),0=t<1} be a random element in C defined by
0 for t=0,
X ()= k(O(F)—O0(F))/(mon?) for t=k/n, 1ZkZn, (3.6)
linearly interpolated for  te[k/n, (k+1)/n], 0Zk<n—1.

Let W={W(t),0<t<1} be a standard Brownian motion.
The following theorem is an extension of Theorem 3 in [12].

Theorem 2. If there is a positive number 0 such that for r=4+35 (2.3) and (2.4)
hold, and for some &' (0<d' <)

Pln)=0(n~>*+2WC+37) 3.7)
then, both X, and X} converge weakly to W and as n— o0 p(X,, X*)—0 in
probability.

Proof. From Theorem 1 in [8], it follows that X°—Z+ W as n-»co, where
X?={X?(t); 0£t<1} is a random element in C, defined by
0 for t=0

X2(t)y=\mkUM/(on%) for t=k/n, 1ZkZn (3.8)

linearly interpolated for  te[k/n,(k+1)/n], O0sk<n-—1.

So the proof of Theorem 2 is completed, since
p(X,, X)) ~5>0 and p(X}, X7)—>0 39)

are proved from Lemmas 3 and 5, using the method of the proof of Theorem 3
in [12].

4. Strassen’s Versions of the Iterated Longarithm for U, and 0(F,)

Let Cy( = C) be the space of continuous functions on [0, 1] vanishing at 0, with
the uniform topology and for each we®, define the functions Y,(t, w) and
Y*{t, w) in C, as follows:

X, (¢, w)

5 2 73 ? 4.1
(2loglogna?)* nzmax (m. 3/07) .1

Y, (t, w)=
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and
X¥(t, w)
Y, 0)= s, =>3/g? 42
0= i e neT "2V “2)
We denote by K the subset of C; consisting of all functions h(t) absolutely
continuous with respect to Lebesgue measure such that

jl Rydt<1, (4.3)
0

where h(t) stands for the Radon-Nikodym derivative of h. The following theorem
is an extension of Theorem 2 in [12].

Theorem 3. If the conditions in Theorem 2 are satisfied, then for almost all we®,
the sequences of functions {Y,(t, w), n=2max (m,3/6?)} and {Y*(t, w),n=3/s?}
are precompact in Cy and their derived sets coincides with the set K. Furthermore,
p(Y,, Y,¥)—> 0 with probability one.

Proof. Since {g;(£;), — oo <i<oo} is strong mixing and satisfies Concition (IV)
of Theorem 1 in [7], we have that for almost every we, the sequence of functions
{Y2(t, »), nZmax (m, 3/6%)} is precompact in C, and its derived set is K, where

X2(t, w)

Y. (t, w)= (2loglog na®*" 4.4
Thus, it suffices to prove

P(lim p(%,., ¥7)=0)=1 )
and

P(lim p(YF, ¥2)=0)=1. (46)

We shall only prove (4.5). The proof of (4.6) is analogous. To prove (4.5), it is
enough to show that for every ¢>0

P(Z,|>¢y(n)io.)=0 4.7)
where
Z,=n(U=0F)-mUP)=n 3, (") U @3)
c=2 c
and

> (&(e)-0F)

P(maxm
0<jsm

>ey(n) i.o.) ~0 (4.9)

where
x(m)=(20? log log no?)*
As (4.9) is obvious, we shall only prove (4.7). Let

= [k(Z +5’)(4—+5)/3(5—5')]
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and n, 2m. Then, from Lemma 3 and the Bonferonni inequality,

> P max 1Z,>e100)5 3 (3 PUZI>exm) )M ¥ k2 <oo

k=ko m=n<ng k=ko ‘n=m k=kq
and so from the Borel-Cantelli lemma we have

P(Z,|>ey(n)io)<P( max |Z,|>ex(n) i.0)
e SnSng+n

<P ( max 12> () i.o.) =0,

MENSAk+1

which implies (4.5). So, we have the theorem.

