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1. Introduction 

In this paper we obtain upper bounds for large deviations for certain classes of 
dependent random vectors. One of the situations we study is as follows. 

Let {Xj , j>0}  be a Markov chain with state space S and transition proba- 
bility n. Let E be a topological vector space and f :  S~E. We obtain upper 
bounds of the type 

l imsup,  n -1 logP (Xj)~F < -A(F)  (1.1) 

where F is a closed subset of E, 
A is a set functional associated by convex duality to 4, where for ~eE', the 

dual of E, ~b(~)=logr(Tr and r(Tr is the spectral radius of a certain operator 
naturally associated to 3, n and f. 

This extends some of the work on large deviations by Donsker and Varad- 
han [-6]. 

Another situation that we study is that of sums of exchangeable random 
vectors. 

In Sect. 2 we present a general result on upper bounds for large deviations 
of dependent random vectors, slightly extending some work of Ellis [8]. 

Section 3 contains an integrability theorem which provides the basis for the 
extension of upper bounds from compact sets to closed sets in Sects. 4 and 5. 
Even in the case of independent identically distributed random vectors Theo-. 
rem 3.1 (with the family {/~} reduced to one measure) simplifies the methods in 
the literature ([6, 1]) and appears to have independent technical interest. 

In Sect. 4 we prove the upper bound (1.1), slightly strengthened, as an 
application of Theorem 2.1. The content of Theorem 4.2 is that under very 
weak restrictions on ~ and f a natural upper bound of the form (1.1) exists for 

* This paper is a revised version of "Upper  Bounds for Large Deviations of Vector-Valued 
Functi0nals of a Markov Chain", Department  of Mathematics  and Statistics, Case Western 
Reserve University preprint, January 1984 
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compact sets and, if suitable integrability and tightness conditions are imposed, 
for closed sets as well. Then we show that some important results on upper 
bounds for large deviations of infinite-dimensional random vectors recently 
proved in the literature may be obtained as corollaries of Theorem 4.2. We 
consider the case of independent, identically distributed random vectors taking 
values in a separable Banach space (Donsker and Varadhan [6]; Bahadur and 
Zabell [2]; also Azencott [1]) and the case of occupation times of a Markov 
chain (Donsker and Varadhan [6]). Our approach has some features in com- 
mon with Ch. 7 of the interesting very recent book [15], although the points of 
view are different (this book appeared half a year after the present work had 
been submitted). 

In Sect. 5 we prove a result on upper bounds for sums of exchangeable 
random vectors. 

To close this introduction, we remark that we have recently obtained 
results on lower bounds in the framework of Sects. 2 and 4. At present, 
however, our results for lower bounds are less simple and general than the 
upper bound result. 

2. Upper Bounds for Large Deviations of Dependent Random Vectors 

In this section we prove a general result on upper bounds for large deviations 
of dependent random vectors under an assumption on the limiting behavior of 
their Laplace transform. The case of compact sets has been discussed in Ellis 
[8], on the basis of an idea of G~irtner [9]; we give a somewhat strengthened 
version using their approach (for other related references see [8]). The con- 
dition (2.3) below, which makes it possible to pass from compact sets to closed 
sets, is used in [6] and has been isolated by Azencott [1] in the case of partial 
sums of independent identically distributed random vectors. A technical obser- 
vation perhaps worth emphasizing is that upper bounds for large deviations of 
random vectors {I1,} depend only on a limiting inequality for the normalized 
logarithms of the Laplace transforms of { I7,}. 

Let E be a Hausdorff topological vector space, endowed with its Borel a- 
algebra. Let E' be the dual space of E; the weak topology induced on E by E' 
will be denoted ~(E,E'). Given a function 4): E '~IR,  its convex conjugate 2~ is 
defined by 

