Z. Wahrscheinlichkeitstheorie verw. Gebiete 68, 365-382 (1985)

On the Length of the Longest Excursion

E. Csáki, P. Erdős, and P. Révész
Mathematical Institute, Reáltanoda u. 13-15, H-1053 Budapest, Hungary

Summary. A lower limit of the length of the longest excursion of a symmetric random walk is given. Certain related problems are also discussed. It is shown e.g. that for any $\varepsilon>0$ and all sufficiently large n there are $c(\varepsilon)$ $\log \log n$ excursions in the interval $(0, n)$ with total length greater than $n(1$ $-\varepsilon$), with probability 1 .

1. Introduction

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d.r.v.'s with

$$
\mathbb{P}\left(X_{i}=+1\right)=\mathbb{P}\left(X_{i}=-1\right)=\frac{1}{2} \quad(i=1,2, \ldots)
$$

and consider the random walk $S(0)=0, S(n)=X_{1}+X_{2}+\ldots+X_{n}(n=1,2, \ldots)$. Introduce the following notations:

$$
\begin{aligned}
& \mathscr{P}(n)=\mathscr{N} o .\{k: 0<k \leqq n, S(k)>0\}, \\
& \mathscr{R}(n)=\mathscr{N} o .\{k: 0<k \leqq n, S(k)=0\},
\end{aligned}
$$

($\mathscr{N} O .\{\ldots\}$ stands for cardinality of the set in brackets).

$$
\begin{aligned}
& \rho_{0}=0, \\
& \rho_{1}=\inf \{k: k>0, S(k)=0\}, \\
& \rho_{2}=\inf \left\{k: k>\rho_{1}, S(k)=0\right\}, \\
& \cdots \cdots \cdots \cdots \cdots \\
& \rho_{n+1}=\inf \left\{k: k>\rho_{n}, S(k)=0\right\}, \\
& \left.\cdots \cdots \cdots \cdots \cdots \cdots, \cdots \cdots \rho_{\mathscr{R}(n)}-\rho_{\mathscr{R}(n)-1}, n-\rho_{\mathscr{R}(n)}\right\} .
\end{aligned}
$$

Here $\mathscr{T}(n)$ is the length of the longest excursion of the random walk $S(0)$, $S(1), \ldots, S(n)$. The main goal of the present paper is to study the properties of $\mathscr{T}(n)$.

The properties of $\mathscr{R}(n)$ and $\mathscr{P}(n)$ were studied by Chung and Hunt (1949) and Chung and Erdős (1952) resp. Here we recall the Chung-Erdös theorem.
Theorem A. Let $f(x)$ be a non-decreasing function for which $\lim _{x \rightarrow \infty} f(x)=\infty$ and put

$$
I(f)=\int_{1}^{\infty} \frac{d x}{x f^{\frac{1}{2}}(x)}
$$

Then

$$
\mathbb{P}\left\{\mathscr{P}(n) \geqq n\left(1-\frac{1}{f(n)}\right) \text { i.o. }\right\}= \begin{cases}1 & \text { if } I(f)=\infty \tag{1.1}\\ 0 & \text { if } I(f)<\infty\end{cases}
$$

and

$$
\mathbb{P}\left\{\mathscr{P}(n) \leqq \frac{n}{f(n)} \text { i.o. }\right\}= \begin{cases}1 & \text { if } I(f)=\infty \tag{1.2}\\ 0 & \text { if } I(f)<\infty\end{cases}
$$

Studying the proof of Theorem A we can realize that the following stronger statement is also proved by Chung and Erdös:

Theorem B

$$
\mathbb{P}\left\{\mathscr{T}(n) \geqq n\left(1-\frac{1}{f(n)}\right) \text { i.o. }\right\}= \begin{cases}1 & \text { if } I(f)=\infty, \tag{1.3}\\ 0 & \text { if } I(f)<\infty,\end{cases}
$$

provided that $f(x) \nearrow \infty$.
(1.3) gives the best possible upper bound for $\mathscr{T}(n)$. For example it implies that for any $\varepsilon>0$

$$
\mathscr{T}(n) \leqq n-\frac{n}{(\log n)^{2+\varepsilon}}
$$

except finitely many n with probability one and

$$
\mathscr{T}(n) \geqq n-\frac{n}{(\log n)^{2}}
$$

infinitely often with probability one. We are interested to find a lower bound for $\mathscr{T}(n)$. Our main result is
Theorem 1. Let $f(x)$ be a non-decreasing function for which

$$
f(x) \nearrow \infty, \quad \frac{x}{f(x)} \nearrow \infty \quad \text { as } \quad x \rightarrow \infty
$$

and let

$$
\mathscr{J}(f)=\sum_{n=1}^{\infty} \frac{f(n)}{n} e^{-f(n)}
$$

Then

$$
\mathbb{P}\left\{\mathscr{T}(n) \leqq \beta \frac{n}{f(n)} \text { i.o. }\right\}= \begin{cases}0 & \text { if } \mathscr{F}(f)<\infty \tag{1.4}\\ 1 & \text { if } \mathscr{J}(f)=\infty\end{cases}
$$

where $\beta=0,85403 \ldots$ is the root of the equation

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\beta^{k}}{k!(2 k-1)}=1 \tag{1.5}
\end{equation*}
$$

(1.4) says for example that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log \log n}{n} \mathscr{T}(n)=\beta \quad \text { a.s. } \tag{1.6}
\end{equation*}
$$

Remark. Equation (1.5) emerges in a paper by Shepp (1967) (see also Greenwood and Perkins (1983)).

Beside of studying the properties of the length of the longest excursion, it looks interesting to say something about the second, third... etc. longest excursion. Consider the sample $\rho_{1}, \rho_{2}-\rho_{1}, \ldots, \rho_{\mathscr{R}(n)}-\rho_{\mathscr{R}(n)-1}, n-\rho_{\mathscr{R}(n)}$ (the lengths of the excursions) and the corresponding ordered sample $\mathscr{T}_{1}(n)$ $=\mathscr{T}(n) \geqq T_{2}(n) \geqq \ldots \geqq \mathscr{T}_{\mathscr{T}(n)+1}(n)$. Now we present our
Theorem 2. For any fixed $k=1,2, \ldots$ we have

$$
\liminf _{n \rightarrow \infty} \frac{\log \log n}{n} \sum_{j=1}^{k} \mathscr{T}_{j}(n)=k \beta \quad \text { a.s. }
$$

This Theorem, in some sense, answers the question "How small can be $\mathscr{T}_{2}(n), \mathscr{T}_{3}(n), \ldots ?$ In order to obtain a more complete description of these r.v.'s we present the following:

Problem 1. Characterize the set of those non-decreasing functions $f(n)$ (n $=1,2, \ldots$) for which

$$
\mathbb{P}\left\{\mathscr{T}_{2}(n) \geqq \frac{n}{2}\left(1-\frac{1}{f(n)}\right) \text { i.o. }\right\}=1 .
$$

(1.3) says that for some n nearly the whole random walk $S(0), S(1), \ldots, S(n)$ is one excursion. (1.4) and (1.6) say that for some n the random walk consists of at least $\beta^{-1} \log \log n$ excursions. These results suggest the question: For what value of $k=k(n)$ will the sum $\sum_{j=1}^{k} \mathscr{T}_{j}(n)$ be nearly equal to n ? In fact we
formulate two questions:

Question 1. For any $\varepsilon>0$ let $\mathscr{F}(\varepsilon)$ be the set of those functions $f(n)(n=1,2, \ldots)$ for which

$$
\sum_{j=1}^{f(n)} \mathscr{T}_{j}(n) \geqq n(1-\varepsilon)
$$

with probability one except finitely many n. How can we characterize $\mathscr{F}(\varepsilon)$ for some $\varepsilon>0$?