5. Almost Sure Invariance Principles and Integral Tests of U, and 0(F,)
for Some ¢-Mixing Processes

In this section, we assume that {¢;} is a p-dimensional, strictly stationary, ¢-mixing
sequence of stochastic vectors with Z¢%(n)< oo. If (2.3) and (2.4) hold for some
r=4+06(6>0), then {g,(¢;)—0O(F)} is a strictly stationary ¢-mixing sequence of
random variables with ) ¢*(n)< oo for which

E{g, (&) —0(F)} =0, (5.1)
and
Elg (&) —0(F)|**° < co. (5.2)

So, we can use the martingale approximation method in [2, 5] and [9], from
which we have the following:

Let T be an ergodic one to one measure preserving transformation defined
on the probability space (@2, o7, P). Write L,(P) for the Hilbert space of random
variables with finite second moment and define the unitary operator U on L,(P)
by UX(w)= X (Tw) for XeL,(P), weQ. We define

Yo= i [E{g,(E)—0(F)| A2 .} — E{g1(E)—O(F)| M-} 1L,y (P),
j=0

Y,=U"Y,, k=1 (5.3)
and

Z4= 3 Bl 6) -0 AL, Z=0'Z,, Kzl (54)

i=

Then, for every non-negative integer k

EY,=EZ,=0, E|Y|*"°<ow, E|Z/|*"<x, (5.5
and

g2, (&)—0F)y=Y,-UZ,+Z, (5.6)

and the sequence (Y,, .#* _)is a stationary ergodic martingale difference sequence.
(cf. Theorem 8.1 in [57]).
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Now, we put
V,=) E{Y?IY,....Y,_}. (5.7
i=1
Finally, we define random processes S={S(1),0<t<o0} and S§*={S%(z),
0<t< w0}, respectively, by
(0 for t=k 0<ks=m-—1,
SO)={k[U—~08(F)] for t=k, kzm, (5.8)
linearly interpolated for te[k, k+1], k=0,
and
k[O(F)—06(F for t=k, k=20
s(t)= L0~ ) - (5.9)
linearly interpolated for te[k, k+1], k=O0.

By the same reason as in [ 5] and [16], we use a phrase “if necessary, redefining
the X s on a new probability space” will imply that the joint distributions of the
X’s are kept the same. The following result is sharper than those of Strassen
[16] and of Sen [14].

Theorem 4. Let {¢,} be a p-dimensional, strictly stationary, ¢-mixing sequence.
Suppose that there is a positive constant o such that

» P(n)=0(n=34+302+3) (5.10)
for some §'(0< ' <) and (2.3) and (2.4) hold withr=446. For a Z 0, let
f=t(loglogt)™®, t>¢€° (5.11)
and suppose that as t — oo
WV, —no?j=o0(f(1) as. (5.12)

Then, upon redefining {S(t), 0=<t< o0} and {S*(t), 0=t< oo} respectively on a
new probability space, if necessary, there exists a Brownian motion W={W(t),
0=t< o0} such that asn—

IS(t)—maW ()| = o(t(log log /" ~*72) s, (5.13)

|S*()—mo W ()| =o(t? (log log )* ~*?)  a.s., (5.14)
and

1S(1)— §*(1)] = o(t* (log log 1)t =2 s, (5.15)

The following is a theorem concerning integral tests for U-statistics and dif-
ferentiable statistical functions.

Theorem 5. Under the conditions in Theorem 4, we have the followings:

(@) For every real function ¢, 0< ¢/,
P(S(n)>VEp(V,)i.o)=0(or 1) (5.16)
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and
P(S*(n)>V.2p(V,)i.0)=0(or 1) (5.17)

according as I(¢p) <« (or = 0), where

o« 2 t .
10)= ] 2Wexp (—q’ ()) . (5.18)
1t .2
(b) Let M,,=1n<1§1<x |S()| and M;“:ln<13<x |S*(i)|. Then, for every real function
0,0<0/, o -
PM,<VE{p(V,)} '10)=0 (or1) (5.19)
and :
PM*<VEi{p(V,)} '10)=0 (orl) (5.20)

according as I, ()< oo (or = o0), where

RO a2 8 2
-] (pu(u)exp (~ ‘ftz(“))du. _ (5.21)

The proofs of Theorems 4 and 5 need following lemmas.

