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1. Introduction 

At the moment there are essentially two methods which allow to extend the 
central limit theorem from a classical to a quantum mechanical framework: 
one is based on a quantum analogue of the method of characteristic functions, 
the other one deals directly with the momenta. The former method, originated 
in a paper by Cushen and Hudson [2] and developed in several directions [1, 
3, 7, 8], assumes little from the analytical point of view (essentially the 
existence of second moments), but needs rather strong assumptions on the 
algebraic structures involved. The latter, originated in a paper of Giri and 
von Waldenfels [4], requires more from the analytical point of view (existence 
of the momenta of all orders), but very little on the algebraic structure 
involved (only the existence of some kind of commutation relations) and, on 
the contrary, the C.C.R. and C.A.R. structures emerge themselves as a con- 
sequence of the central limit theorem [-4, 10]. Therefore the latter method 
seems to be more suited to display the universality of the central limit phe- 
nomenon not only from the probabilistic, but also from the algebraic point of 
view. 

In the present paper we extend the Giri-von Waldenfels method to the 
quantum analogue of sequences of dependent random variables satisfying a 
mixing condition (cf. condition (2.17) in Sect. 2). Our technique applies both to 
the Bose and to the Fermi case (cf. the Remark after the identity (2.1)), thus 
our results include those of [2, 5, 4, 10] and [6]. Moreover, since we deal with 
maps rather than linear functionals, also the recent results of [-3, 8] are 
included in our ones up to the stronger analyticity assumption mentioned 
above. Finally since the ergodic quantum Markov chains are mixing at an 
exponential rate [0], our results imply the validity of the (boson) quantum 
central limit theorem for discrete, finite dimensional, ergodic generalized quan- 
tum Markov chains. 

At the end of Sect. 2 we discuss the role of the exponent 1/2 in the 
normalized sums of the quantum central limit theorem, and show that, in our 
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assumptions, for e > 1/2 all the momenta converge to zero, while for 0 < c~ < 1/2, 
in the generic case they will converge either to zero or to infinity. It is however 
clear a priori that, since the convergence involved in our method consists in 
the convergence of the momenta of all orders, this method is not suited for an 
investigation of the stable distributions. In the case of product states quantum 
central limit theorems with a normalization different from N 1/z have been 
studied by Schiirmann [9]. For  a detailed analysis of the relations between the 
classical and quantum central limit theorems we refer to [4, 6, 10]. The precise 
formulation of our quantum central limit theorem is contained in the following 
theorem. 

Theorem (1.1). In the notations introduced at the beginning of Sect. 2 let E: 
d ~ c g  be any N-linear map satisJ)~ing conditions (2.11) (finiteness of all mixed 
moments) and (2.17) (Jaster than polynomial mixing). Then, both in the boson 
and the fermion case, for each k E N  and bl, ..., bk~B the limit in the semi-norm 

I'l: 
lim E { IN  1/2 Su(bl)J . ... . [ g - 1/2 Su(bk) ] } (1.1) 

N 

exists and is equal to 0 for k-odd. For k = 2 n  (n~N) this limit exists in a 
topology weaker than the f" I-topology if and only if in this topology the limit 

1 N 
lim ~ ~ E(Jk(b. b'))= C(b. b') (1.2) 

N ~  1'~ k = l  

exists .[or each b, b' ~B. In this case the limit (1.1) is equal to 

2 ~(Jl, hi, . . . , j , ,  h,) C(b;,. bh,) C(bi2" bh2)'..." C(b;,. bh.) (1.3) 
p . p .  

where here and in the following, p.p. means that the sum is extended to all pair 
partitions (jl, hl; j2,  h2; . . . ; j , ,hn)  of the set {1,. . . ,2n}, with j~<h~, J~<J~+l 
( e = l  . . . . .  n); and e(j l ,h I . . . .  , j , , h , ) = + l  in the boson case, and in the fermion 
case it is equal to the signum of the permutation {1 . . . .  ,2n} ~ {Jl, hi . . . .  , j , ,  h,}. 