Question 2. Let $\mathscr{F}(o)$ be the set of those functions $f(n)(n=1,2, \ldots)$ for which

$$
\lim _{n \rightarrow \infty} n^{-1} \sum_{j=1}^{f(n)} \mathscr{T}_{j}(n)=1 \quad \text { a.s. }
$$

How can we characterize $\mathscr{\mathscr { F }}(o)$?
Studying our first question we have

Theorem 3. For any $\varepsilon>0$ there exists a $C=C(\varepsilon)>0$ such that
$C \log \log n \in \mathscr{F}(\varepsilon)$.
Concerning our Question 2, we have the following result:
Theorem 4. For any $C>0$

$$
\begin{equation*}
f(n)=C \log \log n \notin \mathscr{F}(o) \tag{1.7}
\end{equation*}
$$

and for any $\omega(n) \nearrow \infty(n \rightarrow \infty)$

$$
\begin{equation*}
\omega(n) \log \log n \in \mathscr{F}(o) . \tag{1.8}
\end{equation*}
$$

2. Proof of Theorem 1

We recall the following well-known
Theorem C

$$
b_{k}=\mathbb{P}\left(\rho_{1}=2 k\right)=\frac{1}{k 2^{k-1}}\binom{2 k-2}{k-1} \quad(k=1,2, \ldots) .
$$

Consequently

$$
\begin{equation*}
b_{k}=\frac{1}{2 \sqrt{\pi}} k^{-\frac{3}{2}} \exp \left(\vartheta_{k} / k\right) \tag{2.1}
\end{equation*}
$$

where $\left|\vartheta_{k}\right| \leqq 1$.
By (2.1) we easily obtain

Lemma 1

$$
\begin{equation*}
\sum_{j=1}^{a} b_{j} \exp (j \beta / a)=1+\mathcal{O}\left(a^{-\frac{3}{2}}\right) \quad(a \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

where β is the root of Eq. (1.5).
Proof. Clearly we have

$$
\begin{aligned}
\sum_{j=1}^{a} b_{j} & \exp \left(\frac{j \beta}{a}\right)=\sum_{j=1}^{a} b_{j}+\sum_{j=1}^{a} b_{j}\left(\exp \left(\frac{j \beta}{a}\right)-1\right) \\
= & \sum_{j=1}^{a} b_{j}+\frac{1}{2 \sqrt{\pi}} \sum_{j=1}^{a} j^{-\frac{3}{2}}\left(\exp \left(\frac{j \beta}{a}\right)-1\right)+\frac{1}{2 \sqrt{\pi}} \sum_{j=1}^{a} j^{-\frac{3}{2}}\left(\exp \left(\frac{\vartheta_{j}}{j}\right)-1\right) \\
& \times\left(\exp \left(\frac{j \beta}{a}\right)-1\right)=A_{1}+A_{2}+A_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
A_{1} & =1-(\pi a)^{-\frac{1}{2}}+\mathcal{O}\left(a^{-\frac{3}{2}}\right) \\
A_{2} & =\frac{1}{2 \sqrt{\pi}} \sum_{k=1}^{\infty} \frac{\beta^{k}}{a^{k} k!} \sum_{j=1}^{a} j^{k-\frac{3}{2}} \\
& =(\pi a)^{-\frac{1}{2}} \sum_{k=1}^{\infty} \frac{\beta^{k}}{k!(2 k-1)}+\mathcal{O}\left(a^{-\frac{3}{2}}\right)=(\pi a)^{-\frac{1}{2}}+\mathcal{O}\left(a^{-\frac{3}{2}}\right)
\end{aligned}
$$

$$
A_{3}=\mathcal{O}\left(a^{-\frac{3}{2}}\right)
$$

what proves (2.2).
Let

$$
p_{n}=p_{n}(a)= \begin{cases}\mathbb{P}(\mathscr{T}(2 n) \leqq 2 a) & \text { if } n \geqq a, \\ 1 & \text { if } n<a .\end{cases}
$$

Then we clearly have

Lemma 2.

$$
\begin{equation*}
p_{n}=\sum_{j=1}^{a} p_{n-j} b_{j} \quad(n=a, a+1, \ldots) . \tag{2.3}
\end{equation*}
$$

Now we are looking for the solution of (2.3) satisfying the initial condition $p_{n}=1$ if $n=1,2, \ldots, a-1$. We obtain

Lemma 3. There exist positive constants $0<C_{1} \leqq C_{2}<\infty$ such that

$$
\begin{equation*}
p_{n}(a)=C(n, a) \exp \left(-\beta \frac{n}{a}\right) \tag{2.4}
\end{equation*}
$$

and

$$
C_{1} \leqq C(n, a) \leqq C_{2}
$$

provided that $n \leqq a^{\frac{3}{2}}$.
From now on C (with or without index) will stand for an absolute constant whose actual value may change from line to line.

Proof. Replacing (2.4) in (2.3) we get

$$
\begin{equation*}
C(n, a)=\sum_{j=1}^{a} C(n-j, a) \exp \left(\beta \frac{j}{a}\right) b_{j} \tag{2.5}
\end{equation*}
$$

In case $n \leqq 2 a$ our statement is trivial. For $n>2 a$ the statement follows from (2.5) by induction.

Lemma 4. Let $f(n)(n=1,2, \ldots)$ be a non-decreasing positive function for which

$$
\begin{equation*}
f(n)<\frac{1}{4} \log \log n \quad \text { i.o. } \tag{2.6}
\end{equation*}
$$

and put

$$
\begin{aligned}
\mathscr{F}=\mathscr{J}(f) & =\sum_{n=1}^{\infty} \frac{f(n)}{n} e^{-f(n)}, \quad \overline{\mathscr{J}}=\overline{\mathscr{J}}(f)=\sum_{k=2}^{\infty} e^{-f\left(n_{k}\right)} \\
n_{k} & =\left[\exp \frac{k}{\log k}\right] \quad(k=2,3, \ldots) .
\end{aligned}
$$

Then $\mathscr{J}=\overline{\mathcal{J}}=\infty$.
Proof. Suppose that $f(N)<\frac{1}{4} \log \log N$ for a fixed N. Then a simple calculation gives

$$
\begin{equation*}
\mathscr{J} \geqq \sum_{n=1}^{N} \frac{f(n)}{n} e^{-f(n)} \geqq C e^{-f(N)} \sum_{n=1}^{N} \frac{1}{n} \geqq C(\log N)^{\frac{3}{4}} . \tag{2.7}
\end{equation*}
$$

Thus $\mathscr{J} \geqq C(\log N)^{\frac{3}{4}}$ for infinitely many N, we have $\mathscr{J}=\infty$. One can see similarly that $\overline{\mathscr{J}}=\infty$ by observing that condition (2.6) implies that $f\left(n_{k}\right)<\frac{1}{2} \log \log n_{k}$ i.o.
Lemma 5. Let $f(n)(n=1,2, \ldots)$ be a non-decreasing, positive function. Then \mathscr{J} $=\infty$ if and only if $\overline{\mathscr{J}}=\infty$.