Lemma 6. Under the conditions of Theorem 4 we have that
SV =cW(t)+o(tt(loglog ) =2y a.s. (5.22)

as t — oo, where S¥ = {SM(£), 0<t < o0} is a random process defined by

0 ifksSt<k+1, 0Zk<m-—1
SOH=8V= - ’ = = 5.23
©)="5i {kU}j) if kSt<k+1, k=m. (5.23)
Proof. From (5.3)-(5.6), we have
k
SP=>Y,-Z,,+Z, (5.24)
j=m

and

lim(Z,,,~Z,)/n*=0 as. (5.25)
(cf. Lemma 8.4 in [5]). So, from Theorem 4.3 in [5], we have the lemma.
Lemma 7. Under the conditions of Theorem 4, we have that as n — o

sup {k Y ( ) UM [k*(log log k) =211 }-‘—30 (5.26)

kzn h=2
and

sup {kij ( )U*W[k (log log k) ~/2] } 0. (5.27)

kzn
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Proof. We shall only prove (5.26). The proof of (5.27) is similar and so is omitted.
Let

o=k {k(loglogk)} "%, k=e.
To prove (5.26), it is enough to show that for any ¢>0

£ (uro)e Sl

h=2

P (sup ék

kzn

sup ¢, |U%|> %) -0 (5.28)

kZn

as n— oo.
Since from Lemma 3, we have that

P (sup ckIU,§2>|>3)§ Y P <ck|U,§2>|>i)§M S k=7 =0(n~7)
kzn m/ m k=n

and for each h(3<h<m)

H

P (sup ck|U,§'°l>f)§ y P(ckIUk‘h)l>3)§M Y k-3=0(n"2)
kzn m K~ m

n k=n

so we have (5.28) which, in turn, implies (5.26). Hence, the proof is completed.
Lemma 8. Under the conditions of Theorem 4, we have that as n—» oo

sup {k|0(F)— Ul [k* (log log k)* ~*?]7'} 50. (5.29)
kzn
Proof. Since

0F) - U= X {1GF 1+ UM,

h=2

so the proof of (5.29) is obtained by the same method as the one used in the proof
of Lemma 7.

The proof of Theorem 4 is obtained from Theorem 4.3 in [5] and Lemmas 6,
7 and 8, and that of Theorem 5 follows from Theorems 5.2 and 6.3 in [5] and
Lemmas 6 and 7.

Now, we shall consider a Doeblin process defined in [5]. Since Doeblin
processes are ¢-mixing with mixing coefficient ¢(n)=0(e~"") (p>0) and to the
processes Corollary 8.1 and Lemma 8.3 in [5] are applicable, so we have

|V,—nc*|=0(m "% for some &>0. (5.30)
Hence, from Theorems 4 and 5 we have the following theorem.

Theorem 6. Let {,} be a Doeblin process. If (2.3) and (2.4) hold with r=4+§ then
the conclusions in Theorems 4 and 5 hold.
6. Weak Convergence of Generalized U-Statistics

In this section, we shall consider generalized U-statistics (cf. [13]) and extend
the results in Section 3.
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Let {&;, i=--—1,0,1,...} (j=1,...,¢) be ¢(=2) independent sequences of
strictly stationary stochastic vectors, defined on a probability space (2, ., P),
where ¢;; has a df F(x), xeR?, for j=1, ..., c. We assume that for each j(j=1, ..., ¢)
{5} 1s an absolutely regular process with coefficient §;(n). Let g(&;;, i=1,. m;,
j=1,...,¢) be a Borel measurable kernel of degree m=(m,,...,m), where we
may assume (without any loss of generality) that g is symmetric in the m;(>1)
arguments of the j-th set, for j=1,...,c. Let my=m;+---+m,, F=(F, ..., F)
and consider a functional of F

o(F) j fg(xll,... CmcIfI dF,(x;;) 6.1

] :3

defined on §={F: |6(F)| < oo}.
For a set of samples of sizesn=(n,, ..., n,) with n s =2m;, 1< j< ¢, the generalized
U-statistics for A(F) is defined by