Remark. We recall that if ~ is a complex or real algebra and B a set of 
algebraic generators of ~ a linear functional 7 : 2 ~ ( 2  such that Vn~N, 
Vbl, ..., b2,, b2n+~eB 

?(bl. b2" .. . .  b2,+1)=0 (1.4) 

?(bl- . . . .b2,  ) = ~ ?(b;, bh~) 7(bj~ bh~)" ... " 7(bj. bh~) (1.5) 
p . p .  

is called (for obvious reasons) a gaussian functional, while a linear functional 7: 
N--,(12, satisfying (1.4) and instead of (1.5): 

? (b l . . , . .  b2,)= ~ sgn(j~, h~, ... , j , ,  h,) ?(bj~bh,)..... 7(bj.bh.) (1.6) 
p . p .  

is called a gaussian-Clifford functional. Oaussian and gaussian-Clifford func- 
tionals are a generalization of the quasifree states, commonly used in quantum 
field theory and quantum statistical mechanics. The result of our Theorem (1.1) 
suggests a similar generalization for the notion of a quasifree completely 
positive map. 
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2. Proof of the Main Theorem 

Let ~4, N, cg be associative real algebras. We assume ~4 and c~ have an identity 
denoted, when no confusion can arise, with the same symbol 1. We assume 
that cg acts on d on the left, (i.e. that for each 2ecg and a e d  one can define a 
unique element of d ,  denoted )..a, and the map (2, a) -+2.a  enjoys the usual 
algebraic properties). Let, for each k e n  be given an embedding Jk: ~ d  such 
that, for each h + k  (h, keN)  and for each b ,b ' eN there exists an element 
~hk(b, b') of cg such that 

Jh(b)' Jk(b')= eh, k(b, b'). Jk(b')" Jh(b). (2.1) 

Remark. We will be mainly interested in the case in which, for any choice of 
b,b'~N, ~h,k(b,b')=+l (boson case) or eh.k(b,b')=+_l (fermion case). In the 
fermion case the choice between + 1 or - 1  is performed according to the rules 
explained in [10]. 

In the following, if p, k e N  and p<=k, we denote ~k,p the family of all 
ordered partitions ($1, ..., Sp) of the set { 1, 2, ..., k} in exactly p non empty sub- 
sets. The partition ($1,..., Sp) is ordered in the following sense: each set Sj has 
the natural order and the sets S t themselves are ordered so that leS~, and the 
smallest element of Sj+I is the smallest integer in {1, ...,k} not belonging to 

J 

[ I  Sn. For  (S~, ..., Sv)e~k,p, and N e N ,  we denote [$1 . . . .  , SpIN the set of all 
n = l  

functions e: {1, ..., k}-~{1, ..., N} such that: 
(i) for each j =  1, ..., p, ~ restricted to Sj has a constant value, denoted e(Sj). 
(ii) i f j + k  then c~(Sj):#a(Sk). 
The sub-set of [$1, ..., SpIN of those ct's such that 

~($1) < e(S2) < . . .  < c~(Sp) (2.2) 

will be denoted IN(St, ..., Sp). 
Throughout  the paper we will use the notation: 

N 

S,(b)= ~ Jk(b); b ~ ;  N e N .  
k = l  

Lemma (2.1). In the notations above, if k ~ N  and bl, ..., bkeN one has: 

SN(bl). SN(b2)- . . . .  SN(bk) 
k 

= ~ ~ ~ ~(~; bl, . . . ,  bk)" J~(s~)(bs~)'... "J~(s~)(bs,) (2.3) 
p = 1 (Sl ... . .  Sp)Eg~k,  p a e l z v  ($1 . . . . .  S p )  

where e(c~; bl . . . .  ,bk) is an element of c~ uniquely determined by bl . . . . .  bk, by 
~elN(S1 . . . . .  Sv), and by the class of all fle[Sx, ..., Sv]N which are obtained from 

through a permutation of its values; and where if Sj=(hl < ... <h,j) then 

bsj = bh~ bh~ ... bhnj. (2.4) 

