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Summary. A lower limit of the length of the longest excursion of a sym- 
metric random walk is given. Certain related problems are also discussed. It 
is shown e.g. that for any 5>0  and all sufficiently large n there are c(e) 
loglogn excursions in the interval (0, n) with total length greater than n(1 
-5),  with probability 1. 

1. Introduction 

Let X1, X 2 . . . .  be a sequence of i.i.d.r.v.'s with 

IP(X i = + 1)= IP (Xl = - 1)=�89 (i = 1, 2 . . . .  ) 

and consider the random walk S(0)=0, S ( n ) = X I + X 2 + . . . + X  . ( n = l , 2 ,  ...). 
Introduce the following notations: 

~ ( n ) = J V o . { k :  O < k < n ,  S(k) > 0}, 

~ ( n ) =  JVo. {k: O < k  <n ,  S(k)=0}, 

(JVo. {...} stands for cardinality of the set in brackets). 

Po =0, 

Pl =inf{k:  k>0,  S(k)=0}, 

p2 =inf{k:  k > p l ,  S(k) =0}, 

p,+ ~ =inf{k:  k > p , ,  S(k)  =0}, 

Y(n) = max {P l , P 2 - P l  . . . .  , P ~(,) - P ~(n)-1, n - p ~(,)}. 

Here Y(n) is the length of the longest excursion of the random walk S(0), 
S(1), ..., S(n). The main goal of the present paper is to study the properties of 
J(n). 
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The properties of N(n) and ~(n) were studied by Chung and Hunt (1949) 
and Chung and Erd6s (1952) resp. Here we recall the Chung-Erd6s theorem. 

Theorem A. Let f (x )  be a non-decreasing function for which lim f ( x ) =  o0 and 
put x ~ oo 

c~3 dx 
I ( f )  = 

1 xf~(x)" 
Then 

and 

IP ~ (n )>n  1 - ~ ( ~  i.o. = (1.1) 
/f I ( f ) <  oc 

{ (12, IP ~ ( n ) < - f ~  i.o. /f I ( f ) < o o .  

Studying the proof of Theorem A we can realize that the following stronger 
statement is also proved by Chung and ErdSs: 

Theorem B 

( 11 ,13, J(n)>=n 1 - ~  i.o. = 

provided that f ( x ) A  oo. 

(1.3) gives the best possible upper bound for Y(n). For example it implies 
that for any e > 0 

n 
J(n)_< n 

(log n) 2 +~ 

except finitely many n with probability one and 

n 

~--(n) > n (log n) 2 

infinitely often with probability one. We are interested to find a lower bound 
for ~--(n). Our main result is 

Theorem 1. Let f (x) be a non-decreasing function for which 

and let 

Then 

X 
f (x) A oo, ~ , , ~  oo as x ~ oo 

j ( f ) =  ~, f(n) e_f(,). 
n t l = l  

where fi=0,85403 ... is the root of the equation 

B k 
k~(2k_l)  = 1  

k = l  

/f J ( f ) <  ~ ,  
/f , , r  oo 

(1.4) 

(1.5) 
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(1.4) says for example that 

loglog n 
lim inf - -  J ( n )  =/? a.s. (1.6) 

n ~ o o  n 

Remark .  Equation (1.5) emerges in a paper by Shepp (1967) (see also Green- 
wood and Perkins (1983)). 

Beside of studying the properties of the length of the longest excursion, it 
looks interesting to say something about the second, third. . ,  etc. longest 
excursion. Consider the sample Pl,  P 2 - P l  . . . .  , P ~ n ) - P ~ , ) - I ,  n - p ~ ( , )  (the 
lengths of the excursions) and the corresponding ordered sample Y-~(n) 
= J ( n )  > T; (n) > . . .  > ~c , )+  1 (n). Now we present our 

Theorem 2. For  any f i x e d  k = 1, 2 . . . .  we have 

lim inf l~176 n J~(n) = k/~ a.s. 
n~oo n j=  1 

This Theorem, in some sense, answers the question " H o w  small can be 
W2(n ), Y3(n) . . . .  ?" In order to obtain a more complete description of these r.v.'s 
we present the following: 

