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Let {~i} be a strictly stationary, absolutely regular processes, i.e., the process 
satisfying the condition 

fl(n)=E{ sup [P{AlJC/~ (n-* oo) 

where ~/Y/~ (a < b) is the a-algebra of events generated by ~a, ..., ~b. 
If the suitable processes are constructed from the sequence of W. Hoeffding's 

[Ann. Math. Statistics 19, 293-325 (1947; this Zbl. 32, 41)] U-statistics for the 
absolutely regular processes, then weak convergence to Brownian motion pro- 
cesses and the Strassen's version of the law of the iterated logarithm [Z. Wahr- 
scheinlichkeitstheorie verw. Gebiete 3, 211-226 (1964, this Zbl. 132, 129)] are 
established. The results are extensions of Sen's ones [ibid. 25, 71-82 (1972; this 
Zbl. 238, 6097)]. Weak convergence of the processes constructed by generalized 
U-statistics analogous to Sen's [Ann. Probab. 2, 90-102 (1974)] and almost sure 
invariance principle and integral tests [Sen; Ann. Statistics 2, 387-395 (1974), 
Jain etal;  Ann. Probab. 3, 119-145, (1975)] for U-statistics defined by some 
q%mixing sequences are considered. Analogous problems for R. von Mises' 
[Ann. Math. Statistics 18, 309-348 (1947: this Zbl. 37, 84)] differentiable statistical 
functionals are also treated. 

1. Introduction 

Let { ~,  - ~ < i < oo } be a p-dimensional strictly stationary sequence of stochastic 
vectors defined on a probability space ((2, ~ ,  P). For a<=b, let jgb denote the 
a-algebra of events generated by ~a, -.., ~b. As in [3], we shall say that the sequence 
is absolutely regular, if 

fi(n)-- E { s u p  IP {A I J C/_ ~ ~} - P{A} I} ,~0 (1.1) 

as n -~ oo (see [4] and [11]). In [11], Rozanov and Volkonskii found that 

fl(n) =�89 V(Po,, P1,)=�89 Var [Po, - PI,] (1.2) 
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where Po, is the measure induced by the process {~,} on the a-algebra j/{o ~ u ~,~,  
and P~, the measure defined for A s J/,~, B ~  ~ co by the equality 

P~,(A (~ B) = Po,(A ) Po,(B). (1.3) 

Further, we shall say that {~} satisfies the 4)-mixing condition if 

1 
~b(n)= sup - - ] P o , ( A m B ) - P ~ , ( A ~ B ) ] ~ , O  (1.4) 

~ o  ~, A~JU,~ Po,(B) 

and that {~i} satisfies the strong mixing condition, if 

a(n)= sup IPo,,(Ac~B)-PI,(A~B)I$O. (1.5) 

Since a(n)<fl(n)<ga(n), it follows that if {~i} is 0-mixing, then, it is absolutely 
regular and if {~i} is absolutely regular, then it is strong mixing. By the way, 
we note that in [4] Ibragimov and Solev obtained a complete description of 
stationary Gaussian processes satisfying Condition (1.1). 

Next, we denote the distribution function (df) of ~i by F(x), x ~ R  p, the p- 
dimensional Euclidean space. Consider a functional 

O(F) = ~{~. ~ g(xa, ..., x,3 dF(xl) . . ,  dF(xm) (1.6) 

defined over Y =  {F: ]0(F)I < ~},  where g(xl, ..., Xm) is symmetric in its m(> 1) 
arguments. As an estimator of 0(F), we define a U-statistic 

(?1) 
- 1 (n) 

U, = lq't  2g(~i1,(/) "", ~i,,), n > m  (1.7) 

(n) 
where the summation ~ extends over all possible 1 __< i~ <-. .  < i m <= n. As another 

6) 
estimator of O(F), we shall consider a yon Mises' differentiable statistical functional 
0(F,) defined by 

0(Fn)--~ S /~ 'p  S g ( x 1 ,  " " ,  Xm) d F n ( x i ) "  ' - dFn (xm)  

=n-m ~ .." ~ g(~i,, .",~i~)- (1.8) 
i1=1 i~=1 

In [6], Miller and Sen proved a Donsker-type invariance principle for one- 
sample U-statistics. But, the treatment, they used, does not work out when we 
consider U-statistics for general weakly dependent processes. In [12], Sen proved 
a weak convergence theorem and the law of iterated logarithm for U-statistics 
defined by .-mixing processes. The proof rested on certain basic lemmas on 
Bernoullian random variables in a .-mixing process and those lemmas did not 
hold for general ~b-mixing processes and hence, the same technique of proof 
was not applicable for the latter processes. 