Proof. Identifying {1, ..., N} k with the set of functions ~: {1, . . . , k}~{1  . . . . .  N}, 
one has the identity: 
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k 

 l,,m k= LI H /3 (2.5) 
p = l  (SI  . . . . .  p) k , p  ae[S1 . . . . .  S p ] N  

which implies 

k 

SN(bl ) . . . . .  SN(bk)= ~, ~, ~ J~,(bl)" ... " J~k(bk). (2.6) 
p = 1 (S l  . . . . .  Sp)~i~k,p Ne[S1  . . . . .  SpIN 

Now,  using (2.1), we can g roup  together  those Cth'S with heS j  ( j =  1 . . . .  ,p), and 
each exchange will give rise to a factor  %,~j(bi, bj); subsequent ly  we can 
ar range the indices so that  (2.2) is fulfilled, and each exchange will give rise to 
a factor  ea(s,), ~(s~)(bs~, bsj). Eventual ly  we obtain  the right hand  side of  (2.3), with 
e(~; bl . . . . .  bk) given by a mult iple  of the p roduc t  of all the factors arosen in 
this way. 

Remark  I. For  our  purpose  it will be sufficient to de termine  the specific form of 
the e-factor in (2.4) only for cte[S~ . . . .  ,SPIN with k = 2 p .  In the boson  case 
(eh, g(b; b')= + 1 in (2.1)) one easily verifies that  

~(a; bl . . . .  , bk)=p!  Y p < k  (2.7) 

independent ly  on a and  on the b's. 

Remark  2. Clearly, for each k, N e N ,  pe{1,  ... ,  k}, and (S 1 . . . .  , Sp)e~k, p one has, 
denot ing [II the cardinal i ty of the set I :  

[ IS1 . . . . .  S p ] N I = p ' ( N ) < ~ C p N  p, (2.8) 

, IN(S1  . . . . .  S p ) ] - = ( N ) ~ c p N  p (2.9) 

where Cp is a cons tant  independent  on N. 
Assume  now that  on cg it is defined a semi-norm,  denoted [.J, and that  E: 

d ~ c g  is a Cg-linear m a p  (if the e,,.k(b,b')'s in (2.1) are real or complex,  then 
only ]R- or IlMinearity of  E is required). Let  B denote  a sub-set of  ~ with the 
following proper t ies :  

E(J, (b))=O; V b e B ;  Y n e N .  (2.10) 

Fo r  each k e n  and ba . . . .  , bkeB ,  assume there exists a posit ive constant  
v(bl,  . . . ,  b k ) e N  + such that  for any pe{1 . . . . .  k}, for any par t i t ion ($1 . . . .  , Sp) of  
{1, .. . ,  k}, for any N e N ,  and for any  c~e[S~, ... ,  SpiN, one has 

[E(J~(s,)(bs~). ... . J~(s~)(bs,))] <= v (ba . . . .  , bk) (2.11) 

where bsj is given by (2.4). 

Remark.  If  ~r ~ ,  cg are C*-algebras  and E is a posit ive map,  then (2.11) is 
obviously  satisfied. If  s~r N are *-algebras,  cd - II; and E is a state on s ]  satisfying 
the following condi t ion (2.14) and such that  for each k e n  

E o J k = E o J o ~ E  o (2.12) 
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(stationarity) then one easily verifies that  (2.11) is satisfied if the b's have finite 
mixed moments  of all orders i.e. for each n e N  and bl . . . .  , b, s B  

lEo(b1 �9 ... - bn)l < + oo. (2.13) 

Finally we assume that  there is a constant  VoelR + such that:  