Problem 1. Characterize the set of those non-decreasing functions f ( n )  (n 
= 1, 2, ...) for which 

(1.3) says that for some n nearly the whole random walk S(0), S(1) . . . . .  S(n) 
is one excursion. (1.4) and (1.6) say that for some n the random walk consists 
of at least /~-1 loglogn excursions. These results suggest the question: For  

k 

what value of k = k(n) will the sum ~ Jj(n) be nearly equal to n? In fact we 
formulate two questions: j= 1 

Question 1. For  any e > 0 let ~ (e )  be the set of those functions f ( n )  (n = 1, 2 . . . .  ) 
for which 

f(n) 

j=l  

with probability one except finitely many n. How can we characterize ~ ( 0  for 
some 5>0?  

Question 2. Let J~(z 0 be the set of those functions f ( n )  (n = 1, 2 . . . .  ) for which 

f(n) 
lim n -~ ~ J~j(n)= 1 a.s .  

How can we characterize ~ ( ~ ) ?  
Studying our first question we have 
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Theorem 3. For any e > 0  there exists a C= C(O>0 such that 

C loglog n~J(e) .  

Concerning our Question 2, we have the following result: 

Theorem 4. For any C > 0 

f (n) = C loglog nq~(~)  

and for any co(n)/" 0o ( n ~ )  

co(n) loglog n ~ ( ~ ) .  

E. Csfiki et al. 

(1.7) 

(1.8) 

2. Proof  of  Theorem 1 

We recall the following well-known 

Theorem C 

b k =lP(p 1 = 2k) = k2k_ 1 (k = 1, 2 . . . .  ). 

Consequently 

b - ~ k-  } exp (Ok~k) 
k--2V ~ 

where ]Ok[ < 1. 

By (2.1) we easily obtain 

Lemma 1 

b~exp(j f l /a)=l  +(9(a -~) ( a ~ )  
j=l 

where fl is the root of Eq. (1.5). 

Proof. Clearly we have 

j = l  j = l  j = l  

=j~=lbJq-+ j=i J-~ (exp ( ~ - ) - 1 ]  + ~  a "-- (exp ( ~ )  - 1 ) ~  ] 2] /~  j_l  J-~ 

and 
A~ = 1 - (~ra)- ~ + (9(a -~) 

A2 2 k akkT~ -T j= 1 

o~ flk 
=(Tra)-~k__~ 1 k!(2k--1) t-(9(a-~)=(~a)-~+(9(a-~) 

(2.1) 

(2.2) 
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what  proves  (2.2). 
Let  

Then  we clearly have 

L e m m a  2. 

A3 = (_9(a - ~  ) 

, ~  ( I P ( Y ( 2 n ) < 2 a )  if n>=a, 
P"=p"ta)=].l - if n<a. 

p,= ~' p,_jbj (n=a,a+l .... ). (2.3) 
j = l  

N o w  we are looking for the solut ion of (2.3) satisfying the initial condi t ion 
p,  = 1 if n = 1, 2 . . . .  , a -  1. We  obtain  

L e m m a  3. There exist positive constants 0 <  C~ < C 2 < oo such that 

p,(a)= C(n, a) exp ( - f i  n) (2.4) 

and 
C1< C(n, a)< C2 

provided that n < a t. 

F r o m  now on C (with or wi thout  index) will s tand for an absolute  constant  
whose actual  value may  change f rom line to line. 

Proof Replacing (2.4) in (2.3) we get 

d = l  

In case n<2a our  s ta tement  is trivial. Fo r  n>2a the s ta tement  follows f rom 
(2.5) by induction. 

L e m m a  4. Let f(n) (n = 1, 2 , . . . )  be a non-decreasing positive function for which 

and put 
fin) <�88 loglog n i.o. (2.6) 

j = l ( l ) - -  i(n--2e-""', i = i ( I ) =  e-;<"" 
n = l  n k = 2  

.--[exp+} . . . .  

Then J = j = oe. 

Proof Suppose  that  f ( N ) < � 8 8  N for a fixed N. Then  a simple calculat ion 
gives 

J >  ~ --f(n) e-~(")>Ce-Y(m ~ 1-> C ( l o g N ) ~ . =  (2.7) 
n = l  n n= l  n 
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Thus J > C(log N) ~ for infinitely m a n y  N, we have j = c~. One can see similarly 
that J = oo by observing that  condit ion (2.6) implies that  f(nk)<�89 1oglog n k i.o. 