On the other hand, in [13], Sen extended Strassens invariance principle on 
the a.s. convergence of partial sums of independent random variables to a class 
of { U,} and {0(F,)}. 

In this paper, proving a fundamental lemma (Lemma 1), we shall extend 
above results to a broad class of { U,} and {O(F,)} for strictly stationary, absolutely 
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regular processes. More  specifically, we shall prove the following theorems under 
suitable condit ions on g and fi(n): 

(i) asymptot ic  normal i ty  of n+(U. -O(F) )  and n-~(O(F.)-O(F)) (Theorem 1), 

(ii) weak convergence of cont inuous sample versions of the processes 
{n - ~ k (U  k - O(f)), k > m} and {n - ~k(O(Fk) - O(F)), k > 1 } to processes of Brownian 
mot ion  (Theorem 2), 

(iii) Strassen's versions of the law of the i terated logari thm for Uk and 0(F.) 
(Theorem 3), 

(iv) almost sure invariance principles and integral tests for U, and 0(F.) 
defined by some strictly stat ionary qS-mixing processes (Theorems 4, 5, 6). 

In Section 6, we shall extend Theorem 2 to the case of generalized U-statistics. 
The results are also generalizations of Sen's theorems in [13] (Theorems 7 and 8). 

2. Basic Lemmas 

In what follows we suppose that {gi} is a p-dimensional  strictly stationary, abso- 
lutely regular process with t i fF(x) .  

As in [12], for every c(O<__c<=m), let 

go(x1 . . . .  , xc) = ~ R(,a "'c, p ~ g(xl ' "" "' Xm) dF(xc + , ) , . .  dF(xm) (2.1) 

so that  go = O(F) and gm= g' Let 

~2 = a2 (F) = {Eg21 (~,) - 02(F)} + 2 ~, {Eg 1 (~1) g l  (~ k+ l )  - -  0 2 ( F ) }  �9 (2.2) 
k = l  

We assume that for some r > 2(0 

#r = ~ i;;~ y Jgl (xl , . . . ,  x , , ) (  dF(x , )  . .. dF(xm) < Mo < 00 (2.3) 

and (ii) for all integers il, i2, ..., im(il < i2 < " "  < ira) 

vr = El g({i,, { i2 '  " ' ' '  {im)] r ~ Mo < oo. (2.4) 

Let  ii < i 2 < . . .  < i k be arbi t rary integers. For  any j(1 < j <  k - 1 ) ,  put  

p(k) (E o) x E (k - :)) = P (Hi,, ..., r e E O}) P(( ~q +~, ..., ~i~) e E (k - :}) (2.5) 

and 

P(ok)(E(k)) = P((r �9 �9 ~i~) eE(k)) (2.6) 

where E (~ is a Borel set in Rip. 
F r o m  now on, we shall agree to denote  by the letter M some quant i ty  bounded  

in absolute value. 

Lemma 1. For  any j (O< j < k -  1), let h (x l ,  . . . ,  Xk) be a Borel  funct ion such that 

k;,; ~1 h(Xl . . . . .  xOI ~ +adPff  ) < M  
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for  some 6 > O. Then 

I I~;gp I h(Xl . . . .  ' Xk) dp(~ -- ~i~fi'p ~ h(xl . . . .  ' xk) dPj(k)] 

< 4 M  1/1 + ~ flail + a (ij + 1 - i~). (2.7) 

Proof. Let j(1 < j < k) be fixed. Let 7 = 1/(1 + 6) and put  

B - -  { ( x l ,  . . . ,  Xk): [h(xl . . . .  , Xk)] < M ~ f i - V ( d ) }  

where d =  i j+ 1 - i j .  Then, it follows from the definition of absolute regularity that 

[i "i( I h(xl , "", Xk) dP(o k) - ~ "2; ~ h(x ! . . . . .  Xk) dpj(k'I 

< i ~ f i -  ~(d) V(Po (k), pj(k)) ~ 2MYfll -v (d) --- 2 M  ~ fl~O(d). (2.8) 

Next, let B' be the complementary  set of B. Then  

1~ ~,. ~ h(x1, ... , Xk) dPi(k)l ~= M -  'O fl"~(d) ~ ~,. ~ lh(x~ . . . .  , Xk)] 1 +~ dP~ (k) 

<__Ml-~fl~a(d)=M~fl~(d) ( i=0 ,  j). (2.9) 

Combining (2.8) and (2.9), we have the lemma. 
Let 

n - t ' l  = {n(n - 1 ) . . .  (n - r +  1)} - t  

As in [12], we put  
c 

U(C)=n-[C] 2 ~..p Igc(X1, . . . , x c ) l - I d [u (x j - r  (2.10) 
l <il<,..<ic<=n j = l  

where u(v) is equal to one when all the p components  of v are non-negative;  
otherwise, u(v) = 0. Then 

U,-=O(F)+ ~ ( : )U( ,  ~). (2.11) 
c = l  

Lem ma  2. I f  there is a positive number 6 such that for r= 2 + 5  (2.3) and (2.4) 
hold, and for some 6'(O<6' <6)fl(n)=O(n-(2+o')/o'), then we have 

E(U(,~))Z=O(n -1-~) ( 2 < c < m )  (2.12) 

where 7 = 2(5 - 6')/6'(2 + 6) > 0. 