IF.h, k(b, b')l < vo(b, b') (2.14) 

uniformly in h, k e N ,  b, b'aB, and that  the map  E:  d ~  fulfils the following 
mixing condi t ion:  there exist two functions d, fi: N - M R  + such that:  

d ( N ) ~  + oe; d(N) /Na/2~O;  as N ~ o e ,  (2.15) 

N q ~ ( N ) ~ 0 ;  as N ~ o e ;  V q e N  (2.16) 

and Vm, k e N ,  Vbl, . . . ,bkeB,  there exists a positive constant  v(b l , . . . ,bk)e lR  + 
which we can assume to be the same as in (2.11), such that  

[g(Mm. g, ,+d(N))-E(Mm)" E(N,~+d(N))[ < v(bl . . . . .  bk) (5(X) (2.17) 

where Mm, Nm+d(N) denote two monomials  of the form: 

M m = J~(sl)(bsl)... J~(sq)(bsq), (2.18) 

Nm+a(N)= d~(sq+,)(bs~+~) ... d~(sp)(bsp) (2.19) 

with p c { l ,  ..., k}, (S~ . . . . .  Sp) - an arbitrary part i t ion of {1, ..., k}, bsj - given by 
(2.4), and cq, ..., ep such that 

c~(Sj)<m; j = l  . . . .  ,q; e ( S j ) > m + d ( N ) ;  j = q + l  . . . . .  p. 

In order to simplify the notations,  in the following a map  E: s r  satisfying 
these condit ions will be called mixing (without further specification). 

Remark 1. If  E is exponentially mixing, i.e. if for N large enough and for some 
constants c, c~> 0 one has 

[E(M~. N~+N) -- (E(Mm)" E(N~ + N)[ _-< v" e -~N~ 

then one can always find functions 8, d satisfying (2.15), (2.16), (2.17). 

Remark2.  If  E: d ~  satisfies (2.17), m l , . . . , m h e N  are such that  mj<mj+l  
- d ( N )  ( j = 2 ,  ..., h), and Mml, M . . . . . . .  M ~  have the form (2.18), (2.19) then one 
easily verifies that:  

[E(Mm~" M ~ . . . . .  Mmh ) - -  E ( M ~ ) .  E(Mm2)' . . ."  g (Mmh)[ < ~-3 (g )  (2.20) 

where 
v h -  1 

9-= max �9 v = v(bl . . . . .  bk). (2.21) 
l<_h<_k V - - 1  ' 

Remark 3. Under  assumption (2.14), Vk~N,  for each p<__k V(S1 . . . .  , S p ) ~ k , v  for 
each bl . . . . .  bkeB and Vee[S1,  ..., Sp]N one has 
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le(c~; bl,  . . . ,  bk)l < vo(bl,  . . . ,  bk) 

where vo(bl, . . . ,  bk) is a constant. 

In the following unless otherwise specified, all the limits will be refered to 
the semi-norm ['l introduced above; k and b l , . . . , b k  will denote some fixed, 
arbitrarily chosen, positive integer and elements of B respectively, and we will 
use the notation (2.4). 

A partition (S~ . . . .  , Sp) ( p < k )  of the set {1, ..., k} will be said to contain a 
singleton if, for some j = 1, ..., p, Sj contains a single element. 

Lemma (2.2). In  the notations above, let ~> 1/2, ($1 . . . .  ,Sp) be a partit ion o f  
{1, ..., k} and assume that either o f  the fo l lowing conditions is satisfied: 

i) ~ k > p ,  
ii) ($1 . . . .  , Sv) contains exac t ly  q singletons, with q > 1. Then: 

lim IN-~k ~ e(e; b~, . . . ,  bk) E(J~(sl)(bsl) ' . . ."  J,(s,)(bs,)] = 0. (2.22) 
N ~ co a ~ I N ( S 1  . . . . .  Sp )  

P r o @  Because of (2.9), (2.11), (2.14), one has: 

]N-~k ~ ~(a; b 1 . . . .  , bk) E(L(s~)(bs,) . ... . L(sp)(bsp)l 
aE1N(SI ..... S p )  

< N -  ~k N p Cp V(o k~" v(bl . . . .  , bk). 