L e m m a  5. Let f (n)  (n=  1, 2 . . . .  ) be a non-decreasing, positive function. Then or 
= oe if and only if j = oo. 

Such a l emma like this and the previous l emma is frequently used in the 
proofs of  theorems like our  Theorem 1, hence its p roof  is routine. For  the 
convenience of the reader we present it. 

Proof 
~, .~+1 ffj) 

J =  Y 
k=2 j=nk+ 1 J 

Similarly one can obtain that  

e -f(j) <= C Z rig+ 1 -rig f(nk ) e_y(,~ ) 
k nk 

f(nk) e-f("~)= C J * .  

d*  < c j .  

By L e m m a  4 one can assume that  f ( n ) > 1  loglog n (n=  3, 4 . . . .  ). Hence we have 

j *  = C J  

that  is j = oo implies J = oo. In order  to see the converse statement let 

A = {k: f(nk) < 2 1oglog nk}. 
Then 

f (nk) e-  y(,k) + f (nk) e-  y(,k) 
t*= Z  WVgk Z  T7 gk keA k~A 

f(nk) e-Y("k)<_ C J +  C < C Z e-'~("~'+ Z ~ 
kEA k6A 

what  proves the implicat ion:  if J = c~ then j = oo. 
The following lemma is trivial, we give it wi thout  proof. 

Lemma 6. Let {ak} be a non-increasing sequence of positive numbers for which 

i a n< o0. Then 
n = l  oo 1 

Z (an) 1 logn < GO. 
n= l  

Lemma 7. Let 

where 
A k = {J(nk)  < ak} k = 2, 3 . . . .  

fl nk 

a, =f (nk  ) 

and f (n)  is a non-decreasing positive function such that f (n)  < fin ~. Then 

nl - -nk  I (1 < k < l <  oe). (2.8) 
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Proof Let 3-(a, b) ( 0 < a < b < ~ )  be the length of the longest excursion of the 
random walk S(a), S(a+ 1) . . . .  , S(b). Then 

IP (A k AI) <= lP(3"(nk) < ak, ~--(nk, nz) < az) 

= ~ IP(J(nk) <= a k ] S(ng) =j)  IP (J-(nk, n,) =< a l ] S(nk) =j) IP(S(ng) =j) 
J 

< ~ lP(J(nk) <= akl S(nk) =j) IP(~-"(n z -- nk) < at) IP(S(nk) =j) 
J 

= IP (J-(n 1 - nk) ~ al) IP (Ak) ~ C exp ( -  fi rfl - n k ]IP (Ak) 
a l l 

(the last inequality follows from Lemma 3). Hence we have (2.8) 

Lemma 8. Let f(n) be a non-decreasing function for which J ( f ) =  oo. Then for 
any 0 < e< 1 there exists a non-decreasing function f such that 

(i) f (n)>f(n)  ( n = l , 2  . . . .  ), 
(ii) f l ( f ) =  oe, 

(iii) f(n) > ~ loglog n. 

Proof of this lemma is based on the same idea as that of Lemma 4 and will be 
omitted. 

Lemma 9. Let 

where 
B, = {J(n)_<_ b,} 

Bin 
b"=f(n) 

and f (n) is a non-decreasing function for which J < oe. Then 

Proof Let 

Then by Lemmas 5 and 6 

and by Lemma 3 

IP(B, i.o.) =0. (2.9) 

f(nk)= nk f(nk+ l)" 
nk+ 1 

• e - f ( n k ) <  oo 

k = 2  

i.o:) =0, 
provided that f ( n ) _  Bin-. 

Now let nk<=n<=nk+ 1 then 

~-(n)>J(nk)> (nk = f  nk+ ,_>f  
- = f(nk) f(nk+ 1) = f(n) 

with probability one except finitely many k. Hence we have (2.9), if f (n)<fln  ~ 
(n>no). 
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In the case when this condition does not hold, define f l  (n)=min (f(n), fin+). 
fl(n) is non-decreasing with J ( f l ) < ~  and fa(n)<fln+, hence (2.9) holds for 
f(n) replaced by fl(n). Since f l (n) <__f (n), we have also (2.9) with the original 
f(n). This proves the first part of Theorem 1. 