Proof  We shall only consider the case c = 2. The proofs in the cases c = 3 . . . .  , m 
are analogous and so are omitted. 

We first note  that  

U(2) = n-[Z1 2 {g2(~h, ~i2)--gl(~il)--gl(~iz)q-O(F)} �9 
l <=il<i2<=n 

So, we have 

E(u~(E)) 2 = ~ Z S((il, i2), (Jl ,J2)) (2.13) 
l<--_il<i2<--n l~jl<j2<--n 

Ken-ichi Yoshihara 
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where 

J((il ,  i2), (]i, J2)) = E {g2 (~h, ~2) - gi (~i~) - gl (~2) + O(F)} 

" {g2 (~-j,, ~12) -- gl  (~j,) -- gl  (~12) + 0(F)}. 
Since 

i/; ] {gz(X' y) - gl ( x ) -  gl(Y) + 0(F)} dF(x) = O, 

so from Lemma 1 we have the following inequalities: 

(i) If 1 __< i i < i 2 =<Jl <J2 =<. n and J2 - J l  => i2 - il, then 

J((il,  i2), (]1 ,J2))---< Mfi  a/2 +a(]2 - J i )  

and similarly, if 1 __< i 1 < i 2 =<Jl <J2 < n and i 2 - i 1 >J2 --Jt, then 

J((ii ,  i2), (Jl, J2)) =< Mfi  a/2 +~(i2 - ii). 

Thus, from (2.15), (2.16) and the assumption on fl(n) 

] 2 J ( ( i l ,  i2), (]1 ,J2))[ 
1 --<il < '2_--<jl <j2<--n 

=< { ~ + ~ } [J((il, i2), (]i ,J2))l 
l<=il<i2<=ji<J2<=n l<--_il<i2<=jl<j2<=n 

i2--il >----J2 = jl i2--il<=j2--Ji 

<=M//2 ~ (k + 1)fla/2+~(k)=O(n3-~). 
k=l 

(ii) Similarly, we have 

[ 2 J((il, i2), (]1 ,J2))l 
I <=il < jl  <=i2< J2 <_n 

< { 2 + 2 } ]J((ix, i2), (Ja ,J2))[ = 0(~3- ' ) ,  
l<i i<j l<i2<J2<=n l<=il<jl<=i2<j2<=n 

Jl -- il >=J2 -- i2 Jl -- il <=J2 -- i2 

t 2 J((ia, i2), (]~ ,J2))] 
l<=il<jl<j2<i2<=n 

{ 2 -[- 2 } ]J(( i l ,  i21, (]1 ,J2))] ~--- 0 ( / / 3 -  ~'1, 
l < i l < j i < J 2 < i 2 < n  l< i l< j l< j2<i2<_n  

jl  -- ia > i2 -- J2 Jl -- il < i2 -- J2 

i =<'l,Jl=2" <n i2:1~ J((il,  i2), (]1, i2)) 

~ ~ J ( ( i l , i 2 ) , ( i l , i 2 ) ) - [ - 2  2 ~ I J ( ( i l , i 2 ) , ( ] l , i 2 ) ) l  
ii=l 12=1 l<=i1<ji<=n i2=i 

_< O+ • o,:,. k=l 

1=,2,~2=.< 2 < ,,=1 ~ J((~l, i2/, (~1,J2//_-<M//~k=l ~/~/~+~(k)= 0(n~)" 

Hence, from (2.17)-(2.21) and (2.13), we have (2.12) with c--2.  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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L e m m a  3. I f  there is a positive number 6 such that for r = 4 + 6  (2.3) and (2.4) 
hold and for some 6'(O<6'<5)fl(n)=O(n-3(4+a')/(2+o')), then we have 

E(U,~2)) 4 = O(n -3-~') (2.22) 

where 7' = 6(5 - 6')/(4 + 6)(2 + 6') > 0 and 

E(U(,c))Z=O(n - 3) ( 3 < c < m ) .  (2.23) 

Proof Let ir~(<n ) ( r = l  . . . .  ,4 ;  s = 1 ,  2) be mutual ly  different positive integers. 
Reorder  {its} as 