Hence, if e k > p ,  (2.22) holds. Assume now that ($1 , . . . ,  S v) contains exactly q 
singletons and that they correspond to the sets Sj~, ..., S j .  Define the set: 

I 'U={a~IN(S1 . . . .  ,Sp): V m = l ,  . . . ,q, either e j , , + l - ~ j  <_d(N) or 

c g ~ - a j ~ _ ~ < d ( n )  

(where for simplicity we write ej instead of e(Sj)). Clearly one has: 

II;,I < N P - ~  " d (N)  q (2.23) 

because each c~j~ can be chosen in at most N ways and, having chosen c9~ , 
then either for aj,,+x or c9_  I one has at most d(N)  possibilities, while for each 
of the remaining ( < p - 2 q )  ah'S one has at most N choices. Define now the set 

1~ =IN--I 'N = {eeIN(S1  . . . .  , Sp): ar 

If aeI~ then, in the notations of Remark 2 above, E(J~, (bs , ) . . . . .&p(bs~))  has 
the form E(Mm,  .J==(b~). M=~+d(N)), with c~2>ml + d ( N )  therefore, according to 
(2.11) and (2.20): 

[E(J~(bs~) . ... . J~;(bs,))[ < ~ # ( N )  (2.24) 

with ffgiven by (2.21). In particular: 

Ig  -~k ~, e(a; b~, . . . ,  b~)E(J~(bs , (bs~) . . . . .  J~,(bs,))] 
eeI~ 

N N [I~[-(5(N). ~-~o 

< N  -~k IINI- ,5(N) �9 ~-~-o 

N N-"~+P b(N). r (2.25) 



Quantum Central Limit Theorems 399 

and this tends to zero for any p ~ N  as N ~ ,  because of (2.16). Moreover ,  due 
to (2.23), one has: 

IN-~k ~ ~(e; b~,. . . ,  bk) E(J~(bsO' . . ."  J~(bs~))l 

<= N v-  ~k [d (N)/N] q . (const). (2.26) 

But, if (S~, ..., Sp) has exactly q singletons, then: 

p 

k =  ~ ISjl > q + ( P - q )  2 = 2 p - q  (2.27) 
j = l  

therefore in our  assumpt ions  
p < k/2 + q/2. (2.28) 

Thus the right hand  side of (2.26) is major ized  by: 

L+ ~--k~ 
const N 2 2 [d(N)/N] q = const  N -  k(~- �89 [d (N)/N1/2] q (2.29) 

which, in view of (2.15), tends to zero, as N ~ ,  since q > l .  Since {I~v, I~} is a 
par t i t ion of IN(S1,.. . ,  St,), (2.22) is a consequence of (2.26), (2.29) and (2.25). 

Corol lary (2.3). Assume that (2.14) is fulfilled and that E: ~4~cd  is a mixing 
linear map. Then V k 6 N  and for any bl . . . .  , bk~B, the limit 

l im N -k/2 E(SN(b~) . ... . SN(bk)) (2.30) 
N ~ c ~  

is equal to zero if k is odd and, if k = 2 n  for some n~N,  it is equal to 

lira N k/2 ~ ~ e(e; bl . . . .  , b2n) E(d~(sl)(bs,)'..." E(d~(s,)(bs,)) (2.31) 
N ~  o3 p .p .  o~e lN(S l  . . . . .  Sn)  

where the f irst  sum is extended to all the ordered pair partitions of  the set 
{1 . . . .  ,2n}. 