¢ n. B - . . .
<TL(Y) X et i, 12520) 62)
j=1 M/ ()
where the summation ) extends over all 1<i,, <- - <ijy,=n;, 1= j<c. Now,
we assume that w
}in;nj/nzij; 0</;<1, j=1,..,c 6.3)

where n=n,+--- +n,.
Foreachd(0=d;<m;, 1 <j<c), let

g d(x]l’l d 1<]<C)
= jg o oo Xy X s wees X s 1 ﬂ [] dFj(xjv) (6.4)
j=1v=d;

so that goq. o=0(F) and g, ,..(*)=g(-) where R} is the p(m,—d,)...(m.—d,)-
dimensional Fuclidean space. Further, for each = jEo), let

o7 ={E(ej(¢;)))* —0*(F)} +2 i {Eej(&y) e(&j ) — 07 (F)} (6.5)
E=1
where
ej(xji):géjl._.éjc(xji) (6.6)

and J,,=1 or 0 according as a=» or not.

Let E,=[0, 1]° be the c-dimensional unit cube in R¢, t=(t,,..., t,)eE,, and
[nt]=(n,t,], ..., [n.t.]) where [s] denotes the largest integer <s. As in [13],
let X(n)={X(t:n): teE,} be the process defined by

X(t:n)= {lp([nt] ) [U([nt])—0(F)] forall [nt]=m, 67

0 otherwise,
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where for k=(k,, ..., k) (k;>0,j=1, ..., ¢)

lp(k;n):n-%(z f) (ZGJ K ) 63)
j=1
and a<b means that a;<b;forall 1< j=<c.

Let W,={Wt): 0=t=1} (j=1,...,¢) be ¢ independent copies of a standard
Brownian motion on [0, 1]. Finally, let D, be the space of all real functions on
E, with no discontinuities of the second kind with the extended Skorokhod
Ji-topology defined as in [13]. The following theorem is both extensions of
Theorem 2.1 in [13] and Theorem 2.

Theorem 7. Suppose that {£;;} (j=1, ..., c) are ¢ independent sequences of strictly
stationary, absolutely regular processes. Suppose that for some >0, the following
relations hold:

¢ mj
0 S f18Gers ooy X )I* 2 U [1 dF(xj) <o, (6.9)
(ii) for all integers iy, ..., 15,
Elg(éja’a:ijla s Jm 3 1= ]<C)|4+6<M<C)O (610)
(ii1) for some & (0<d’' <)
max f(n)=0(n= 34 +C+e), (6.11)
1=jsc

Then, the series (6.5) converge absolutely; if jmax a]?>0, then X (n) converges in
Ejsc

law in the extended Skorokhod Ji-topology on D, to a Gaussian function W=
{W(t): teE,}, where

B (1-;0")?) (Z ) [Z o;d; 1 W(E) ] >0 (6.12)

=0 with probability one if t;=0 for some j(1<j=<c).

Next, let W*(n)={W*(t:n); teE,} be the process defined by

W*(t:m)=r"1(m) [U([n/t])—0(F)], teck, (6.13)
where r?(n)=Var (U(n)) and [n/t]=([n,/t,], ..., [n/t.]). Further, let

W*={W*(t):teE} (W*({t)=w W(t), tcE)
be the process defined by

w=(Wy, ..., w,); wj:ajljf%(zgf/ij)_z, 1<j<c, (6.14)

j=1

WO =(Wi(y),.... W), teE,. (6.15)

Then, we can extend Theorem 2.2 in [13] as follows:

Theorem 8. Under the conditions of Theorem 7, W*(n) converges in law in the
extended Skorokhod J-topology on D, to W*.
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The proofs of these two theorems are obtained from the methods of the
proofs of Theorems 2.1 and 2.2 in {13] using the technique used in the proof
of Theorem 2, and so are omitted.

Remark. As in [13], we can prove analogous results to Theorems 7 and 8 for
generalized von Mises’ functionals.

Acknowledgement. The author is very grateful to the editor and the referee for their useful comments
and suggestions.
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