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Conditions for Optimality in Dynamic Programming 
and for the Limit 

of n-Stage Optimal Policies to Be Optimal 

Manfred Sch~il 

0. Introduction 

The present work deals with a stationary decision model allowing the discount 
factor to depend on the states of the system and of the selected actions. The 
model includes as special case stationary models in the sense of Blackwell [2 l 
and Strauch [21]. However, the results of this paper generalize to non-stationary 
non-Markovian decision models in the sense of Hinderer [6] (cp. [17]). 

We impose a rather weak convergence condition (condition (C)) on the 
expected total rewards thus including the negative (unbounded) case and the 
discounted case. 

The main purpose of the present paper is to give sufficient conditions for the 
existence of an optimal policy and to interrelate the optimal total expected 
rewards as well as the optimal actions of the model with infinite horizon and 
those of the model with finite horizon N as N tends to infinity. The results of the 
paper may be regarded as generalizations of results by Blackwell [2] Theorem 7b, 
Strauch [21] Theorem 9.1, Maitra [11], Hinderer [6] Theorem 17.12, Hinderer [7] 
Theorem4.2, Furukawa [5] Theorem4.2, [16] Theorem 7.2. In particular, it 
turns out that the results by Maitra and Furukawa proved for the discounted 
case carry over to the negative case. 

The analysis of this paper is based on some results on set-valued mappings, 
upper semi-continuous functions, measurable selections, and topologies on spaces 
of probability measures presented in Sections 9-12 and 14. 

1. The Decision Model 

The background for a theory of dynamic programming may be provided by a 
decision model which is given by a tupel ((S, ~), (A, ~), D, q, ]~, r) of the following 
meaning: 

(i) (S, 6) stands for the state space and is assumed to be a standard Borel space, 
i.e. S is a non-empty Borel subset of a Polish (complete, separable, metric) space 
and ~ is the system of all Borel subsets of S. 

(ii) (A, 9.1) is the action space and is assumed to be a standard Borel space. 
[3 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 32 
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(iii) D: S ~ Y ( A ) ,  where ~ '(A) denotes the set of all non-empty subsets of A, 
specifies the set of all admissible actions D(s) if the system is in state s. We assume 

(2.1) K =  {(s, a)~S x A; asD(s)} 

is an ~ |  set and contains the graph of a measurable map of S 
into A 11 

(iv) The so-called transition law q is a transition probability q: K ~ ( S ) 2 .  
q(s, a; ") is the distribution of the state next visited by the system if the system is in 
state s and the action a is taken. 

(v) fl is a bounded measurable function of K x S into the set of the non-negative 
real numbers and can be interpreted as a discount factor. 

(vi) The reward function r: K x S---,IR 3 is a measurable function bounded from 
above. 

Given that we have experienced the history (s 1, a 1, ..., S,+l), we will receive 
for period n the discounted reward 

r(sl ,  al, ..., s,+l)=fl(sl,  al, s2).., fl(s, 1, a,--1, s,) r(s,, % s,+l) 

(especially q =r). Models where the discount factor is not constant arise from" 
semi-Markov processes as well as from stopping problems. When dealing with 

s t o p p i n g  problems, we may write A = A  c u A S where fl(s, a, s ' )=0,  s, s'~S, if and 
only if aeA  s, i.e. A S is the set of terminal actions. 

We write H 1 =S,  H,+ 1 = K  x H,, n ~ N  4. As usual, a randomized policy r~=(Tr ) 
is defined as a sequence of transition probabilities re: H,--*N(A) such that 
rc,(sl, a 1 . . . . .  s,; .) assigns probability one to D(s,) for any (sl, a 1 . . . . .  s,)~H,, neN .  
We write A for the set of all randomized policies and D s for the set of all decision 

functions, i.e. DS= { f ; f :  (S, ~ ) ~ ( A ,  9X),f(s)eD(s) for sES}. 

A Markov policy is a sequence (f,) where f ,  eD s, heN.  A stationary policy is a 
Markov  policy (f,) where f ,  = f  is independent of n. For such a policy we write fo~. 
We may look at the set of all Markov policies as a subset of A. When dealing 
with models with finite horizon n we have to specify only f p . . . , f ,  and we will call 
(fl . . . . .  f,) where fiED s, 1 < i<n, an n-stage Markov policy. Given some initial 
distribution p e N(S), the transition law and a policy 7r define a probability measure 
P~ on the product space S x A x S x A x . . .  endowed with the product G-algebra 
and thus a random process ((1, cq, (2, c~2, ...) (cp. Hinderer [-6] p. 80) where (, and 
c~ denote the projection from S x A x . . .  onto the n-th state space and the n-th 
action space, respectively, i.e. the random variables (, and e, describe the state 
of the system and the action at time n. In this paper we are concerned only with 
the conditional distributions P~(" [ (1) which are given by q and rc and are independent 
of p. Therefore we can dispense with an initial distribution p. 