Such a lemma like this and the previous lemma is frequently used in the proofs of theorems like our Theorem 1, hence its proof is routine. For the convenience of the reader we present it.

Proof

$$
\begin{aligned}
\mathscr{J}=\sum_{k=2}^{\infty} \sum_{j=n_{k}+1}^{n_{k+1}} \frac{f(j)}{j} e^{-f(j)} & \leqq C \sum_{k} \frac{n_{k+1}-n_{k}}{n_{k}} f\left(n_{k}\right) e^{-f\left(n_{k}\right)} \\
& \leqq C \sum_{k} \frac{f\left(n_{k}\right)}{\log k} e^{-f\left(n_{k}\right)}=C \mathscr{J}^{*}
\end{aligned}
$$

Similarly one can obtain that

$$
\mathscr{J}^{*} \leqq C \mathscr{F} .
$$

By Lemma 4 one can assume that $f(n)>\frac{1}{4} \log \log n(n=3,4, \ldots)$. Hence we have

$$
\mathscr{J}^{*} \geqq C \overline{\mathscr{J}}
$$

that is $\overline{\mathscr{J}}=\infty$ implies $\mathscr{\mathscr { J }}=\infty$. In order to see the converse statement let

$$
A=\left\{k: f\left(n_{k}\right)<2 \log \log n_{k}\right\}
$$

Then

$$
\begin{aligned}
\mathscr{J}^{*} & =\sum_{k \in A} \frac{f\left(n_{k}\right)}{\log k} e^{-f\left(n_{k}\right)}+\sum_{k \notin A} \frac{f\left(n_{k}\right)}{\log k} e^{-f\left(n_{k}\right)} \\
& \leqq C \sum_{k \in A} e^{-f\left(n_{k}\right)}+\sum_{k \notin A} \frac{f\left(n_{k}\right)}{\log k} e^{-f\left(n_{k}\right)} \leqq C \overline{\mathscr{J}}+C
\end{aligned}
$$

what proves the implication: if $\mathscr{J}=\infty$ then $\overline{\mathcal{J}}=\infty$.
The following lemma is trivial, we give it without proof.
Lemma 6. Let $\left\{a_{k}\right\}$ be a non-increasing sequence of positive numbers for which $\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\sum_{n=1}^{\infty}\left(a_{n}\right)^{1-\frac{1}{\log n}}<\infty
$$

Lemma 7. Let

$$
A_{k}=\left\{\mathscr{T}\left(n_{k}\right) \leqq a_{k}\right\} \quad k=2,3, \ldots
$$

where

$$
a_{k}=\frac{\beta n_{k}}{f\left(n_{k}\right)}
$$

and $f(n)$ is a non-decreasing positive function such that $f(n) \leqq \beta n^{\frac{1}{3}}$. Then

$$
\begin{equation*}
\mathbb{P}\left(A_{k} A_{l}\right) \leqq C \mathbb{P}\left(A_{k}\right) \exp \left(-\beta \frac{n_{l}-n_{k}}{a_{l}}\right) \quad(1 \leqq k<l<\infty) . \tag{2.8}
\end{equation*}
$$

Proof. Let $\mathscr{T}(a, b)(0 \leqq a<b<\infty)$ be the length of the longest excursion of the random walk $S(a), S(a+1), \ldots, S(b)$. Then

$$
\begin{aligned}
& \mathbb{P}\left(A_{k} A_{j}\right) \leqq \mathbb{P}\left(\mathscr{T}\left(n_{k}\right) \leqq a_{k}, \mathscr{T}\left(n_{k}, n_{l}\right) \leqq a_{l}\right) \\
& \quad=\sum_{j} \mathbb{P}\left(\mathscr{T}\left(n_{k}\right) \leqq a_{k} \mid S\left(n_{k}\right)=j\right) \mathbb{P}\left(\mathscr{T}\left(n_{k}, n_{l}\right) \leqq a_{l} \mid S\left(n_{k}\right)=j\right) \mathbb{P}\left(S\left(n_{k}\right)=j\right) \\
& \quad \leqq \sum_{j} \mathbb{P}\left(\mathscr{T}\left(n_{k}\right) \leqq a_{k} \mid S\left(n_{k}\right)=j\right) \mathbb{P}\left(\mathscr{T}\left(n_{l}-n_{k}\right) \leqq a_{l}\right) \mathbb{P}\left(S\left(n_{k}\right)=j\right) \\
& \quad=\mathbb{P}\left(\mathscr{T}\left(n_{l}-n_{k}\right) \leqq a_{l}\right) \mathbb{P}\left(A_{k}\right) \leqq C \exp \left(-\beta \frac{n_{l}-n_{k}}{a_{l}}\right) \mathbb{P}\left(A_{k}\right)
\end{aligned}
$$

(the last inequality follows from Lemma 3). Hence we have (2.8)
Lemma 8. Let $f(n)$ be a non-decreasing function for which $\mathscr{J}(f)=\infty$. Then for any $0<\varepsilon<1$ there exists a non-decreasing function \bar{f} such that
(i) $\bar{f}(n) \geqq f(n)(n=1,2, \ldots)$,
(ii) $\mathscr{J}(\bar{f})=\infty$,
(iii) $\bar{f}(n) \geqq \varepsilon \log \log n$.

Proof of this lemma is based on the same idea as that of Lemma 4 and will be omitted.

Lemma 9. Let

$$
B_{n}=\left\{\mathscr{T}(n) \leqq b_{n}\right\}
$$

where

$$
b_{n}=\frac{\beta n}{f(n)}
$$

and $f(n)$ is a non-decreasing function for which $\mathscr{J}<\infty$. Then

$$
\begin{equation*}
\mathbb{P}\left(B_{n} \text { i.o. }\right)=0 \tag{2.9}
\end{equation*}
$$

Proof. Let

$$
\tilde{f}\left(n_{k}\right)=\frac{n_{k}}{n_{k+1}} f\left(n_{k+1}\right)
$$

Then by Lemmas 5 and 6

$$
\sum_{k=2}^{\infty} e^{-\tilde{f}\left(n_{k}\right)}<\infty
$$

and by Lemma 3

$$
\mathbb{P}\left(\mathscr{T}\left(n_{k}\right) \leqq \frac{\beta n_{k}}{\tilde{f}\left(n_{k}\right)} \text { i.o. }\right)=0
$$

provided that $f(n) \leqq \beta n^{\frac{1}{3}}$.
Now let $n_{k} \leqq n \leqq n_{k+1}$ then

$$
\mathscr{T}(n) \geqq \mathscr{T}\left(n_{k}\right) \geqq \frac{\beta n_{k}}{\tilde{f}\left(n_{k}\right)}=\beta \frac{n_{k+1}}{f\left(n_{k+1}\right)} \geqq \beta \frac{n}{f(n)}
$$

with probability one except finitely many k. Hence we have (2.9), if $f(n) \leqq \beta n^{\frac{1}{3}}$ ($n \geqq n_{0}$).