Proof  L e m m a  (2.1) implies that  

N -k/2 E(SN(bl ) . . . . .  SN(bk)) 
p 

= N k/2 Z ~ ~ e(e; bl, . . . ,  bk)E(J~(sl)(bsl)'..." J~(sp)(bsp)). 
p=l (s ...... sp)~k,~ ~ , , ( s  ...... s~) (2.32) 

Because of L e m m a  (2.2) the only terms of the first two sums which might  not  
vanish in the limit N ~  are those corresponding to the par t i t ions  (Sa, ..., Sp) 
with p > k / 2  and with no singletons. But since in any case the number  of 
singletons q of a par t i t ion (Sa, . . . ,Sp) satisfies k > 2 p - q ,  if q = 0  we have also 
k/2 > p and therefore k = 2p, hence for k-odd the limit (2.30) vanishes. 

If k = 2 n ,  the only part i t ions (Sb . . . ,S , )  with no singletons are the pair  
parti t ions.  Moreover ,  in the limit N ~ ,  one can restrict the a - summat ion  in 
(2.32) to those e's satisfying 

e(Sj+l)-e(Sj)>=d(N),  j =  1, ..., n -  1. (2.33) 
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In fact the number of those cds for which (2.33) is not fulfilled is less or 
equal than N" l d(N) hence, by the same argument as in Lemma (2.2), their 
contribution to the sum tends to zero as N ~ o o .  But if aeIN(SI, ..., S,) satisfies 
(2.33) then, using (2.20), one obtains: 

IN-" ~ ~ e(a; bl,. . . ,  bk) [E(J~,(bsl)..... J~,(bs. ) 
p 'p"  aelTv(S1, . . . ,Sn)  

-E(J~,(bsl)).....E(J~.(b&))]l<%g~5(n)-+O (as N ~ o o )  

and this proves the statement. 
Now let us consider the limit (2.31) in the boson case, i.e. 

ah(b).Jk(b')=Jk(b')J,(b); h=~k, h,k~N; b,b'EB 

In this case (cf. Remark 1 after Lemma(2.1)), e(a;bl , . . . ,b2, , )=n!  and, since 
the number of non-injective maps {1,..., n} ~ {1,..., N} is of order N' - I :  

lim X -~ ~ n!E(J~,(bs,))... E(J~.(bs.)) 
N ~ c o  a~IN(S1 . . . . .  Sn) 

1 s 1 s 
= lim [ - -  2 E(J~i(bsl))]" " [ -  2 E(J~ (b s ))] (2.34) 

for any pair partition (Sz, ..., S,) of {1, ..., 2n}. 
Therefore the limit (2.31) exists if and only if for each pair b, b'~B the limit 

1 u 
lira ~ ~E(J~(b.=l b')) = C(b. b') (2.35) 

N ~ c o  

exists in any topology weaker than the topology induced on cg by the semi- 
norm J.J. In such case the limit will exist in this topology and will be equal to: 

~, C(bs,). C(bs~). ... . C(bs.) (2.36) 
p.p .  

the sum being extended to all pair ordered partitions (S~ . . . .  ,S,) of the set 
{1, ...,2n}. 

In the fermion case, we assume that for any pair b, b'eB the factor eh.k(b, b') 
in (2.1) is always equal to - 1 .  In this case the computation of the factors 
g(~;bl, . . . ,b2,) with n~N, bl, ...,bin~B, and C~IN(Si,...,S~) where ($1, .. . ,S,) is 
a pair partition of (1 . . . .  ,2n) is carried out as follows: first remark that the 
number of exchanges needed to put the product J~,(bl)..... J~,(b2,) in the form 
J~(sl)(bs,)..... J=(s,)(bs~) is equal to the number of exchanges of the permutation 

(ib hl),(i2, h2),...,(i,, h,)! ,$1,..., S,~ 

where Sj=(ij, hj), ij<hj. Remark, moreover, that since ISjl is even for each j 
= l , . . . , n ,  the signature of this permutation is the same if S=(a),...,S,~(,) is 
substituted for $I . . . . .  S, (~ being an arbitrary permutation of {1, ..., n}). There- 
fore also in the fermion case, the passage from summation over [S>. . . ,S,]N to 
summation over IN(S1 .... ,S,)(ISjI=2; Vj) gives rise to the factor n!. More pre- 