2e(x ) = sup [(4, x )  - q~ (~)] (xeE) 
~_sE' 

and the Cramdr functional A4~ of ~b is defined by 

A4~(A ) = inf2,(x) (AcE) .  
xEA 

Theorem 2.1. Let {P~,aEI} be a family of probability measures on a measurable 
space (f2,~) and for each ~ I ,  let E~ be the P~-expectation functional. Let {I1,} 
be a sequence of E-valued random vectors, defined on f2. Assume: for every 
~ E ' ,  
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lim sup,  n - 1 log supE~ exp (~, Y,) < ~b(~) (2.1) 

for a certain ~o: E'--+I(. Then 

(i) for every a(E, E')-compact set F c E, 

l im sup,  n -  1 log sup P~ {n- 1 y, ~ F} < - A 0 (F); (2.2) 
c~EI 

(ii) /f, furthermore, the following condition holds: for every a > 0 ,  there exist 
a compact set K c E  and n o ~ N  such that 

supP={n -1  Y.eK~} <e -"~ (n>no), (2.3) 
~tEl 

then (2.2) holds also for every closed set F. 

Proof. Let  2 = 2 ~ ,  A=Aee. We have several cases: 

(1) A(F)<O. This case is trivial. 

(2) 0 < A ( F ) <  oo. Let  e > 0  and int roduce 

H ( { ) =  {xeE: ({ ,x>  -~b ({ )>  A ( F ) - e }  (~eE').  
Then  

F c {xeE: ~,(x)> A ( F ) - e }  = [_) H({). 
~ E '  

Since F is a(E, E') -compact ,  there exist ~1 . . . .  , ~k in E' such that  

k 

r c U H( O. 
i = 1  

k 

N o w  P~{Y,,enF} < ~ P={r.enH(~i) } 
i = 1  

k 

= ~ P~{(~,, Y,> >n(qS({,)+b)}, 
i = 1  

k 

where b= A(F)-e ,  < ~, e-"(O(~-')+b) E~ exp( {i, Y,} 
i = 1  

=< k exp { - n(inf{~b({ 3 - n -  * logE= exp ( {~, Yn>} + b)}. 
i 

By assumpt ion  (2.1), 

l im sup,  n -  * log sup P~ { Y, e n F} < - b = - a (F) + z. 
~tE[ 

Since e is arbi t rary,  (2.2) follows. 

(3) A ( F ) =  c~. In this case, fix m > 0  and consider 

L ({ )=  {x~E: ( { , x )  -qS(~) >m}.  

Then  F c U L({), and proceeding as in (2) one obtains  

l im sup,  n -  1 log supP~{Y,~nF} < -m.  



554 A. de Acosta 

Since m is arbitrary, (2.2) again follows. This completes the proof of (i). 
To prove (ii) let a > 0  and let K a be a compact set satisfying (2.3). Then for 

every closed set F 

P~{n -1  Y.~F} =P~{n - I  Y.~K~r~F}+ P~{n -1 Y.~K~.~F} 

=<2max(P~{n -1 Y.~K.c~F},P~{n -1 Y.~K~}) 

and since K.c~F is o-(E,E')-compact we have by (i) and (2.3) 

lim sup.n -1 log supP~{n -1 Y ~ F }  __<max{ -A(Kac~F),  - a }  
0r 

=<max{ - A(F), - a} .  

Since a is arbitrary, (2.2) follows. []  

Remark. As observed by Ellis [8] the argument of Theorem 2.1 is still valid if 
{n} is replaced by a positive sequence {a.} with l im.a .= oo. 

3. An Integrability Theorem 

A subset A of a vector space E is positively balanced if )LxeA whenever x e A  
and 2~[0,1].  Given a convex, positively balanced set A c E ,  its Minkowski 
functional qA is defined by 

qA(x)=inf{2>O: x~,~A} (x~E) 

(with the customary convention: inf~b= + ~ ) .  Then qA(x)<oo if and only if 
xe  ~)(nA), and qA is subadditive and positively homogeneous. 

n 

Theorem 3.1. Let E be a Hausdorff locally convex topological vector space, and 
let E o c E  be a convex, positively balanced subset of E such that E o with the 
relative topology is Polish. Let p: Eo~IR  + be a measurable function such that 

(a) p is subadditive and positively homogeneous, 

(b) for every neighborhood V of 0 in E there exists e > 0  such that 
{x6Eo : p(x) < ~} c V c~ E o. 