1 ~ k  I < k 2 < - ' - < k 8 < n  

and put  

4- 

E [i__I~I 1 { g 2 ( ~ i j l ,  ~ i j 2 ) ~ g l  (~ijl)- g l  (~ i j2 ) - f -  0(F)}] 
= E [H(~kl, . . . ,  G~)] = J(kx . . . . .  ks). (2.24) 

Let d (~) be the c-th largest difference a m o n g  (k j+~-k  j) ( j=  1, . . . ,  7). Since 

~ir ( i=  1, 7), 

so f rom L e m m a  1 

J(kl, ...,ks)<=Mfi2+~/4+~ if k s - k v = d  (1) (2.25) 

and 

d(k~ .. . .  , ks)~MfiZ+'V4+O(k2-kl) if k 2 - k ~  = d  (t). (2.26) 

Hence 
n 

J(k t , . . . ,  k s )<Mn 4 ~ ( j+  1)3 f12+~/4+~(j). (2.27) 
l < k l < . . . < k s < n  j = l  

k8 -k7=d  (I) or k 2 - k l = d  (1) 

If for some j~(2 <j~ < 6; 1 < ~ < 4) k~ + ~ - kj~ = d (~) (1 < c~ < 4), then f rom L e m m a  1 

4 

J (k l ,  ... , k s ) ~  M ~ fi2 +a/4+a(kj~+ ~ _ kj~), (2.28) 
~ = l  

and hence 
n 

~, d(kl . . . . .  ks) <=4Mn4 Z (Jq- 1)3flz+o/4+~(j)" (2.29) 
l<kl<.. .<ks<=n j = l  

kj~+l--kd=d(:~)(1 _-< c~ < 4) 

Consequent ly  
n 

J(ka . . . .  , ks)< Mn 4 ~, (j + 1)3 fl2+~ M n S - C  (2.30) 
l <=kl <. . .<ks <=n . /=1 

We can use the similar me thod  to est imate the sums in the other  cases, and so 
we have (2.22). 
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The proof of (2.23) is analogous and so is omitted. 
Finally, we define for every c(1 < c < m )  

Vff)= ~k;) ~ go(x1' ""'  xC) FI d[F,(x])-F(x])].  (2.31) 
j=l 

Then, we have 

O(F,)=O(F)+ ~ (7)Vff ' ,  n > l  (2.32) 
c = l  

(cf. [12]). Note that 

V~ ~)= U~)=n -~ ~ {gl(r 0(F)}. (2.33) 
i = 1  

The proofs of the following lemmas are the same as those of Lemmas 2 and 3, 
respectively. 

Lemma 4. I f  the conditions of Lemma 2 are satisfied, then 

E(Vff))2=O(n -1-~ ) (1 <c_-<m) (2.34) 

where 7 is the same number in (2.12). 

Lemma 5. I f  the conditions of Lemma 3 are satisfied, then 

E(Vn(2)) 4 = O(n- 3 - r') (2.35) 

where 7' is the same number in (2.22) 

E(Vff))Z=O(n - 3) ( 3 < c < m ) ,  (2.36) 

3. Weak Convergence of/2,, and 0 (F.) 

The following theorem is an extension of Theorem 1 in [12]. 

Theorem 1. I f  there is a positive number 6 such that for r = 2 + 6  (2.3) and (2.4) 
hold and 

fl(n)=O(n -(2+~')/~') for some 3 ' (0<6 '<6)  (3.1) 

then the series (2.2) converges absolutely; if a 2 > 0  holds, 

i ,2 l imP{n~(U~-O( f ) )<zma}=(2~)  -~ e 2dr (3.2) 
- o o  

for all z ( -  o o < z < o o )  and 

n~lO(f,) - U,I ---, 0 in probability. (3.3) 

Hence, (3.2) also holds for U~ being replaced by O(F~). 

Proof Since from the central limit theorem for strong mixing (and hence, absolutely 
regular) processes (cf. [8] mn ~ U a) converges in law to a normal distribution with 
mean zero and variance m 2o -2, so the proof of Theorem 1 is obtained from 
Lemmas 2 and 4 using the method of the proof of Theorem 1 in [12]. 
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Secondly, let C be the space of all continuous real-valued functions on [0, 1], 
where we give C the uniform topology, i.e., for g, h E C 

p(g,h)= sup Ig(t)-h(t)l. (3.4) 
O<t<l 

Let a>0 .  For every n>=m, let X,,={X, , ( t ) ,O<t<l}  be a random element in C 
defined by 

[0 for O~t<(ml-~l)/n, 

X,(t)=~ k(Uk-O(F))/(man ~) for t=k/n,  m < k < n ,  (3.5) 

[linearly interpolated for tE[k/n,(k+l)/n],  m - l < _ k < _ n - 1 .  