To show the second part, assume that 

�89 (n=3, 4 . . . .  ) (2.1o) 

The lower inequality can be assumed by Lemma 8, while if the upper in- 
equality does not hold for all n large enough, then by eliminating those n's for 
which f(n)> 2 loglog n, the whole procedure below can be done for the remain- 
ing subsequence and still conclude the second part of (1.4). 

Defining n k as in Lemma 4, for large enough k and k < l  we have 

log nl=l--k k(logl-logk) 
n k log I logllog k 

I - k  l - k  1 l - k  > > - -  
= l o g /  ( logl)( logk)=21og/" 

Now for k fixed, split the indices l (k < l=< n) into three parts: 

L 1={/:  O<l-k<=logl} 

L2={I:  logl<l-k<=log21} 

L3={I:  log21<l-k}. 

For l~L 1 we have from (2.10) and (2.11) 

1 1 - k 1_ 
log log l'll 

5 nl 

l - k  
> c ~ l~ C(1-k) �9 

For leL a we have from (2.11) 

nz--nk>=l_exp l l - k  > l - e  ~=c >0. 
n~ 2 = 

Hence by Lemma 7 and (2.10) 

P(AkAz)< = cP(Ak)e -~'f("') <=cP(Ak) (~)~'~ 

For leL 3 we have from (2.10) and (2.11) 

( ' ' - k  ~ , , o x ~ ( _ ~ l o g 0 ~ c .  n~l f (n')N f (n')exp 2 log-l) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Hence 
P(AkAl) < cP(Ak) ~ e-~'(l-k)< cP(Ak) ' 

I~L1 leLl 

P(AkAl)<cP(Ak) ~ 1 <:cP(Ak), 
IEL2 leL2 

since ~ 1 < c(log k) 2. 
IEL2 

By Lemmas 3 and 7, (2.14), (2.15), (2.16) 

and 

consequently 

k 

2 

IP(AkA~)<= C + C ID(Ak) 
l = l  k = l  k = l  

~ IP(AgA~) 
liminfZ= 1 k=l _<C 

and by the Borel-Cantelli lemma (cf. Spitzer (1964)) we have 

IP(A k i.o.)> C -1 >0. 

Hence we have our Theorem 1 by the 0-1 law. 

(2.15) 

(2.16) 

3. Proof  of  Theorem 2 

We give the following analogue of Lemma 3. 

Lemma 10. Let 

. . . .  ( l P ( J ( 2 n ) < 2 a ,  S(2n)=0) if n>a, 
P, P.ta) "(IP(S(2n) = 0) if n < a. 

Then there exist positive constants 0 <  C 1 -<_ C2< co such that 

,,(a)=C(n,a)min((n+ l)-~,a-~)exp ( - f l  n) 

and 
C 1 <= C(n, a) <: C 2 

provided that 0 < n < a ~. 

Proof. Observe that the statement is trivial if 0_< n_< 2a and we have 

/~,= ~ p,_sbs (n>2a).  
j = l  
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N o w  we obtain our  L e m m a  10 using the method  of p roof  of  L e m m a  3. 
Let a l , a  2 . . . .  ,a  k be a sequence of  positive integers and m 

=min(aa,a2,. . . ,ak). Fur ther  let dl ,d  2 . . . . .  dk+ a be a sequence of  non-negat ive 
integers such that  

dl >=O, d2>=O, d3>=O .... ,dk >O, dk+l >O 
(3.1) 