Let {p~,aeI} be a family of probability measures on E such that 

(1) #~(Eo)= 1 Jor all ~e l  and {t% ~el}  is tight, 

(2) for every t > O, 
supSexp(tp) d#~ < oo. 

Then there exists a compact, convex, positively balanced subset K of E o such 
that 

sup S exp (qK) d #~ < ~ .  
CtE[ 

For the proof of Theorem 3.1 we need 

Lemma 3.2. Let G(t)=p~({x: p(x)> t})(esl ,  t>0).  Then 

lim sup(G(t))l/ '=0. 
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Proof. Given  e > 0 ,  choose a > 0  so that  e - " < e .  Then for all t > 0 ,  

%(t) < e at~ exp(a p) d /~  

< e at Ma ( independent  of ~ by (2)). 
Therefore  

sup (z ~ (2)) lit ~ e- a M~ it, 

l im sup sup (~(t)) TM <= e-a < e. [] 
t ~ o 3  c ~ l  

Proof of Theorem 3.1. We will p rove  the following s tatement ,  which clearly 
implies the conclusion:  for every fl~(O, 1), there exists c > O  and a compact ,  
convex, positively ba lanced set K ~ E  o such that  

#~((x:qK(x)>t})~cfi  t for all ~, a l l t ~ l .  (3.1) 

Choose  fi~(O, 1). Set 

t~,,=inf{t>O: "C c~(t) < fim} ; 

it follows that  ~(tm,~)< fl~. Let  

Bin, ~ = { x G e 0  : i0(X) ~ tm, c~}. 

By (1), there exists a compac t  set K ~ c E  o such that  

#~(K~,) < fl" for all c~; 

by the assumpt ion  on Eo, we m a y  assume that  K m is convex and posit ively 
ba lanced (see e.g. [14], p. 50). We may  also assume K,, c Kin+ 1 for all m. N o w  
let 

A,,= U m-a(K,,c~B,,,~), 

K = closed convex positively balanced hull of ( ~  A~). 
tn  

We claim that  K is compact .  To  prove  this, we first observe that  

d~=m-1(sUptm,~)-+O as m--+oo. (3.2) 

In  fact, given e > 0, choose m 0 so that  m o ~/2< ~/2 and for all a, all t > m~/2, 

logfl/(t- 1 log%(t)) < e/2; 

this is possible by L e m m a  3.2. Let  m>m o. If  t~ ,J2>m ~/2, we have 

~(t, .  22)> I~ "~, 

(tm, J 2  ) log%(t~ ,J2)  = (t~,~/2) rn logfi, 
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t,,,~ < log fl < e/2, 

2m = ( t ~ )  log~(tm, J2) 

tm c~ 
' < 8 .  

m 

On the other hand, if tm, J 2 < m  1/2, then 

t,,,, 2 2 
m <mfT~ <m-~o/2 < ~" 

Thus for m > m  o, we have (suptm,~)/m<e, proving (3.2). It follows that (~A,,)  is 
~EI m 

totally bounded; for, let V, e be as in assumption (b). Choose m o so that din<8 
for m > mo. Then 

UA~--( U A.)~( U A.) 
m m<=~o m > m  o 

c Kmo u {x~E o" p(x) < 8} 

c K,,oU(V C~ Eo), 

proving the total boundedness of (UAm). By the assumption on E o, it follows 
m 

that K is compact (see e.g. [14], p. 50), establishing the claim. 
To conclude the proof we verify (3.1). Given t >  1, let m =  [-t]. Then for all 

c~I, 
#~({x : q~(x) > t}) = #:((tK) ~) 

<-_#~((mK) ~) 

~l,t~((Km~Bm,~) c) 
<=#~(K~)+ ~(tm,~) 
<= fl'~ + fi'n = 2 ~% 

and since tim+l< fit we have 

#~({x:qK(x)>t})<(2fl-1)fl t. [] 

The following example, due to J. Rosinski [13], shows that the assumptions 
of Theorem 3.1 cannot be easily relaxed. 

Example 3.2. For every infinite dimensional normed linear space E, there exists 
an E-valued random vector X such that E(expHX]])<oo but E(expqK(X))=oo 
for every compact, convex, balanced set K. 