Similarly, let X * =  {X*(t), 0 < t <  1} be a random element in C defined by 

0 for t=0 ,  

X*(t)= k(O(Fk)-O(F))/(man ~) for t=k/n,  l < k < n ,  (3.6) 

linearly interpolated for t ~ [k/n, (k + 1)/n], 0 < k < n - 1. 

Let W= {W(t), 0 < t < l }  be a standard Brownian motion. 
The following theorem is an extension of Theorem 3 in [12]. 

Theorem 2. I f  there is a positive number 6 such that for r = 4 + 6  (2.3) and (2.4) 
hold, and for some 6' (0 < 6' < 6) 

fl(n) : O ( n -  3(4+6')/(2 +6')) (3.7) 

then, both X,  and X* converge weakly to W and as n---~ oo p(X,,  X*)-+O in 
probability. 

Proof From Theorem 1 in [81 it follows that X ~ e> W as n ~ ,  where 
o {X~ 0 < t <  1} is a random element in C, defined by 

l0 for t--O 
X~ ) for t=k/n,  l <_k<n (3.8) 

[ linearly interpolated for t ~ [k/n, (k + 1)/n], 0 < k < n - 1. 

So the proof of Theorem 2 is completed, since 

p ( X , , X  ~ " , 0  and , o p p(X~,, X, ~ ) ,0  (3.9) 

are proved from Lemmas 3 and 5, using the method of the proof of Theorem 3 
in [12]. 

4. Strassen's Versions of the Iterated Longarithm for U. and O(F.) 

Let Co(c  C) be the space of continuous functions on [0, 1] vanishing at0,  with 
the uniform topology and for each coef2, define the functions Y,(t, co) and 
Y* (t, co) in C o as follows: 

r.(t,  co)= (2 log log ha2) ~' n > max (m, 3/a 2) (4.1) 
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and 
(t, co) 

Y* (t, co) = (2 log !og n 02) }' n ~ 3/0" 2 (4.2) 

We denote by K the subset of C o consisting of all functions h(t) absolutely 
continuous with respect to Lebesgue measure such that 

1 

h2(t)dt< 1, (4.3) 
0 

where/)(t) stands for the Radon-Nikodym derivative of h. The following theorem 
is an extension of Theorem 2 in [12]. 

Theorem 3. I f  the conditions in Theorem 2 are satisfied, then for almost all coal2, 
the sequences of functions {Yn(t, co), n > m a x  (m, 3/o-2)} and {Y*(t, co), n>3/a  z} 
are precompact in C o and their derived sets coincides with the set K. Furthermore, 
p(Y,,  Yd*)--'O with probability one. 

Proof Since { g l ( ~ i ) , - ~ < i < o e }  is strong mixing and satisfies Concition (IV) 
of Theorem 1 in [7], we have that for almost every co~(2, the sequence of functions 
{ yO (t, co), n > max (m, 3/0-2)} is precompact in C o and its derived set is K, where 

yo (t, co)-  x ~ co) 
(2 log log n a2) }" (4.4) 

Thus, it suffices to prove 

P(! im p(Y.,  Y~ 1 

and 

(4.5) 

P (~irn p (Y*, yO) = O) = 1. (4.6) 

We shall only prove (4.5). The proof of (4.6) is analogous. To prove (4.5), it is 
enough to show that for every e > 0  

P (1Z, [ > e X (n) i.o.) = 0 (4.7) 

where 

(7) Ud ) -  (4.8) 
c = 2  

and 
J 

i.o.) (4.9) P 

where 

z(n) = (2 0 -2 log log n a2) ~ 

As (4.9) is obvious, we shall only prove (4.7). Let 

nk = [k(2 + a') (* + a)/3 (a- a')] 
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and nko>m. Then, from Lemma 3 and the Bonferonni inequality, 

) P( max IZ, l>ez(nk))_- < F, P(iZ,  l>~z(nk)) - < oe 
k=ko m<=n<=nk k=ko n 

and so from the Borel-Cantelli lemma we have 

P(lZ, l>~z(n)i .o.)<P( max IZ, l>eZ(nk)i.o. ) 
nk<--n=nk+l 

) \m<,~,~+ IZ,[ >~  Z(nk+t) i.o. = 0, 

which implies (4.5). So, we have the theorem. 