dl +de+. . .  +dk+ l +al  +ae +. . .  +ak=n  

In t roduce  the following nota t ions  

B 1 = ( S ( d l ) = 0  , Y(0,dl)=<m}, 

A 1 = {S(d~ + i) 4 = 0 (i = 1,2 . . . . .  a 1 - 1), S(da + a~) = 0}, 

B 2 = {S(d~ +a 1 +d2)  =0 ,  Y ( d l  + a  1, dl q-a 1 +d2)  < m  }, 

Ak = {S(d~ +a 1 + ... +ak_ ~ +dk + 04=0 ( i=  1,2 . . . . .  a k -  1), 

S(d 1 +al  + ... +dk +ak)=O} 

Bk+ 1 = {S(d 1 +a 1 + ... +dk +ak)=O, J-(d 1 +a 1 +. . .  +dk +a k, n)<m}, 

A =A1A2...AkB1B2...Bk+a, 

A* = A*(al ,  a 2 . . . . .  ak) = Z*A 

where in the sum ~ *  the indices dl,dE,.. . ,dk+ 1 run over all (k+ l ) - tup les  of  

integers which satisfy (3.1). Clearly A* is the event that  the r a n d o m  walk 
S(1), S(2),. . . ,  S(n) consists of  excursions of  size al ,  a z . . . .  , a k in this order  but  all 
other  excursions are shorter  than m. 

< a L e m m a  11. Let n = m  ~. Then 
k 

lP(A*)<Cm-~-(nm-l-+m�89 ( - f l m - l  (n-i~__lal) ) (3.2) 

where the constant C may depend on k. 

Proof. By Theorem C we have 

p(AI/A~...Ai_~B~...BI)<= Ca[ -~ ( i=1  . . . . .  k). 

Since d i < n < m  ~, by L e m m a  10 

_ < �89 .. P(B]AI . . .A  i ~B~ . . .B ,_ ~ )=C (m- -+(d f+ l ) -~ ) e x p ( - f lm- ld i )  ( i=1 ,  .,k) 

and by L e m m a  3 

P(Bk + I/A1...AkB~...Bk) < C e x p ( -  f lm-l  dk + l). 
Hence 

P(A)< Cexp  ( - t i m  -1 ( n -  ~ al) ) I-I (m-�89 +1)-~) �9 
i = 1  i = 1  
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N o w  

~ (m-4, + (di + l )-�89 <= c(nm-�89 + m �89 
di 

and (3.2) follows. 
A trivial consequence of Lemma 11 is 

Lemma 12. Let a 1 >=a 2 ~ . . .  >= a k >= n ~ be a sequence of integers. Then 

P(Tl (n)=al  . . . . .  Tk(n)=ak)<ca25-(na22+a~)kexp --flag 1 n--i~_,_~al �9 (3.3) 

Lemma 13. Let k n ~ < u < n .  

P Tj(n)<=u, Tk(n)>-->n3 <=cuku--Z-(nu-7+u~kexp - i l k  . (3.4) 
j =  

Proof. (3.4) follows from (3.3) by summation for the possible a i ( i=1,2  . . . .  ,k) 
observing that n ~ <= a k <= u/k and the fact that a sequence a 1 > a 2 >=... > a k > n ~ of 

k 
integers for which ~, a i = u can be chosen at most u k different ways. 

Lemma 14. For large enough n we have 

P ~ ( n ) < _ f i ( l - 0 k - - < _ c ( l o g n ~  - ~ .  (3.5) 
j= loglogn - 

Proof By letting 
n 

u = u , = f i ( 1 - e ) k - -  
loglogn 

we obtain from (3.4) that 

P ( ~  Tj(n)<=u., Tk(n)>n ~) =< c( logn)-0 +2 ). (3.6) 
j= 

Furthermore 

( ~  <c(l~ -0+2)" P Tj(n)Gu,/k, Tk(n)<n~ ) < P ( T l ( n ) < u , / k ) _  
J -  

Finally, i f u , / k < a ~ + . . . + a k < u  ~ and ak<n ~, then max dr with some 
l < i ~k + l  

constant c 2, i.e. there exists an interval of length >=c2n such that longest 
excursion within this interval is shorter than n ~, the probability of which is less 

than c 1 e . . . .  -~. The number of possible choices of a 1 ... ak, d~... dk+ 1 is obviously at 
m o s t  n 2k+l, hence 

P u , /k< ~ T~(n)<u~, Tk(n)<n ~ <ClnEk+le-~3~. (3.8) 
j = l  

Since for large n the upper bound in (3.8) is less than the upper bound in 
(3.5), we have Lemma 14 by combining (3.6), (3.7) and (3.8) with some constant 
c (different from that in (3.6) and (3.7)). 
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(3.5) by well-known methods implies 

liminf l~176 ~ Jjj(n)>kfl a.s. 
n~cx~ n j = l  

Now Theorem 2 follows from (1.6) and (3.9). 