Proof By the Riesz lemma (see e.g. [7], p. 578) there exists a sequence {x,} c E  
such that []x,[] =1 for all n and ]]x,--XkH >1/2 for n#k .  Let a ,= logn ,  p ,=cn  -a, 

where c is chosen so that ~, p , -  1. 
n = l  

Let X be an E-valued random vector such that: 

P { X = a , x , }  =p, .  
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An easy computation shows: E(exp IIXII)< oo. On the other hand, the compact- 
ness of K implies lim~qr(x,)=oo and it easily follows that E(expqK(X)) 
= 0 0 .  [ ]  

4. Vector Valued Functionals of  a Markov  Chain 

We shall work with the canonical version of a Markov chain. That is, we take 
the underlying measurable space to be S ~ with the product a-algebra, where 
(S,5 P) is a given measurable space, and {Xj,j>0} are the coordinate maps; we 
denote by ~k the a-algebra generated by X o,...,X~. 0 is the shift operator on 
S~; that is, O((xj)j>=o)=(xj)~ 1. The Markovian probability measure on S N 
determined by the transition probability n and the initial distribution # will be 
denoted P,; we write P~ = P~x for xeS  and E u for the Pu-expectation functional. 

We denote B(S) the Banach space of real-valued bounded measurable 
functions defined on S, with the supremum norm [l'[b ~o. 

Theorem 4.1. Let M be a family of probability measures on S. Let E be a 
Hausdorff locally convex topological vector space and let f :  S ~ E  be a measur- 
able map such that for every 4aE', 

supSe <~'~(y)> #(d y) < oo, 
/LEM 

sup~e <r162 re(x, d y) < oo. 
x~S 

Let T~: B(S)--*B(S) be defined by 

(Tr g)(x)= ~ K r d y) g(y) 
w h e r e  

K~(x, A) = ~ e <~'y(y)> n(x, d y). 
A 

n - 1  

Then if Y,= ~ f ( X ~ )  and ~ E ' ,  
j=o 

lira sup, n-  1 log sup Eu exp (4, Y,) < log r (Tr (4.1) 
/teM 

where r(Te) is the spectral radius of Te. 

Proof First we need an expression for E~exp(~, Y,). This is: for n>2,  

g~exp(4, Y,)=Sv(dx)e<~'~(X))K~"-~)(x,S), (4.2) 

where K~ m) is the m-fold composition power of the kernel K~. 
To prove (4.2) assume, inductively, that for a fixed n > 2  and all initial 

distributions v (4.2) holds. 
Applying a suitable form of the Markov property (see, e.g., [12], p. 19), we 

have 
E, exp (~, Y,+ 1) = E~E~ {exp (~, I1,+ 1)[~1} 

= E~ exp (4 , f (Xo))  E~ {exp (4, Y, ~ 0) 1~1 } 

=E,  exp(r  Ex~ exp (4, Y.) 



558 

and by the inductive assumption 

. . . .  E~{exp(~, f (Xo)  ) exp (~ , f (X1))  K~"- :)(X1, S)} 

=~v(dx) e<:'I(~)> ~e<r ~(x, dy) K~"- 1)(y, S) 

= ~v(dx) e <~'s(x)> K{")(x, S). 

Since (4.2) is immediate for n = 2, this proves (4.2). Next, by (4.2) 

E~exp<~, Y,> < sup K~"- 1)(x, S)~e<r 
xeS 

= II T~"- ill ~'e<~,s(~)> ~(d y,), 

(supE r exp < ~, y,>) a/, < II To"- ill a/"(sup 5e<r #(dy)) 1/", 
#GM ,ueM 

lim sup,,(sup E,  exp <~, y,>)l/, <lira,  I1 To"- 1 l[ i/, 
p e M  

= r(T~)  

by the spectral radius formula (see, e.g., [7], p. 567). This proves (4.1). [] 

For the statement of Theorem 4.2, let 

qS(~) = logr(T{) (~GE'); 

also, as in Sect. 2, we write 

2(x)=sup[<~,x> - q~(~)] (xeE), 
CeE' 