5. Almost Sure Invariance Principles and Integral Tests of U. and O(F.) 
for Some q~-Mixing Processes 

In this section, we assume that {~j} is a p-dimensional, strictly stationary, @mixing 
sequence of stochastic vectors with ~b~(n)<  oo. If (2.3) and (2.4) hold for some 
r = 4 + 8(6 > 0), then {gl (~j)- 0(F)} is a strictly stationary @mixing sequence of 
random variables with ~b~(n)<  oc for which 

E {gt (~, ) -  0(F)} = 0, (5.1) 

and 

Elgl (31)- O(F)I 4+5 < oo. (5.2) 

So, we can use the martingale approximation method in [2, 5] and [9-1, from 
which we have the following: 

Let T be an ergodic one to one measure preserving transformation defined 
on the probability space (O, ~4, P). Write L2(P ) for the Hilbert space of random 
variables with finite second moment and define the unitary operator U on L2(P ) 
by UX (co) = X (rco) for X e L 2 (P), co E O. We define 

I1o = ~ [E {g~ (~2)- 0(f) l/t/~ ~o } - E {gl ( ~ j )  - -  O(F) lJg2~}] eLg (P), 
j=0 

Yk = uk Yo, k _-> 1 (5.3) 

and 

Zo ~ E{gl(~j)_O(F) j / / - t  = = I - ~ } ,  z k UkZo, k > l .  (5.4) 
j =o  

Then, for every non-negative integer k 

EYk=EZk=O, El Yk14+o< oe, E[Zkl4+~<o% (5.5) 

and 

gl (~.k) - O(F) = Yk -- UZk + Zk (5.6) 

and the sequence (Yk, ~ oo) is a stationary ergodic martingale difference sequence. 
(cf. Theorem 8.1 in [5]). 
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Now, we put 

v.= ~ { ~ 1 ~  .... , Y~_~}. 
i = l  

Finally, we define random processes 
0 < t < m }, respectively, by 

[0 for t=k ,  O<_k<_m-1, 

S ( t )= l  k[Uk--O(F)] for t= k ,  k >m,  
I 

[ linearly interpolated for t e[k, k + 1], 

and 
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s =  {S(t), 0__< t< ~ }  

(5.7) 

and S*={S*(t), 

k=>O, 

(5.8) 

fk[O(Fk)-O(F) ] for t= k ,  k>O 

S* (t) = ~ " ' (  linearly interpolated for t ~ [k, k + 1], k > 0. 
(5.9) 

By the same reason as in [5] and [16], we use a phrase "if necessary, redefining 
the Xi's on a new probability space" will imply that the joint distributions of the 
Xi's are kept the same. The following result is sharper than those of Strassen 
[16] and of Sen [14]. 

Theorem 4. Let  {~,} be a p-dimensional, strictly stationary, O-mixing sequence. 
Suppose that there is a positive constant 3 such that 

r = 0(n- s (4 + a'),,(2 +a'~) (5.10) 

for some 5'(0 < 6' < 6) and (2.3) and (2.4) hold with r = 4 + c5. For ~ >= O, let 

f~ ( t )= t ( log log t )  -~, t > e  e (5.11) 

and suppose that as t--~ oo 

IVn-naZI=o(f~( t ) )  a.s. (5.12) 

Then, upon redefining {S(t), 0 < t < o o }  and {S*(t), 0 < t < o o }  respectively on a 
new probability space, if necessary, there exists a Brownian motion W = { W ( t ) ,  
0 < t <  oo} such that as n --~ oo 

[ S ( t ) - m a W ( t ) [  = o(t+(log log t) (1-~)/z) a.s., (5.13) 

[ S * ( t ) - m a W ( t ) [ = o ( t ~ ( l o g l o g  t) (1-~)/2) a.s., (5.14) 

and 

[S( t ) -S*(t) l  = o(t~(log log t) ~1-~)/2 a.s. (5.15) 

The following is a theorem concerning integral tests for U-statistics and dif- 
ferentiable statistical functions. 

Theorem 5. Under the conditions in Theorem 4, we have the followings: 

(a) For every real function q~, 0 < q ~ / ,  

P(S(n) > V,~o(V,) i.o.) = O(or 1) (5.16) 
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and 

P(S*(n)> V2go(V,)i.o.)=O(or 1) 

according as I(go) < oo (or = oo), where 
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(5.17) 

P(M, < V~{r -1 i.o.)=O (or 1) (5.19) 

and 

P( / , *  < V~{q}(V,)} -~ i.o.)=O (or 1) (5.20) 

according as Ii((p)< oo (or= oo), where 

( l~((p) = ~ exp du. (5.21) 
1 U 7~ 2 ] 

The proofs of Theorems 4 and 5 need following lemmas. 

Lemma 6. Under the conditions of Theorem 4 we have that 

Sta)(t) = cr W(t) + o(t+(log log t )  (1 - cQ/2) a.s. (5.22) 

as t -+ 0% where S (1) = {S (1) (t), 0 < t < oe} is a random process defined by 

- ~0 if k<=t<k+l,  O<_k<_m-1 (5.23) 
S(1)(t)=S~l)=l.kU(kl) if k<=t<k+l,  k>m. 