E. Cs~tki e t  al. 

(3.9) 

4. Proof  of  Theorem 3 

Instead of proving Theorem 3 we prove the analogue statement (Theorem 3*) 
for a Wiener process {W(t),t>O}. Theorem3 can be obtained from 
Theorem 3* constructing the sequence {Xi} from W(t) by the Skorohod stop- 
ping rule. 

Theorem 3*. Let { W(t), t >= 0} be a Wiener process. Then for any ~ > 0 there exist 
c~(T)= [C 1 e -1 loglog T] excursions •1, d~2 . . . . .  #~(r) of W in [0, T] such that 

~(T) 

F~ I~il>(1-0T 
i = 1  

if T is large enough with probability one where 18il is the length of the excursion 
gi and C 1 is an absolute constant. 

Introduce the following notations: Let a r > 0 be a function of T and 

Yo=O, 
Y/= Yi(T)=inf{s: s>  Yi-1 +aT, W(s)=0} (i= 1,2 . . . .  ), 

vT=max{k: Yk < r} ,  

Zi = Zi(T) = Yi - (Yi-1 + aT), 

M i = Zi/a r. 

The following lemma is well-known. 

Lemma 15. (i) {Zi} is a sequence of i.i.d.r.v.'s, 

(ii) {U/} = {ZI(W(Y/_ 1 +at))  -2} is a sequence of i.i.d.r.v.'s 
1 x 3 i 

(iii) IP(Ui<x)=lP(Ui<xlW(Yi_l +ar)=W)=(2rc)-7 ~ v ee ~ d v ,  
0 

(iv) E(exp{ - tU i } )=exp{ - t~} ,  t>0.  

The next lemma is an easy consequence of a theorem of Steinebach (1978). 

Lemma 16 
lira (P(M 1 + . . .  + Mm=< c~rn)) ~=  p(~), 

m ~ o o  

where p(cQ = inf(2(t) e~t), 2 (t) = E(e - ' i  1). 
t 
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L e m m a  17. Let 

Then 

Proof 

a r = e 2 T(loglog T) -  1, 

m r = [(3 re) ~ e -  1 loglog T].  

IP(vr>mr)=O((logT) -~) as T~oo .  

IP(v r > mr) =IP(ZI + Z 2 +. . .  + Zm~ + mra r <= T) 
/ T 

__<IP(Z 1 + ... +Zmr=< r ) = I P  [M 1 + ... +Mm~<arm~ 

It  is easy to check that  
t 1 1 

2(t) = E(e-tM1)= 2eg(1 _ 4)(t7)) < exp { -- (2 t/zc~} 

roT). 

where ~b(x) is the s tandard  no rma l  distr ibution function and hence 

p(e) < exp{ - (2 zc c0-1 }. 

L e m m a  17 now follows f rom L e m m a  16. 
Consider ing the excursions 8 i a round  the points  Y~+a r ( i=  1,2 . . . . .  vr) the 

non-covered  par t  of the interval [0, T]  will be  less than  vra r. Hence  Lem-  
m a  17 implies 

L e m m a  18. With C 1 = (3 7c) -~ we have 

) IP i=llg~[<(1-eC1)T =(9 ( ( l og r )  -~) ( r ~ o e ) .  

L e m m a  18 via s tandard  methods  implies T h e o r e m  3* with C a =(3r@.  

5. Proof  of  Theorem 4 

It  is easy to see tha t  (1.8) is a simple consequence of T h e o r e m  3. Ins tead of 
proving (1.7), we present  again the p roof  of the analogue s ta tement  for a 
Wiener  process. In  fact we prove  our  

Theorem 4". Let {W(t), t>_-0} be a Wiener process and let ~ (T)>J22(T)>. . .  be 
the lengths of the longest, second longest excursions of W up to T. Then for any 
D > 0 there exists an 8 = e(D)> 0 such that 

I P { ~ ( T )  + Y2(T)+ ... + Jbb(r)< T(1 --e) i.o.} = 1 

where b(T) = [D loglog T].  