In the case when this condition does not hold, define $f_{1}(n)=\min \left(f(n), \beta n^{\frac{1}{3}}\right)$. $f_{1}(n)$ is non-decreasing with $\mathscr{J}\left(f_{1}\right)<\infty$ and $f_{1}(n) \leqq \beta n^{\frac{1}{3}}$, hence (2.9) holds for $f(n)$ replaced by $f_{1}(n)$. Since $f_{1}(n) \leqq f(n)$, we have also (2.9) with the original $f(n)$. This proves the first part of Theorem 1.

To show the second part, assume that

$$
\begin{equation*}
\frac{1}{5} \log \log n \leqq f(n) \leqq 2 \log \log n \quad(n=3,4, \ldots) \tag{2.10}
\end{equation*}
$$

The lower inequality can be assumed by Lemma 8, while if the upper inequality does not hold for all n large enough, then by eliminating those n 's for which $f(n)>2 \log \log n$, the whole procedure below can be done for the remaining subsequence and still conclude the second part of (1.4).

Defining n_{k} as in Lemma 4, for large enough k and $k<l$ we have

$$
\begin{align*}
\log \frac{n_{l}}{n_{k}} & =\frac{l-k}{\log l}-\frac{k(\log l-\log k)}{\log l \log k} \\
& \geqq \frac{l-k}{\log l}-\frac{l-k}{(\log l)(\log k)} \geqq \frac{1}{2} \frac{l-k}{\log l} . \tag{2.11}
\end{align*}
$$

Now for k fixed, split the indices $l(k<l \leqq n)$ into three parts:

$$
\begin{aligned}
& L_{1}=\{l: 0<l-k \leqq \log l\} \\
& L_{2}=\left\{l: \log l<l-k \leqq \log ^{2} l\right\} \\
& L_{3}=\left\{l: \log ^{2} l<l-k\right\}
\end{aligned}
$$

For $l \in L_{1}$ we have from (2.10) and (2.11)

$$
\begin{align*}
\frac{n_{1}-n_{k}}{n_{l}} f\left(n_{l}\right) & \geqq\left(1-\exp \left(-\frac{1}{2} \frac{l-k}{\log l}\right)\right) \frac{1}{5} \log \log n_{l} \\
& \geqq c \frac{l-k}{\log l} \log \frac{l}{\log l} \geqq c(l-k) \tag{2.12}
\end{align*}
$$

For $l \in L_{1}$ we have from (2.11)

$$
\frac{n_{l}-n_{k}}{n_{l}} \geqq 1-\exp \left(-\frac{1}{2} \frac{l-k}{\log l}\right) \geqq 1-e^{-\frac{1}{2}}=c^{\prime}>0
$$

Hence by Lemma 7 and (2.10)

$$
\begin{align*}
P\left(A_{k} A_{l}\right) & \leqq c P\left(A_{k}\right) e^{-c^{\prime} f\left(n_{l}\right)} \leqq c P\left(A_{k}\right)\left(\frac{\log l}{l}\right)^{c_{1}^{\prime}} \\
& \leqq c P\left(A_{k}\right)\left(\frac{\log k}{k}\right)^{c_{1}^{\prime}} \tag{2.13}
\end{align*}
$$

For $l \in L_{3}$ we have from (2.10) and (2.11)

$$
\begin{equation*}
\frac{n_{k}}{n_{l}} f\left(n_{l}\right) \leqq f\left(n_{l}\right) \exp \left(-\frac{1}{2} \frac{l-k}{\log l}\right) \leqq f\left(n_{l}\right) \exp \left(-\frac{1}{2} \log l\right) \leqq c \tag{2.14}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \sum_{l \in L_{1}} P\left(A_{k} A_{l}\right) \leqq c P\left(A_{k}\right) \sum_{l \in L_{1}} e^{-c^{\prime}(l-k)} \leqq c P\left(A_{k}\right), \tag{2.15}\\
& \sum_{l \in L_{2}} P\left(A_{k} A_{l}\right) \leqq c P\left(A_{k}\right)\left(\frac{\log k}{k}\right)^{c_{1}} \sum_{l \in L_{2}} 1 \leqq c P\left(A_{k}\right), \tag{2.16}
\end{align*}
$$

since $\sum_{l \in L_{2}} 1 \leqq c(\log k)^{2}$.
By Lemmas 3 and 7, (2.14), (2.15), (2.16)

$$
\sum_{k} P\left(A_{k}\right)=\infty
$$

and

$$
\sum_{l=1}^{n} \sum_{k=1}^{n} \mathbb{P}\left(A_{k} A_{l}\right) \leqq C\left(\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right)^{2}+C \sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)
$$

consequently

$$
\liminf _{n \rightarrow \infty} \frac{\sum_{l=1}^{n} \sum_{k=1}^{n} \mathbb{P}\left(A_{k} A_{l}\right)}{\left(\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right)^{2}} \leqq C
$$

and by the Borel-Cantelli lemma (cf. Spitzer (1964)) we have

$$
\mathbb{P}\left(A_{k} \text { i.o. }\right) \geqq C^{-1}>0 .
$$

Hence we have our Theorem 1 by the 0-1 law.

3. Proof of Theorem 2

We give the following analogue of Lemma 3.
Lemma 10. Let

$$
\tilde{p}_{n}=\tilde{p}_{n}(a)= \begin{cases}\mathbb{P}(\mathscr{T}(2 n) \leqq 2 a, S(2 n)=0) & \text { if } n \geqq a, \\ \mathbb{P}(S(2 n)=0) & \text { if } n<a .\end{cases}
$$

Then there exist positive constants $0<C_{1} \leqq C_{2}<\infty$ such that

$$
\tilde{p}_{n}(a)=C(n, a) \min \left((n+1)^{-\frac{1}{2}}, a^{-\frac{1}{2}}\right) \exp \left(-\beta \frac{n}{a}\right)
$$

and

$$
C_{1} \leqq C(n, a) \leqq C_{2}
$$

provided that $0 \leqq n \leqq a^{\frac{3}{2}}$.
Proof. Observe that the statement is trivial if $0 \leqq n \leqq 2 a$ and we have

$$
\tilde{p}_{n}=\sum_{j=1}^{a} \tilde{p}_{n-j} b_{j} \quad(n \geqq 2 a) .
$$

Now we obtain our Lemma 10 using the method of proof of Lemma 3.
Let $a_{1}, a_{2}, \ldots, a_{k}$ be a sequence of positive integers and m $=\min \left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Further let $d_{1}, d_{2}, \ldots, d_{k+1}$ be a sequence of non-negative integers such that

$$
\begin{gather*}
d_{1} \geqq 0, d_{2} \geqq 0, d_{3} \geqq 0, \ldots, d_{k} \geqq 0, d_{k+1} \geqq 0 \\
d_{1}+d_{2}+\ldots+d_{k+1}+a_{1}+a_{2}+\ldots+a_{k}=n \tag{3.1}
\end{gather*}
$$