A(A)= inf2(x) (A : E). 
xGA 

Theorem 4.2. Under the assumptions of Theorem 4.1, we have 

(a) For every a(E, E')-compact subset F of E, 

lira sup,, n-  1 log sup Pu {n- 1 Y, eF} < - A (F). (4.3) 
#eM 

(b) Let E o and p be as in Theorem 3.1 and assume f ( S ) : E  o. Assume also 

(i) for every t > O, 
sup~exp {tp(f(y))} #(dy) < 0% 
#eM 

sup~exp {tp(f(y))} ~(x, dy) < ~ ,  
XES 

(ii) {f(#):#eM} and {n(x , f -a( ' ) ) :  xeS}  are tight. 

Then (bl) for every closed set F : E ,  (4.3) holds, 
(b2) for every a>O, {xeE: 2(x)<a} is compact. 

Proof. (a) follows at once from Theorems 2.1(i) and 4.1. In order to prove (b:) 
it is enough, by Theorem2.1(ii), to show that condition (2.3) is satisfied. By 
assumptions (i) and (ii) and Theorem3.1, there exists a compact, convex, 

A. de Acosta 
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positively balanced set K c Eo, such that 

bl = supSexp { qK(f (Y) ) } #(d y) < o% 
~M (4.4) 

b 2 = sup S exp {qK(f(Y))} n(X, dy) < oe. 
x~S 

By the Markov property, 

E,  exp qK( Yn) < Eu exp {qK(Yn- 1) + qK(f (X,-  1))} 

= Eu exp {qK(Yn- 1)} "~ exp {q~:(f(y))} rc(Xn_ 2, d y) 

< (E, exp {qK(Y,_ 1)}). b2 

and iterating we obtain, for all/~eM, 

E, expqK(y, ) <b 1 b, 2-1 <b ~, 

where b =max  {b l, b2}. Therefore, for ? >0, geM,  

P~{n -1 Y.(~TK}=Pu{qK(Y.)>ny } 

<=e-"~ EuexpqK(Y,) 

< exp { -(7 - logb)  n}. 

Given a>0 ,  choose 7 > a + l o g b ;  then Ka=?K satisfies (2.3). This completes the 
proof of (b 0. 

Let a > 0  and let F= {x: 2(x)<a}. We shall prove: there exists 0 < c < o c  
such that if xeF, then 

(~ ,x )<c  for all ~eK ~ (4.5) 

where K ~  {r (~ ,x )< 1 for all xeK}, or equivalently, 

c- l xe K oo. 

Since K ~ 1 7 6  by the bipolar theorem (see, e.g. [14], p. 126), it follows that 

F ccK,  
which proves (b2). 

In order to establish (4.5), let 

H (x, A) = ~ exp( qK(f (y))) re(X, dy), 
A 

(Tu)(x)=~u(y)H(x, dy) for u~B(S); 

then by (4.4), T: B(S)~B(S) is a bounded operator. Also, if CeK ~ 

(~,f(Y)) < qK(f(Y)) qKo(~) < qK(f(Y)) (yeS) 
and therefore 

K(~")(x,A)<=H(")(x,A) (n> 1). 
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It follows that for {eK ~ 

Now for xeF,  for all ~ E '  

so for {eK ~ 

proving (4.5). [] 

r(Tr =l im,  II Z~l[ 1/, 

_<lim, II T"ll l/" -= r( T). 

({, x)  _< a + log r (Tr 

( ~ , x )  <=a+logr(T)=c, 

Remarks. (a) It is not difficult to formulate and prove a result extending 
n--1 

Theorem 4.2 to the case when Y,= ~ f ( X i ,  Xj+I), where f :  S x S-+E. We omit 
the details, j= o 

(b) In the case of F,k-valued functionals, sharper (that is, non-logarithmic) 
large deviation bounds for convex sets will be studied in a forthcoming paper 
by I. Iscoe, P. Ney and E. Nummelin. 

We will apply Theorem 4.2 to two situations: the case of partial sums of 
independent, identically distributed random vectors and the case of occupation 
times of Markov chains. In both cases we obtain new proofs of the upper 
bound part of results of Donsker and Varadhan ([6], Theorems 4.4 and 5.3). 