In t roduce  the following notat ions:  

(5.1) 
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T 
aT=a(T)=6 log log T '  

I~o =0, 

V 1 =sup{s: S<aT, W(S)=0}, 

YI =inf{s: S>aT, W(s)=0}, 

Vi+ ~ =sup{s: s<  Yi+a T, W(s)=0}, 

Y/+I =inf{s: s >  Yi+aT, W(s)=0}, 

A,= Yi-Vi, Zi= Yi-(Yi_I +aT), 

Ui=(W(Yi_~ +ar))-zzi ,  Ni=a~*~W(Yi_l +aT), 

vr=min{ i :  Y/> T}, 

Ri = Vi-- Yi_ 1 �9 

The next lemma is an easy consequence of Lemma 16. 

Lemma 19 

IP (m -1 ~ UiNi2 <a)>= Ce -m/~ 
i = l  

for any ~ > 0 and m big enough. 

Lemma 20 
IP(Z~ + Z 2 +... + Zb(T) + a(T) b(T) <= T) >= C(log T) -1 

/f~5=(DZ+D) -1. 

Proof 

I P ( Z  1 + Z 2 -]- . . .  -t- Zb(T) "~ a(T) b(T) <= T) 

=lP(Z t + Z  2 + ... + Zb(r) =< (1 --c~D)T) 

=IP(b-l(r)a-l(r)(z1 + Z 2 +  ... + Zb(r)) < ( 1 - 6 D ) 6 - 1 D  -1) 
( b~T~ ) 

--]p b - l ( r )  ~ U/N 2<D . 
i = 1  

Hence we have (5.3) by (5.2). 

Lemma 21. 1P(Z 1 + Z 2 +... + Zb(r) + a(T) b(T) <_ T i.o.) = 1 equivalently 

IP{vT>b Ti.o.}=l or lP{Yb~:<ri.o.}=l. 

Proof Let Tk=k k and let the events Ak, A* be defined by 

(5.2) 

(5.3) 
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A k = {Z 1 + Z2 + . . .  + Zb(r~) + a(Tk) b(Tk) < Tk}, 

A* = {Z 2 + ... +Zb(r~)+a(Tk)b(Tk)< Tk}. 

By L e m m a  20, we have 

k 

Fur thermore ,  since for large k, Tk<a(Tk+l) , the events A k and A* are inde- 
pendent  for k < 1. Hence  

]P(AkA~) <= ]P(AkA * ) = ]P(Ak) IP(A *) 

-<_ (1 + ~)IP(Ak)IP(At) , 

for any e > 0  provided k<l  and k is large enough, where the last step follows 
f rom L e m m a  16. One easily verifies that  

~ ID(AkAt) 
l imin f  l= 1 k=t < 1  

2 

and by the already quoted  Borel-Cantel l i  l e m m a  (cf. Spitzer, 1964) we have 

IP(A k i.o.) = 1 
which proves  L e m m a  21. 

By the above procedure  we have chosen b r excursions (Vii, Yi) (i = 1, 2 . . . .  , br) 
which however  are not  necessarily the b r largest ones. It  is possible that  some 
of them can be replaced by larger f rom the intervals (Yi, Vi+I) ( i=0 ,  . . . ,br--1 ). 
But it is readily seen that  even the largest  b r excursions in (0, Yb~.) can not  

bT 

cover  more  than  ~ (Zi+max(Ri, a r -R i )  ). Hence  the non-covered  par t  of 
i = 1  

bT 

(0, Yb~) is at least ~ min(Ri,  ar-Ri) .  Since Ri/a r ( i=1  . . . . .  br) are i.i.d, r a n d o m  
i = 1  

variables having arc sine distr ibution and 

( R i ) ) = ! 2 ] ~ - d v  1 1 
m i n ( R ~ i ' l - a  r \ a  T n ]/ 1 - v  - 2  n' E 

we have by the law of the large numbers  

L e m m a  2 2  
b~ 1 1 

lira (arbv)  -1 ~ min(Ri,  a r - R i ) -  2 a.s. 
T ~ o c  i =  1 

It  follows that  for large enough T 

b~ . 1 T 
Z mln(Ri'ar-Ri)>=2arbr>=Z( -~ , - r  1) a.s., 

i = 1  

which together  with L e m m a  21 proves  Theo rem 4. 
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6. A Consequence and some Problems 