Introduce the following notations

$$
\begin{aligned}
& B_{1}=\left\{S\left(d_{1}\right)=0, \mathscr{T}\left(0, d_{1}\right) \leqq m\right\}, \\
& A_{1}=\left\{S\left(d_{1}+i\right) \neq 0\left(i=1,2, \ldots, a_{1}-1\right), S\left(d_{1}+a_{1}\right)=0\right\}, \\
& B_{2}=\left\{S\left(d_{1}+a_{1}+d_{2}\right)=0, \mathscr{T}\left(d_{1}+a_{1}, d_{1}+a_{1}+d_{2}\right) \leqq m\right\}, \\
& \ldots \\
& A_{k}=\left\{S\left(d_{1}+a_{1}+\ldots+a_{k-1}+d_{k}+i\right) \neq 0\left(i=1,2, \ldots, a_{k}-1\right),\right. \\
&\left.S\left(d_{1}+a_{1}+\ldots+d_{k}+a_{k}\right)=0\right\} \\
& B_{k+1}=\left\{S\left(d_{1}+a_{1}+\ldots+d_{k}+a_{k}\right)=0, \mathscr{T}\left(d_{1}+a_{1}+\ldots+d_{k}+a_{k}, n\right) \leqq m\right\}, \\
& A= A_{1} A_{2} \ldots A_{k} B_{1} B_{2} \ldots B_{k+1}, \\
& A^{*}= A^{*}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\Sigma^{*} A
\end{aligned}
$$

where in the sum \sum^{*} the indices $d_{1}, d_{2}, \ldots, d_{k+1}$ run over all $(k+1)$-tuples of integers which satisfy (3.1). Clearly A^{*} is the event that the random walk $S(1), S(2), \ldots, S(n)$ consists of excursions of size $a_{1}, a_{2}, \ldots, a_{k}$ in this order but all other excursions are shorter than m.

Lemma 11. Let $n \leqq m^{\frac{3}{2}}$. Then

$$
\begin{equation*}
\mathbb{P}\left(A^{*}\right) \leqq C m^{-\frac{3 k}{2}}\left(n m^{-\frac{1}{2}}+m^{\frac{1}{2}}\right)^{k} \exp \left(-\beta m^{-1}\left(n-\sum_{i=1}^{k} a_{i}\right)\right) \tag{3.2}
\end{equation*}
$$

where the constant C may depend on k.
Proof. By Theorem C we have

$$
P\left(A_{i} / A_{1} \ldots A_{i-1} B_{1} \ldots B_{i}\right) \leqq C a_{i}^{-\frac{3}{2}} \quad(i=1, \ldots, k)
$$

Since $d_{i} \leqq n \leqq m^{\frac{3}{2}}$, by Lemma 10

$$
P\left(B_{i} / A_{1} \ldots A_{i-1} B_{1} \ldots B_{i-1}\right) \leqq C\left(m^{-\frac{1}{2}}+\left(d_{i}+1\right)^{-\frac{1}{2}}\right) \exp \left(-\beta m^{-1} d_{i}\right) \quad(i=1, \ldots, k)
$$

and by Lemma 3

$$
P\left(B_{k+1} / A_{1} \ldots A_{k} B_{1} \ldots B_{k}\right) \leqq C \exp \left(-\beta m^{-1} d_{k+1}\right)
$$

Hence

$$
P(A) \leqq C \exp \left(-\beta m^{-1}\left(n-\sum_{i=1}^{k} a_{i}\right)\right) \prod_{i=1}^{k}\left(m^{-\frac{1}{2}}+\left(d_{i}+1\right)^{-\frac{1}{2}}\right)
$$

Now

$$
\sum_{d_{i}}\left(m^{-\frac{1}{2}}+\left(d_{i}+1\right)^{-\frac{1}{2}}\right) \leqq c\left(n m^{-\frac{1}{2}}+m^{\frac{1}{2}}\right)
$$

and (3.2) follows.
A trivial consequence of Lemma 11 is
Lemma 12. Let $a_{1} \geqq a_{2} \geqq \ldots \geqq a_{k} \geqq n^{\frac{2}{3}}$ be a sequence of integers. Then

$$
\begin{equation*}
P\left(T_{1}(n)=a_{1}, \ldots, T_{k}(n)=a_{k}\right) \leqq c a_{k}^{--\frac{3 k}{2}}\left(n a_{k}^{-\frac{1}{2}}+a_{k}^{\frac{1}{2}}\right)^{k} \exp \left(-\beta a_{k}^{-1}\left(n-\sum_{i=1}^{k} a_{i}\right)\right) \tag{3.3}
\end{equation*}
$$

Lemma 13. Let $k n^{\frac{2}{3}} \leqq u<n$.

$$
\begin{equation*}
P\left(\sum_{j=1}^{k} T_{j}(n) \leqq u, T_{k}(n) \geqq n^{\frac{2}{3}}\right) \leqq c u^{k} u^{-\frac{3 k}{2}}\left(n u^{-\frac{1}{2}}+u^{\frac{1}{2}}\right)^{k} \exp \left(-\beta k \frac{n-u}{u}\right) \tag{3.4}
\end{equation*}
$$

Proof. (3.4) follows from (3.3) by summation for the possible $a_{i}(i=1,2, \ldots, k)$ observing that $n^{\frac{2}{3}} \leqq a_{k} \leqq u / k$ and the fact that a sequence $a_{1} \geqq a_{2} \geqq \ldots \geqq a_{k} \geqq n^{\frac{2}{3}}$ of integers for which $\sum_{i=1}^{k} a_{i} \leqq u$ can be chosen at most u^{k} different ways.
Lemma 14. For large enough n we have

$$
\begin{equation*}
P\left(\sum_{j=1}^{k} T_{j}(n) \leqq \beta(1-\varepsilon) k \frac{n}{\log \log n}\right) \leqq c(\log n)^{-\left(1+\frac{\varepsilon}{2}\right)} \tag{3.5}
\end{equation*}
$$

Proof. By letting

$$
u=u_{n}=\beta(1-\varepsilon) k \frac{n}{\log \log n}
$$

we obtain from (3.4) that

$$
\begin{equation*}
P\left(\sum_{j=1}^{k} T_{j}(n) \leqq u_{n}, T_{k}(n) \geqq n^{\frac{2}{3}}\right) \leqq c(\log n)^{-\left(1+\frac{\varepsilon}{2}\right)} \tag{3.6}
\end{equation*}
$$

Furthermore

$$
P\left(\sum_{j=1}^{k} T_{j}(n) \leqq u_{n} / k, T_{k}(n)<n^{\frac{2}{3}}\right) \leqq P\left(T_{1}(n) \leqq u_{n} / k\right) \leqq c(\log n)^{-\left(1+\frac{\varepsilon}{2}\right)} .
$$