Proof. From (5.3)-(5.6), we have 
k 

S(1)= ~ Y j , Z k + I + Z  m (5.24) 
j = m  

and 

lira ( Z , + I - Z , , ) / n ~ = 0  a.s. (5.25) 
n~o9 

(cf. Lemma 8.4 in [5]). So, from Theorem 4.3 in [5], we have the lemma. 

Lemma 7. Under the conditions of Theorem 4, we have that as n --~ oo 

k>_n h = 2  

and 

sku p {k h=2 ~ ( h )  U*(h)[k~(log log k) (1-~)/2]-~} ~ 0. (5.27) 

 ( )exp dt (5.18) 
l - T -  , 2 /  

(b) Let M,= max IS(i)[ and M* = max [S*(i)[. Then, for every real function 
l<=i<=n l<_i<_n 

p, 0 < q}/', 
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Proof We shall only prove (5.26). The proof of (5~ is similar and so is omitted. 
Let 

ck=k {k(log log k)} -~, k > e  e. 

To prove (5.26), it is enough to show that for any e > 0 

 (supc  i L ,  (s pc  +o 
X k > n  [ h = 2  = \ k > n  

a s  n - ~ -  oo .  

Since from Lemma 3, we have that 

P(supcki~k m] oo Ptck k ,> <=M~c4k-s-"=O(n-'') 
\ k  >n  k ~ n  = 

and for each h (3 < h < m) 

--(h) 2 - P sUp Ck Vs [> _--<~ e cklU~h)l> _-<M ckk 3--0(n-2), 
\ k  >n  k ~ n  k = n  

so we have (5.28) which, in turn, implies (5.26). Hence, the proof is completed. 

Lemma 8. Under the conditions of Theorem 4, we have that as n -* oo 

sup {klO(Fk)- Ukl [k ~ (log log k) (~- ~)/2] -1} ~ 0. (5.29) 
k > n  

Proof Since 

IO(fk)--Ukl < k {IU*(h)l+lU~hh)l}, 
h = 2  

so the proof of (5.29) is obtained by the same method as the one used in the proof 
of Lemma 7. 

The proof of Theorem 4 is obtained from Theorem 4.3 in [5] and Lemmas 6, 
7 and 8, and that of Theorem 5 follows from Theorems 5.2 and 6.3 in [5] and 
Lemmas 6 and 7. 

Now, we shall consider a Doeblin process defined in [5]. Since Doeblin 
processes are (b-mixing with mixing coefficient 4(n)=O(e -p") (p>0) and to the 
processes Corollary 8.1 and Lemma 8.3 in [5] are applicable, so we have 

Ig,-n~r2l=O(n 1-~) for some e>0. (5.30) 

Hence, from Theorems 4 and 5 we have the following theorem. 

Theorem 6. Let {d,} be a Doeblin process. If(2.3) and (2.4) hold with r = 4 + 6  then 
the conclusions in Theorems 4 and 5 hold. 

6. Weak Convergence of Generalized U-Statistics 

In this section, we shall consider generalized U-statistics (cf. [13]) and extend 
the results in Section 3. 
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Let {~ri, i . . . . .  1,0, 1, ...} ( j = l  . . . .  , c ) b e  c ( > 2 )  independent  sequences of  
strictly s ta t ionary stochastic vectors, defined on a probabi l i ty  space (f2, s#, P), 
where Cji has a dfFj(x), x E R  p, for j =  1 . . . . .  c. We assume tha t  for each j ( j =  1 . . . .  , c) 
{~r/} is an absolutely regular process with coefficient fir(n). Let g(~ri, i =  1 . . . .  , mr, 
j =  1 . . . . .  c) be a Borel measurable  kernel  of degree m = ( m ~ ,  ..., me), where we 
m a y  assume (without any loss of generality) that  g is symmetr ic  in the mr (>  1) 
a rguments  of the j- th set, for j =  1, ..., c. Let m 0 = ma + . . .  + me, F =(Fa,  ..., F~) 
and consider a functional  of  F 

0 ( F ) = ~ / ~ j g ( X l l ,  ...,Xcm~) ~ ~ dFj(xji ) (6.1) 
j= l  i=1 

defined on ~ =  {F: 10W)[ < oe}. 
For  a set of samples  of sizes n = (nl, ..., tic) with nj > m~, 1 < j < c, the generalized 

U-statistics for 0(F) is defined by 

U(n) = nj ~ g(gr~, ~ = it*, ' " ,  ia,,,, 1 < j < c) (6.2) 
j=l \mj /  (n) 

where the summat ion  ~ extends over  all l < i r ~ < . . - < i r m j < n r ,  l < j < c .  Now,  
we assume that  (-) 

lim n jn=2a;  0 <)~i< 1, j =  1, ..., c (6.3) 
n~oo 

where n = n~ + ... + n c. 
For  each d~(0 < d r__< mr, 1 < j__< c), let 

ga~ ...ao(xri, i= 1 . . . . .  dr, 1 < j < c )  