For the statement of Theorem 5.1, let 

f i (~)=~exp(~,x)  #(dx) (~EE'), 

2(x) =supl-({ ,x)  -log/2({)] (xEE), 
~EE' 

A(A) = inf2(x) (A c E). 
x~A 

Theorem4.3. Let E, E o and p be as in Theorem 3.1. Let # be a probability 
measure on E such that #(Eo)= 1 and 

~exp(tp)d#< oo for all t>0.  

Let { X j , j  >>_ 1} be a sequence of independent E-valued random vectors with ~'  (X j) 
? 1  

= # for all j, and let S, = ~, X~. Then for every closed set F c E, 
j = l  

lim sup, n-  1 logP {n- 1S, eF} <= -A(F) .  (4.6) 

Also, for every a>O {x: 2(x)<a} is compact. 

Proof With obvious notational changes, the result follows from Theorem 4.2 
by taking S = E  o, f = I d s ,  M={#},  re(x,.)=# for all xeS.  Observe also that, 
trivially, r(T~)= 1] Tel I =/~(~). [] 

Remarks. (1) Theorem 4.3 is actually a slight generalization of Theorem 5.3 of 
[6], which follows by taking (E, II']r) to  be a separable Banach space, Eo=E 
and p = II" II- 
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(2) Again assume that E is a separable Banach space. Let {g,}, /~ be 
probability measures on E and assume that {g,} converges weakly to /~, For 
each heN, let {X}'): 1 <j<n}  be an independent system with ~(X}"))=#,, and 

let St,")= ~ X} "). Then (4.6) remains true with S, replaced by S~ ) under the 
j = t  

integrability condition: for all t > 0, 

sup, Sexp(t IIxll) ~,(dx) < oo. 

This fact may be easily proved using Theorems 2.1 and 3.1. It is the upper 
bound part of a result proved by Chevet [4] for a sequence of Gaussian 
measures and by Bolthausen [3] for general probability measures. 

For the formulation of the next theorem, which is essentially Theorem 4.4 
of [6] we recall some definitions in [6]: for a Polish space S, Cb(S) is the 
Banach space of real-valued bounded continuous functions defined on S, with 
the supremum norm; 

1I 1 = {ue Cb(S): infu(x) >0}; 
xffS 

n is a Feller transition probability: if u~Cb(S), then nU~Cb(S); for 
#sg)l[ (S), the space of probability measures on S (with the weak topology), 

I(#) = sup {Slog(u/~u) d#}, 

I(A)= infI(#) (A ~ g)l+ (S)); 
#EA 

{L,} is the sequence of occupation times of the Markov chain {X j} : 

n--1 

L,(cg, A) = n-1 Z I A(Xj(c~ 
j=o 

Theorem4.4. Let {Xi, j>=O } be a Markov chain with Polish state space S and 
Feller transition probability u. Let M be a relatively compact subset of gJt+ (S). 
Then 

(a) For every compact subset F of gJl[(S), 

lim sup, n-  1 log sup Pu {co: L,(co, -)~F} < - I(F). (4.7) 
#cM 

(b) If, furthermore, {u(x, "): xdS} i s tight, then 
(b 0 for every closed subset F of ~I+(S), (4.7) holds, 
(b2) for every a>O, {#eTJI~(S): I(#)<a} is compact. 

Proof. We apply Theorem 4.2. Let f :  S--+gJI+(S) be defined by 

f (x)=dx;  ~ 

then f is a continuous map and for all co, 

n- - i  n - - I  

n-1 Y.(c~ =n-1  ~ f ( X j ( o ) )  =n-1 Z 6xj(o,)=L.( c~ ")" 
j ~ O  j=O 
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If E = 9)l(S), the space of finite signed measure on S endowed with the weak 
topology a(93~(S), Cb(S)), then E ' =  Cb(S); if ~=~g is the element of E' given by 
ge Cb(S), then 

(~,(Sy)=Sgdb,=g(y) for all yeS. 