In t roduce  the following nota t ions:  

M s ( n ) =  max  S(k), 
O<_k<_n 

M2(n)= max  IS(k)l, 
O<k<.n  

c% = c%(j) = 0, flo=fio(J)=max{i: i>=O, Mj(i)=O}, 

~ S  = cq( j )=min{ i :  i>flo, Mj(i)=Mj(i+ 1)}, 

fil = fi, (J) = max  {i: Mj(i) = M j ( ~  1 (J))}, 

C~g = C~k(j) = min{i :  i > ilk-S, Mj(i) = Mi(i + 1)}, 

flk = fig(J) = max{i:  Mj(i) = Mj(C~k(j))}, 

~ (n)  = ~j(n) = m a x  {k: C~k(/' ) < n}, 

Y=(n) = J(J)(n) = max{fl  o -- %,/~s -- cq . . . .  , fl~(n)--1 - -  g~(n)--1, n - -  g ~ ( n ) }  

( j = l , 2 ) .  

Here  Y=(J)(n) is the length of the longest  flat interval  of  Ma(i ) (O<i<n; j  
= 1, 2). A famous  theorem of L6vy (see e.g. Knigh t  (1981) p. 130 and Cs~ki and 
R6v6sz (1983)) says that  the limit behav iour  of  Ml(n ) is the same as tha t  of 
~(n).  Applying this result and Theo rems  B and 1 one has 

Consequence. Let f (x) be a non-decreasing function for which 

Then 

and 

IP 

X 

f ( x ) / ~ ,  f ~ / z ~ ,  as x ~ .  

if I ( f ) =  o% 
/f  l ( f ) <  

IP f ( 1 ) ( n ) < f l T ~ i . o .  = /f J ( f ) < o v ,  

where fl is defined by (1.5) and I resp. j are defined in Theorems A resp. 1. 

This Consequence  gives a comple te  character iza t ion  of J(1)(n)  and  suggests 
our  

Problem 2. Charac ter ize  the sequence Y=(2)(n). 

Let  {a,} be a non-decreas ing sequence of posit ive integers and consider  the 
process 

m(n)=m(n,a,)= min (~ (k+a , ) -~ (k ) ) .  
O < k < n - - a n  
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Theorems  B and 1 imply  

l im sup re(n, a,) = 0 a.s. 
H 

if a , <  ]~ - -  and  J ( f )  < o% 
f(n) 

l im infm(n, a,) = 0 a.s. 
(1) 

if a,<n 1 - f ~  and  I ( f ) = ~ .  

Problem 3. Charac te r ize  those  sequences {a,} for which 

l im sup re(n, a,) = K a.s. 

where  K is a given posi t ive  integer. 

Problem 4. F o r  a given sequence {a,} find the no rma l i z ing  factors i(n)= i(n, a,) 

( a , > n  ( 1 - f ~ n ) )  whenever  I ( f ) = o e ) a n d  s(n)=s(n,a,)(a,>~n/f(n)whenever 

J ( f )  < or) such tha t  

m(n, a,) 
l im sup - -  - 1 a.s. 

s(n) 
and 

l im inf re(n, a,) = 1 
i(n) 

a.s .  

Remarks. 1. The  proper t ies  of 

max  (N(k + a , ) - ~ ( k ) )  
O<k~-n--an 

were s tudied  by CsAki et al. (1983) and  by  Cs/tki and  F/51des (1984). 
2. Our  Theo rems  were fo rmula t ed  or ig inal ly  for r a n d o m  walks.  In  o rder  to 

get a s impler  p r o o f  we re fo rmula ted  some of them for Wiene r  processes and 
no ted  tha t  the  re fo rmula ted  versions imply  the or ig inal  ones by invar iance  
principle.  Here  we wish to men t ion  tha t  Theo rems  1 and  2 can be re fo rmula ted  
for W i e n e r  process  as well. 
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