Finally, if $u_{n} / k \leqq a_{1}+\ldots+a_{k} \leqq u_{n}$ and $a_{k}<n^{\frac{2}{3}}$, then $\max _{1 \leqq i \leqq k+1} d_{i} \geqq c_{2} n$ with some constant c_{2}, i.e. there exists an interval of length $\geqq c_{2} n$ such that longest excursion within this interval is shorter than $n^{\frac{2}{3}}$, the probability of which is less than $c_{1} e^{-c_{3} n^{\frac{1}{3}}}$. The number of possible choices of $a_{1} \ldots a_{k}, d_{1} \ldots d_{k+1}$ is obviously at most $n^{2 k+1}$, hence

$$
\begin{equation*}
P\left(u_{n} / k \leqq \sum_{j=1}^{k} T_{j}(n) \leqq u_{n}, T_{k}(n)<n^{\frac{2}{3}}\right) \leqq c_{1} n^{2 k+1} e^{-c_{3} n^{\frac{1}{3}}} \tag{3.8}
\end{equation*}
$$

Since for large n the upper bound in (3.8) is less than the upper bound in (3.5), we have Lemma 14 by combining (3.6), (3.7) and (3.8) with some constant c (different from that in (3.6) and (3.7)).
(3.5) by well-known methods implies

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log \log n}{n} \sum_{j=1}^{k} \mathscr{T}_{j}(n) \geqq k \beta \text { a.s. } \tag{3.9}
\end{equation*}
$$

Now Theorem 2 follows from (1.6) and (3.9).

4. Proof of Theorem 3

Instead of proving Theorem 3 we prove the analogue statement (Theorem 3*) for a Wiener process $\{W(t), t \geqq 0\}$. Theorem 3 can be obtained from Theorem 3* constructing the sequence $\left\{X_{i}\right\}$ from $W(t)$ by the Skorohod stopping rule.
Theorem 3*. Let $\{W(t), t \geqq 0\}$ be a Wiener process. Then for any $\varepsilon>0$ there exist $\alpha(T)=\left[C_{1} \varepsilon^{-1} \log \log T\right]$ excursions $\mathscr{E}_{1}, \mathscr{E}_{2}, \ldots, \mathscr{E}_{\alpha(T)}$ of W in $[0, T]$ such that

$$
\sum_{i=1}^{\alpha(T)}\left|\mathscr{E}_{i}\right| \geqq(1-\varepsilon) T
$$

if T is large enough with probability one where $\left|\mathscr{E}_{i}\right|$ is the length of the excursion \mathscr{E}_{i} and C_{1} is an absolute constant.

Introduce the following notations: Let $a_{T}>0$ be a function of T and

$$
\begin{aligned}
Y_{0} & =0 \\
Y_{i} & =Y_{i}(T)=\inf \left\{s: s>Y_{i-1}+a_{T}, W(s)=0\right\} \quad(i=1,2, \ldots), \\
v_{T} & =\max \left\{k: Y_{k} \leqq T\right\} \\
Z_{i} & =Z_{i}(T)=Y_{i}-\left(Y_{i-1}+a_{T}\right), \\
M_{i} & =Z_{i} / a_{T}
\end{aligned}
$$

The following lemma is well-known.
Lemma 15. (i) $\left\{Z_{i}\right\}$ is a sequence of i.i.d.r.v.'s,
(ii) $\left\{U_{i}\right\}=\left\{Z_{i}\left(W\left(Y_{i-1}+a_{T}\right)\right)^{-2}\right\}$ is a sequence of i.i.d.r.v.'s
(iii) $\mathbb{P}\left(U_{i}<x\right)=\mathbb{P}\left(U_{i}<x \mid W\left(Y_{i-1}+a_{T}\right)=w\right)=(2 \pi)^{-\frac{1}{2}} \int_{0}^{x} v^{-\frac{3}{2}} e^{-\frac{1}{2 v}} d v$,
(iv) $E\left(\exp \left\{-t U_{i}\right\}\right)=\exp \left\{-t^{\frac{1}{2}}\right\}, t>0$.

The next lemma is an easy consequence of a theorem of Steinebach (1978).
Lemma 16

$$
\lim _{m \rightarrow \infty}\left(P\left(M_{1}+\ldots+M_{m} \leqq \alpha m\right)\right)^{\frac{1}{m}}=\rho(\alpha),
$$

where $\rho(\alpha)=\inf _{t}\left(\lambda(t) e^{\alpha t}\right), \lambda(t)=E\left(e^{-t M_{1}}\right)$.

Lemma 17. Let

$$
\begin{aligned}
a_{T} & =\varepsilon^{2} T(\log \log T)^{-1} \\
m_{T} & =\left[(3 \pi)^{\frac{1}{2}} \varepsilon^{-1} \log \log T\right]
\end{aligned}
$$

Then

$$
\mathbb{P}\left(v_{T}>m_{T}\right)=O\left((\log T)^{-\frac{3}{2}}\right) \quad \text { as } T \rightarrow \infty
$$

Proof

$$
\begin{aligned}
\mathbb{P}\left(v_{T}>m_{T}\right) & =\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{m_{T}}+m_{T} a_{T} \leqq T\right) \\
& \leqq \mathbb{P}\left(Z_{1}+\ldots+Z_{m_{T}} \leqq T\right)=\mathbb{P}\left(M_{1}+\ldots+M_{m_{T}} \leqq \frac{T}{a_{T} m_{T}} m_{T}\right) .
\end{aligned}
$$

It is easy to check that

$$
\lambda(t)=E\left(e^{-t M_{1}}\right)=2 e^{\frac{t}{2}}\left(1-\phi\left(t^{\frac{1}{2}}\right)\right) \leqq \exp \left\{-(2 t / \pi)^{\frac{1}{2}}\right\}
$$

where $\phi(x)$ is the standard normal distribution function and hence

$$
\rho(\alpha)<\exp \left\{-(2 \pi \alpha)^{-1}\right\} .
$$

Lemma 17 now follows from Lemma 16.
Considering the excursions \mathscr{E}_{i} around the points $Y_{i}+a_{T}\left(i=1,2, \ldots, v_{r}\right)$ the non-covered part of the interval $[0, T]$ will be less than $v_{T} a_{T}$. Hence Lemma 17 implies

Lemma 18. With $C_{1}=(3 \pi)^{\frac{1}{2}}$ we have

$$
\mathbb{P}\left(\sum_{i=1}^{\alpha(T)}\left|\mathscr{E}_{i}\right|<\left(1-\varepsilon C_{1}\right) T\right)=\mathscr{O}\left((\log T)^{-\frac{3}{2}}\right) \quad(T \rightarrow \infty)
$$

Lemma 18 via standard methods implies Theorem 3* with $C_{1}=(3 \pi)^{\frac{1}{2}}$.