It is well known that if E0=g.R+(S), the space of finite non-negative measures 
on S, then E o satisfies the assumption of Theorem 3.1. Moreover, if p =  [['llv, 
the total variation norm, then p satisfies conditions (a) and (b) of Theorem 3.1 
and p(f(y))= [1@[~= 1 for all yeS. 

Assertions (a) and (b) above  will follow from statements (a) and (b) of 
Theorem 4.2, respectively, if we prove: for all #eg)l+(S), 

I(#)=2(#),  (4.8) 

where 2 is as in the statement of Theorem4.2, taking into account that 
E ' =  Cb(S); that is, 2 is the conjugate convex function of 

(o(g)=logr(Tg) (gECb(S)). 

We first prove I(#)<2(#).  Let ue l l  1. Since ~ is a Feller transition probabili- 
ty, it follows that g=log(u/rcu)eCb(S): We show next that v=rcu is an eigenvec- 
tor of Tg associated to the eigenvalue 1. In fact, for all xeS, 

(Tgv)(x) = ye g(y) ~(x, dy) v(y) = S(u(y)/v(y)) v(y) ~(x, dy) = v(x). (4.9) 

We claim now that 
r(Tg) = 1. (4.10) 

For, since 1 is an eigenvalue of Tg, obviously l<r(Tg). To prove the reverse 
inequality, let a=infv(x) (necessarily positive). It follows from (4.9) that if 
T =  Tg, then x~s 

v=Tnv>=aT"l , 

[[vl[ > a  l[ T" 1 l[--H T"II, 

1 -=lim,([lvll/a)l/">=lim, I[T"l[i/"=r(r) 

by the spectral radius formula (see, e.g., [7], p. 567). This proves the claim 
(4.10). 

From (4.10) we have for #~gJI~-(S) 

~log(u/~u) d# = 5gd# -- log r (Tg) < 2(#) 

by the definition of 2. Since u may be arbitrarily chosen in 111, it follows that 

I(/0 = sup {~log(u/zcu) d #} < 2(#). 
u~l[  1 

Next we show that 2(#)__<I(#). The following argument, which is more 
general than our original one, is taken from [15], p. 138. Given geCb(S), 
a > logr(Tg), introduce 

u=  ~ e-~"Tg"l. 
n = O  
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Since IlZ~l[I ~ tlZ~ll, it follows from the spectral radius formula that the series 
converges uniformly and u~I~.  Also, 

n ( e g u ) = : ( u - 1 ) .  

Let v=egu. Then v611~ and 

Ilog(v/nv)dl~=~log ( egu ] - a  
\u - 11 

> ~gd# - a .  
It follows that 

I(/0 => ~gd# - log r (T~), 

and since g6 Cb(S ) is arbitrary this implies I(/~) => 2(#). Thus (4.8) is proved. [] 

Remarks. (1) The tightness assumption in (b) of Theorem 4.4, though very close 
to Hypothesis (H*) in [6], p. 415, appears to be slightly stronger. 

(2) Statement (5.1) improves slightly the statement in Theorem 4.4 of [6], in 
which M is a (compact) set of point masses. 

5. Sums of Exchangeable Random Vectors 

Let B be a separable Banach space with Borel a-algebra ~3 and let P be the 
distribution on (B~,~3 ~) of an exchangeable sequence of B-valued random 
vectors. By the general version of de Finetti's theorem (see e.g. [5], p. 222, [11], 
p. 151), there exist a probability space (M, gJ/,v) and a transition probability # 
on M • ~3 such that 

P = S/~r v(dy), 

where/2r is the product measure on (B ~, ~B N) will all marginals equal to #y. 
For convenience, we shall take (X3)~ to be the sequence of coordinate 

functions on (B~,~3~,P). We write Sn= ~ Xj. As an application of Theo- 
rems 2.1 and 3.1, we obtain J=~ 

Theorem 5.1. Assume 

(1) there exists a v-null set D~fiJl such that {#r: Y ~D~} is tight, 

(2) for every t > O, 
Nyexp(t Ilxl3 #(.)(dx)llL~.) < oo. 