Quantum Central Limit Theorems 401 

cisely if ($1, . . . ,S,) is a pair partition of {1, ...,2n} and c~IN(SI, ...,S,), then: 

Therefore with the same argument used to establish (2.34) one obtains: 

lim N - "  ~ e(a; b~, ..., b2,) E(J~(bs~))..... E(J~(bs~)) (2.37) 
N ~  co aEIN(S1 . . . . .  S~) 

1 N 1 N 
: s g n  ( ; : , . . . , 2n )  .limN~ [ V  ~ E(J~(bs~))] .... �9 [~,~_E(J~n(bs~)) ] (2.38) 

for any pair partition ($1, ..., S,) of {1, ..., 2n}. 
Therefore also in the fermion case the existence of the limit (2.35) is a 

necessary and sufficient condition for the existence of the limit (2.31) which, in 
case of existence, turns out to be equal to: 

Z sgn / (1 .... ,2n), C(bsl)" ..." C(bs,) (2.39) 
p.p. S 1 ,  . . .  , S n  

where again the sum is extended over all the pair partitions (S I . . . . .  S,) of the set 
{1 . . . . .  2n}, and for any pair Sj such that bsj=b.b', C(bsj) is given by (2.35). 

In order to complete the discussion of the limit (2.41) for the normalized 
sums N-~SN(b) (b~B) where e is an arbitrary number greater than zero let us 
remark the following 

Lemma(2.4). Let e> 1/2, then jbr any partition ($1, . . . , S p ) E ~ k , p  with no single- 
tons: 

lim IN-~k ~ e(e; bl, ..., bk) E(J~l(bsl)'..." J~p(bs,))l = 0. (2.40) 
N ~ 0o ~EI~(S1  . . . . .  Sp)  

Proof. Since (S1,...,Sp) has no singletons, then ~k>k/2>=p and, because of 
(2.11), (2.23), and Remark (3.) after formula (2.21): 

IN-~k ~ e(e; bl . . . .  , bk) E(J~(bsl)'..." J~,(bs~))l 

<=N (~k-P)VoV--'O, as N ~  (2.41) 

and this proves (2.40). 

Theorem (2.5). I f  e > 1/2 then Vbl .... , bk~B (keN) 

lim [N-~ SN(bl)] �9 ... �9 [N-~ SN(bk)] = 0. (2.42) 
N~co 

Proof. Immediate from Lemma (2.2) and Lemma (2.4). 
In the case 0 < e< 1/2 the following counterexample shows that even in the 

simplest circumstances the limit (2.42) can only be 0 or ~ .  Let E be a 
stationary product state, i.e. c#= ~2 and E: d ~  C is a positive map such that 
E(1)= 1 and, VneN,  Vhl . . . . .  h ,~N hi=t=hj for i=~j and Vbl .. . .  , b , ~ ,  one has: 

E(Jh,(bl). ... . Jh~(bn))= Eo(bl)" ..." Eo(b,) 
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w i t h  E0 = E o Jo- W i t h  t h e  s a m e  a r g u m e n t s  as in  L e m m a  (2.2), a n d  u s i n g  t h e  fac t  

t h a t  E(b)= 0 for  b~B, o n e  eas i ly  ver i f ies  t h a t  for  k =  2 n  o r  k =  2 n  + 1: 

l i ra  I N - ~ S N ( b l ) ] . . . . .  [N-~SN(bk)-] 
N~oo 

= l i ra  g (1-2~)" ~ Eo(bsl)'...'Eo(bsn) (2.43) 
N ~ oo ( $ 1  . . . . .  Sn) 

ISjl>2 

a n d  t h a t  t h e  c o r r e s p o n d i n g  i d e n t i t y  h o l d s  for  l iminf .  B u t  for  0 < e < 1 / 2 ,  t h i s  

l i m i t  c a n  o n l y  b e  0 o r  o9. 
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