5. Proof of Theorem 4

It is easy to see that (1.8) is a simple consequence of Theorem 3. Instead of proving (1.7), we present again the proof of the analogue statement for a Wiener process. In fact we prove our

Theorem 4*. Let $\{W(t), t \geqq 0\}$ be a Wiener process and let $\mathscr{T}_{1}(T) \geqq \mathscr{T}_{2}(T) \geqq \ldots$ be the lengths of the longest, second longest excursions of W up to T. Then for any $D>0$ there exists an $\varepsilon=\varepsilon(D)>0$ such that

$$
\begin{equation*}
\mathbb{P}\left\{\mathscr{T}_{1}(T)+\mathscr{T}_{2}(T)+\ldots+\mathscr{T}_{b(T)} \leqq T(1-\varepsilon) \text { i.o. }\right\}=1 \tag{5.1}
\end{equation*}
$$

where $b(T)=[D \log \log T]$.
Introduce the following notations:

$$
\begin{aligned}
& a_{T}=a(T)=\delta \frac{T}{\log \log T}, \\
& Y_{0}=0, \\
& V_{1}=\sup \left\{s: s<a_{T}, W(s)=0\right\}, \\
& Y_{1}=\inf \left\{s: s>a_{T}, W(s)=0\right\}, \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& V_{i+1}=\sup \left\{s: s<Y_{i}+a_{T}, W(s)=0\right\}, \\
& Y_{i+1}=\inf \left\{s: s>Y_{i}+a_{T}, W(s)=0\right\}, \\
& \ldots \\
& \Delta_{i}=Y_{i}-V_{i}, \quad Z_{i}=Y_{i}-\left(Y_{i-1}+a_{T}\right), \\
& U_{i}=\left(W\left(Y_{i-1}+a_{T}\right)\right)^{-2} Z_{i}, \quad N_{i}=a_{T}^{-\frac{1}{2}} W\left(Y_{i-1}+a_{T}\right), \\
& v_{T}=\min \left\{i: Y_{i} \geqq T\right\}, \\
& R_{i}=V_{i}-Y_{i-1} .
\end{aligned}
$$

The next lemma is an easy consequence of Lemma 16.

Lemma 19

$$
\begin{equation*}
\mathbb{P}\left(m^{-1} \sum_{i=1}^{m} U_{i} N_{i}^{2}<\alpha\right) \geqq C e^{-m / \alpha} \tag{5.2}
\end{equation*}
$$

for any $\alpha>0$ and m big enough.

Lemma 20

$$
\begin{equation*}
\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{b(T)}+a(T) b(T) \leqq T\right) \geqq C(\log T)^{-1} \tag{5.3}
\end{equation*}
$$

if $\delta=\left(D^{2}+D\right)^{-1}$.
Proof

$$
\begin{aligned}
& \mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{b(T)}+a(T) b(T) \leqq T\right) \\
& \quad=\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{b(T)} \leqq(1-\delta D) T\right) \\
& \quad=\mathbb{P}\left(b^{-1}(T) a^{-1}(T)\left(Z_{1}+Z_{2}+\ldots+Z_{b(T)}\right)<(1-\delta D) \delta^{-1} D^{-1}\right) \\
& \quad=\mathbb{P}\left(b^{-1}(T) \sum_{i=1}^{b(T)} U_{i} N_{i}^{2}<D\right) .
\end{aligned}
$$

Hence we have (5.3) by (5.2).
Lemma 21. $\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{b(T)}+a(T) b(T) \leqq T\right.$ i.o. $)=1$ equivalently

$$
\mathbb{P}\left\{v_{T} \geqq b_{T} \text { i.o. }\right\}=1 \quad \text { or } \quad \mathbb{P}\left\{Y_{b_{T}} \leqq T \text { i.o. }\right\}=1
$$

Proof. Let $T_{k}=k^{k}$ and let the events A_{k}, A_{k}^{*} be defined by

$$
\begin{aligned}
& A_{k}=\left\{Z_{1}+Z_{2}+\ldots+Z_{b\left(T_{k}\right)}+a\left(T_{k}\right) b\left(T_{k}\right) \leqq T_{k}\right\}, \\
& A_{k}^{*}=\left\{Z_{2}+\ldots+Z_{b\left(T_{k}\right)}+a\left(T_{k}\right) b\left(T_{k}\right) \leqq T_{k}\right\}
\end{aligned}
$$

By Lemma 20, we have

$$
\sum_{k} \mathbb{P}\left(A_{k}\right)=\infty
$$

Furthermore, since for large $k, T_{k}<a\left(T_{k+1}\right)$, the events A_{k} and A_{l}^{*} are independent for $k<l$. Hence

$$
\begin{aligned}
\mathbb{P}\left(A_{k} A_{l}\right) & \leqq \mathbb{P}\left(A_{k} A_{l}^{*}\right)=\mathbb{P}\left(A_{k}\right) \mathbb{P}\left(A_{l}^{*}\right) \\
& \leqq(1+\varepsilon) \mathbb{P}\left(A_{k}\right) \mathbb{P}\left(A_{l}\right)
\end{aligned}
$$

for any $\varepsilon>0$ provided $k<l$ and k is large enough, where the last step follows from Lemma 16. One easily verifies that

$$
\liminf _{n \rightarrow \infty} \frac{\sum_{l=1}^{n} \sum_{k=1}^{n} \operatorname{PP}\left(A_{k} A_{l}\right)}{\left(\sum_{k=1}^{n} \mathbb{P}\left(A_{k}\right)\right)^{2}} \leqq 1
$$

and by the already quoted Borel-Cantelli lemma (cf. Spitzer, 1964) we have

$$
\mathbb{P}\left(A_{k} \text { i.o. }\right)=1
$$

which proves Lemma 21.
By the above procedure we have chosen b_{T} excursions $\left(V_{i}, Y_{i}\right)\left(i=1,2, \ldots, b_{T}\right)$ which however are not necessarily the b_{T} largest ones. It is possible that some of them can be replaced by larger from the intervals $\left(Y_{i}, V_{i+1}\right)\left(i=0, \ldots, b_{T}-1\right)$. But it is readily seen that even the largest b_{T} excursions in ($0, Y_{b_{T}}$) can not cover more than $\sum_{i=1}^{b_{T}}\left(Z_{i}+\max \left(R_{i}, a_{T}-R_{i}\right)\right)$. Hence the non-covered part of $\left(0, Y_{b_{T}}\right)$ is at least $\sum_{i=1}^{b_{T}} \min \left(R_{i}, a_{T}-R_{i}\right)$. Since $R_{i} / a_{T}\left(i=1, \ldots, b_{T}\right)$ are i.i.d. random variables having arc sine distribution and

$$
E\left(\min \left(\frac{R_{i}}{a_{T}}, 1-\frac{R_{i}}{a_{T}}\right)\right)=\int_{0}^{\frac{2}{2}} \frac{2}{\pi} \sqrt{\frac{v}{1-v}} d v=\frac{1}{2}-\frac{1}{\pi}
$$

we have by the law of the large numbers

Lemma 22

$$
\lim _{T \rightarrow \infty}\left(a_{T} b_{T}\right)^{-1} \sum_{i=1}^{b_{T}} \min \left(R_{i}, a_{T}-R_{i}\right)=\frac{1}{2}-\frac{1}{\pi} \quad \text { a.s. }
$$

It follows that for large enough T

$$
\sum_{i=1}^{b_{T}} \min \left(R_{i}, a_{T}-R_{i}\right) \geqq \frac{1}{6} a_{T} b_{T} \geqq \frac{T}{6(D+1)} \quad \text { a.s. }
$$

which together with Lemma 21 proves Theorem 4.