Then (a) for every ~6B', 

l im.n-  i togE exp (~, S.) = q5 (~), 

where ~b(~)= log IISexp((r x)) ~(.)(d x)llL~(v); 
(b) for every closed set F ~ B, 

lim sup.n-  1 log P {n- 1S.sF} < - A ( F ) ,  

where A(F)= inf2(x) and 2 is the convex conjugate of 4). 
x ~ F  
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(c) for every a>=O, {x~B: 2(x)__<a} is compact, 

Proof (a) 
E exp (~, S,) = ~v(dy)~exp((r S,)) dFt, 

= ~v(dy) {~ exp ((~, x)) d #y (x)}" 

and therefore lim,(E exp((~, Sn))) ~/" = I] f exp((~, x)) I~(.)(dx)ll L~)" 
(b) We will show that condition (2.3) of Theorem 2.1 is satisfied. Then the 

statement follows from (a) and Theorem 2.1. By assumptions (1) and (2), there 
exists a v-null set EC~gJ~ such that {/~y: y~E} is tight and for every t>0,  

sup~exp(t [ix 1t) #,(dx) < oz. 
y~E 

By Theorem 3.1, there exists a compact, convex, balanced set K such that 

b = sup~exp(qK ) dl~y < oo. 
yEE 

Then for ~ > 0, 

P {S,/n(~7 K} = P {qr(S,) > n 7} 

< e-"~ E expqr(S,) 

=e-"~ S v(d y) ~expqK(S,) d [t , 
E 

< e-"~ S v(d y)(~ exp(qK) d ~y)" 
E 

< e-n~ '  bn = e - n ( z ' -  logb) 

Thus for given a>0 ,  (2.3) is satisfied by choosing y>=a+logb and Ka=yK.  
The proof of (c) is similar to that of (b2) of Theorem 4.2. Let 2(x)<a, ~eK ~ 

Then 
(~ ,x )  <=a+~)(~) 

< a + l o g  ]h ~ exp(q~(z)) #(.) (d z)]l L=(~ ) since ( ~, z) < qK(z) 

<=a+logb=c. 

Arguing as in the proof of (bz) of Theorem 4.2, it follows that 

{x :2 (x )<a}=cK.  [] 

Remark. Of course, the case of sums of independent identically distributed B- 
valued random vectors (Theorem 4.3) is also a corollary of Theorem 5.1. 

Examples (1). Suppose that X 1 assumes only the values 0 and 1. Then by [10], 
p. 204, there exists a probability measure v on [0, 1] such that if #y({0})-- 1 - y ,  
/~y({1}) =y,  then 

P = ~/~y v(dy). 

Theorem 5.1 applies and it is easily seen that for a ~ ,  

~log(1 + S(e~- 1)) if a=>0 
(9(a)=(log(l+s(e~-l))  if ~<0 ,  
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w h e r e  S = s u p ( s u p p o r t ( v ) ) ,  s = i n f ( s u p p o r t ( v ) ) .  T h e  c o n j u g a t e  c o n v e x  f u n c t i o n  2 

m a y  be  easi ly c o m p u t e d  in this  case. 

(2) Le t  # be  a c e n t e r e d  G a u s s i a n  m e a s u r e  on  B w i t h  c o v a r i a n c e  

~b(~, t/) = S ~ t / d  # (~, t /eB') .  

F o r  a c l R  +, let  #~ be  the  c e n t e r e d  G a u s s i a n  m e a s u r e  wi th  c o v a r i a n c e  a ~ .  Le t  v 

be  a p r o b a b i l i t y  m e a s u r e  on  ~ +  wi th  c o m p a c t  s u p p o r t  a n d  def ine  on  (B ~, ~B N) 

n=SFz~v(da). 

By w e l l - k n o w n  facts a b o u t  G a u s s i a n  measures ,  a s s u m p t i o n s  (1) a n d  (2) a re  

sat isf ied a n d  T h e o r e m  5.1 appl ies .  I t  is eas i ly  seen tha t  

q)(~) = (1/2)S ~(~,  ~), 

whe re  S = s u p ( s u p p o r t ( v ) ) .  T h e  c o n j u g a t e  c o n v e x  func t i on  is t he re fo re  the  

C r a m &  func t iona l  o f  the  G a u s s i a n  m e a s u r e  #s (see [1]). 
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