=~k}.~g(xrl ,  ...,xre~,x~a j . . . . . .  ,Xrm J, l < j < c )  [ I  dFj(xj~) (6.4) 
j=~. v=dj+l 

so that  goo. . .o=0(F)  and g . . . . . .  c ( ' ) = g ( . )  where R* is the p(m~-d~) . . . (mc-d~)-  
dimensional  Eucl idean space. Further ,  for each j(1 < j  < c), let 

a~ = {E(ej(~rl)) 2 - 02(F)} + 2 ~ {Eer(r ) er(r ) -  02(F)} 
k=l 

where 

(6.5) 

ej (xji) = g a jl... ajo (xj i) (6.6) 

and 6ab = 1 or 0 according as a = b or  not. 
Let Ec=[O, 1] c be the c-dimensional  unit  cube in R c, t = ( t  1 . . . .  , tc)~Ec, and 

[ n t ] = ( [ n l q - I  . . . . .  [nJ~]) where Is] denotes the largest integer <s .  As in [13], 
let X(n )=  {X(t:n): t~Ec} be the process defined by 

�9 , f ~ ( [ n t ] :  n) [U([n t ] ) -O(F)]  fo ra l l  [nt]_>m, 
X ( t : n ) = ~  . . . .  - (6.7) 

{.u otnerwlse, 
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where for k = (kl, ..., kc) (kj > 0, j = 1, ..., c) 

O(k:n)=n " ~ ~ k f  1 (6.8) 
) 

and a < h means that aj < bj for all 1 < j__< c. 
Let Wj= {Wj(t): 0_<t< 1} ( j=  1, ..., c) be c independent copies of a standard 

Brownian motion on [0, 1]. Finally, let D e be the space of all real functions on 
E~ with no discontinuities of the second kind with the extended Skorokhod 
Jl-topology defined as in [13]. The following theorem is both extensions of 
Theorem 2.1 in [13] and Theorem 2. 

Theorem 7. Suppose that {~-jl} (J= 1 . . . .  , c) are c independent sequences of  strictly 
stationary, absolutely regular processes. Suppose that for some 6 > O, the following 
relations hold." 

mj 

(i) Si;~,j Ig(Xll . . . .  , x~mo), *+~ 15I l-[ dFj(xji)< 0% (6.9) 
j = l  i = l  

(ii) for all integers ijl , ... , ijm j 

E lg(~ j~, c~= ijl  , . . . ,  i jmj, 1 < j < c)14+Z <= M < 0% (6.10) 

(iii) for some 6'(0 < 3' < 6) 

m a x  f l j ( rO=O(n-3 (4+~  (6.11) 
l<j<-_c 

Then, the series (6.5) converge absolutely," if max a~ >0, then X(n) converges in 
l<_j<~c 

law in the extended Skorokhod Jl-topology on D~ to a Gaussian function W =  
{W(t): t~E~}, where 

t( tl ] W(t)= ( ~  ffj)~ ~ aj)~j-�89 1 ~ a j )c f~ t f lWj( t j )  , t > 0  (6.12) 
\ j = l  / \ j = l  ! I - j=l  

= 0 with probability one if tj = 0 for some j(1 < j < c). 

Next, let W*(n)= {W*(t:n); t~E~} be the process defined by 

W*(t:n)=r-~(n) [U([n/t])-O(F)], t~E~ (6.13) 

where rZ(n) = Var (U(n)) and [n/t] = ( [n l /q] , . . . ,  [nc/t~]). Further, let 

W*= {W*(t):tEE~} (W*(t)=w'W(t), t6E~) 

be the process defined by 

W~---(W 1 . . . .  ,We)'; Wj=(Tj,~f ~ ff2/)Cj , l < j < c ,  (6.14) 

W(t) = (W1 (tl) . . . .  , W~ (t~)), t6E~. (6.15) 

Then, we can extend Theorem 2.2 in [13] as follows- 

Theorem 8. Under the conditions of  Theorem 7, W*(n) converges in law in the 
extended Skorokhod J~-topology on D~ to W*. 
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The proofs of these two theorems are obtained from the methods of the 
proofs of Theorems 2.1 and 2.2 in [13] using the technique used in the proof 
of Theorem 2, and so are omitted. 

Remark. As in [13], we can prove analogous results to Theorems 7 and 8 for 
generalized yon Mises' functionals. 

Acknowledgement. The author is very grateful to the editor and the referee for their useful comments 
and suggestions. 
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