6. A Consequence and some Problems

Introduce the following notations:

$$
\begin{aligned}
& \quad M_{1}(n)=\max _{0 \leqq k \leqq n} S(k), \quad M_{2}(n)=\max _{0 \leqq k \leqq n}|S(k)|, \\
& \alpha_{0}=\alpha_{0}(j)=0, \quad \beta_{0}=\beta_{0}(j)=\max \left\{i: i \geqq 0, M_{j}(i)=0\right\}, \\
& \alpha_{1}=\alpha_{1}(j)=\min \left\{i: i>\beta_{0}, M_{j}(i)=M_{j}(i+1)\right\}, \\
& \beta_{1}=\beta_{1}(j)=\max \left\{i: M_{j}(i)=M_{j}\left(\alpha_{1}(j)\right)\right\},
\end{aligned}
$$

$$
\alpha_{k}=\alpha_{k}(j)=\min \left\{i: i>\beta_{k-1}, M_{j}(i)=M_{i}(i+1)\right\}
$$

$$
\beta_{k}=\beta_{k}(j)=\max \left\{i: M_{j}(i)=M_{j}\left(\alpha_{k}(j)\right)\right\}
$$

$$
\overline{\mathscr{R}}(n)=\overline{\mathscr{R}}_{j}(n)=\max \left\{k: \alpha_{k}(j) \leqq n\right\}
$$

$$
\overline{\mathscr{T}}(n)=\overline{\mathscr{T}}^{(j)}(n)=\max \left\{\beta_{0}-\alpha_{0}, \beta_{1}-\alpha_{1}, \ldots, \beta_{\overline{\mathscr{T}}(n)-1}-\alpha_{\overline{\mathscr{R}}(n)-1}, n-\alpha_{\mathscr{Z}(n)}\right\}
$$

$$
(j=1,2)
$$

Here $\overline{\mathscr{T}}^{(j)}(n)$ is the length of the longest flat interval of $M_{j}(i)(0 \leqq i \leqq n ; j$ $=1,2$). A famous theorem of Lévy (see e.g. Knight (1981) p. 130 and Csáki and Révész (1983)) says that the limit behaviour of $M_{1}(n)$ is the same as that of $\mathscr{R}(n)$. Applying this result and Theorems B and 1 one has

Consequence. Let $f(x)$ be a non-decreasing function for which

$$
f(x) \nearrow \infty, \quad \frac{x}{f(x)} \nearrow \infty, \quad \text { as } x \rightarrow \infty .
$$

Then

$$
\mathbb{P}\left\{\overline{\mathscr{F}}^{(1)}(n) \geqq n\left(1-\frac{1}{f(n)}\right) \text { i.o. }\right\}= \begin{cases}1 & \text { if } I(f)=\infty, \\ 0 & \text { if } I(f)<\infty\end{cases}
$$

and

$$
\mathbb{P}\left\{\overline{\mathscr{T}}^{(1)}(n) \leqq \beta \frac{n}{f(n)} \text { i.o. }\right\}= \begin{cases}1 & \text { if } \mathscr{J}(f)=\infty, \\ 0 & \text { if } \mathscr{J}(f)<\infty,\end{cases}
$$

where β is defined by (1.5) and I resp. \mathscr{J} are defined in Theorems A resp. 1.
This Consequence gives a complete characterization of $\overline{\mathscr{T}}^{(1)}(n)$ and suggests our
Problem 2. Characterize the sequence $\overline{\mathscr{T}}^{(2)}(n)$.
Let $\left\{a_{n}\right\}$ be a non-decreasing sequence of positive integers and consider the process

$$
m(n)=m\left(n, a_{n}\right)=\min _{0 \leqq k \leqq n-a_{n}}\left(\mathscr{R}\left(k+a_{n}\right)-\mathscr{R}(k)\right) .
$$

Theorems B and 1 imply

$$
\begin{array}{ll}
\lim \sup m\left(n, a_{n}\right)=0 \text { a.s. } & \text { if } a_{n} \leqq \beta \frac{n}{f(n)} \quad \text { and } \quad \mathscr{J}(f)<\infty \\
\lim \inf m\left(n, a_{n}\right)=0 \text { a.s. } & \text { if } a_{n} \leqq n\left(1-\frac{1}{f(n)}\right) \quad \text { and } \quad I(f)=\infty .
\end{array}
$$

Problem 3. Characterize those sequences $\left\{a_{n}\right\}$ for which

$$
\limsup m\left(n, a_{n}\right)=K \quad \text { a.s. }
$$

where K is a given positive integer.
Problem 4. For a given sequence $\left\{a_{n}\right\}$ find the normalizing factors $i(n)=i\left(n, a_{n}\right)$ $\left(a_{n}>n\left(1-\frac{1}{f(n)}\right)\right.$ whenever $\left.I(f)=\infty\right)$ and $s(n)=s\left(n, a_{n}\right)\left(a_{n}>\beta n / f(n)\right.$ whenever $\mathscr{J}(f)<\infty)$ such that

$$
\limsup \frac{m\left(n, a_{n}\right)}{s(n)}=1 \quad \text { a.s. }
$$

and

$$
\liminf \frac{m\left(n, a_{n}\right)}{i(n)}=1 \quad \text { a.s. }
$$

Remarks. 1. The properties of

$$
\max _{0 \leqq k \leqq n-a_{n}}\left(\mathscr{R}\left(k+a_{n}\right)-\mathscr{R}(k)\right)
$$

were studied by Csáki et al. (1983) and by Csáki and Földes (1984).
2. Our Theorems were formulated originally for random walks. In order to get a simpler proof we reformulated some of them for Wiener processes and noted that the reformulated versions imply the original ones by invariance principle. Here we wish to mention that Theorems 1 and 2 can be reformulated for Wiener process as well.

Acknowledgement. The authors wish to thank the referee for careful reading of their manuscript and for helpful remarks.

References

Chung, K.L., Erdős, P.: On the application of the Borel-Cantelli lemma. Trans. Amer. Math. Soc. 72, 179-186 (1952)
Chung, K.L., Hunt, G.A.: On the zeros of $\sum_{1}^{n} \pm 1$. Ann. of Math. 50, 385-400 (1949)
Csáki, E., Csörgö, M., Földes, A., Révész, P.: How big are the increments of the local time of a Wiener process. Ann. Probability 11, 593-608 (1983)
Csáki, E., Földes, A.: How big are the increments of the local time of a simple symmetric random walk? Coll. Math. Soc. J. Bolyai 36. Limit theorems in probability and statistics,Veszprém (Hungary), 1982. P. Révész (ed.). (To appear)

Csáki, E., Révész, P.: A combinatorial proof of a theorem of P. Lévy on the local time. Acta Sci. Math. (Szeged) 45, 119-129 (1983)
Greenwood, P., Perkins, E.: A conditioned limit theorem for random walk and Brownian local time on square root boundaries. Ann. Probability 11, 227-261 (1983)
Knight, F.B.: Essentials of Brownian motion and diffusion. Am. Math. Soc. Providence, Rhode Island, 1981
Shepp, L.A.: A first passage problem for the Wiener process. Ann. Math. Statist. 38, 1912-1914 (1967)

Spitzer, F.: Principles of random walk. Princeton, N.J.: Van Nostrand, 1964
Steinebach, J.: A strong law of Erdös-Rényi type for cumulative processes in renewal theory. J. Appl. Probability 15, 96-111 (1978)

Received July 28, 1983