We remark that a Bayesian decision model may be reduced to a decision 
model as defined above (cp. Rieder [13]). 

1 cp. Remark  13.1. 
2 For  any measurable space (S, ~), let ~'(S) denote the set of all probabili ty measures on  ~.  
3 We use P, I N ]  to denote the set of all real numbers  [augmented by the point  - 0% respectively]. 
4 Let N denote the set of the positive integers. 
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2. The Total Expected Rewards 

In order that the total expected rewards are well defined, we have to impose 
some convergence assumption. Define 

oe 5 

i 
and 

u+ =sup~A I+ (n). 

Throughout  the paper we make the following 

General assumption (GA). u+ (s) < oo, se  S. 

As has been shown in Hinderer [6], the total rewards 

R m= r~, meN,  n~N  o r n = o o ,  
i = m  

where R~,=0 for n<m,  exist a.s. with respect to P~(. I~t) for any policy rc and the 
following functions are well defined 

I (~)=E~[R~[~I] ,  I,(n)=E~[R'~[~I], ~ s A ,  n ~ N ,  

u * = s u p ~ I ( ~ ) ,  u,=sup~aI,(7c),  heN,  uo=0 ,  

u~ = limn~ ~ u,. 

For the main results of this paper, it is necessary to impose a stronger convergence 
condition (condition (C) below) than the general assumption. For the formulation 
of this condition we have to generalize the notions of I,(rc) and u, and define 

lm.(rc)=E=[Rn]~l], ~ e A ,  Umn=sup=sAlmn(g), 

Um oo = lim.~ 00 Urn., Z m = sup. u m+ 1,." 

Then I1..(~)=I.(~), Ul , .=u. ,  u l . ~ = u  ~. Further, it is to be noticed that Zm> 
Um+~, ~ = 0. With these preparations we are now in a position to introduce 

Condition (C). z ~ ( s ) ~ O  as m--* 0% s~S.  

Let us discuss the general assumption (GA) and condition (C) in the following 
cases. 

Negative case. r < 0. 

Discounted case./?= I[/~[I < 1, ~-- Ilr[I < oo 6. 

Positive case. r > 0. 

In the negative case, we have u+ = O = z  n for n~N. Thus (GA) and (C) hold. 
In the discounted case, we have u+ =<U(1-/~) and zn_<]~ n .U(1-]~). Thus (GA) 
and (C) hold. We remark that (GA) and (C) still hold if]~< 1 and Ilr + q[ < oc. In the 
positive case, (C) coincides with condition (C +) in Hinderer [7] (and with condition 
(B) in [16] as well as with condition (N4) in [15]}, i.e. (GA) and (C) hold if and 

s For an extended real number c we write c + =max(0 ,  +c). 

6 We write [lull =sup~xlU(X)[ for any extended real valued function u defined on any set X. 

[3"  
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only if oo s u p ~ a E ~ [ - R  . 1~1]---~0 as n~oo.  

In general however, (C) may be derived from (C+). 

The following inequalities are obvious from the definitions. 

Ue<~U+, hindU +. 

Un+ l, ao ~Zn~U+ �9 

U,<U,,+U,,+I,,<U,,+Zm, m<n. 

I,(n)--+I(n) as n--. oo, 

U*_~<Uoo. 

The relation (2.4) is a consequence of the general assumption. From (2.4) and the 
relation I,(n)< u, we conclude that I(n)< uoo for any n~A and (2.5) is proved. 

3. The Operators L and U 

For any u: S~IR such that the following expressions are defined, we set 

L u(s, a) = ~ q(s, a; ds') [r(s, a, s') + •(s, a, s') u(s')], a ~ O(s), 

LIu(s)=Lu(s,f(s) ), f e D  s, 

U u(s)= sup,~D(, ) Lu(s, a), s~S. 

If r is replaced by 0, we write L and 121 instead of L and U, respectively. Further, 
if r is replaced by r +, we write U+ instead of U. We use J to denote the set of all 
universally measurable functions u: S ~ ~ such that u < u+. It is easily seen that 

( 3 . 1 )  I2f(u+v)=IYfu+L)v, f e D  s, u, v c j ,  n~N, 

( 3 . 2 )  IYsv=Ej'=[fl(~, ~1' ~2) "'" fl(~n, O~n' ~n+l)  U(~n+l)l~l]"  

If L"}u and L~v are not universally measurable for any 1 < m <  n, then we cannot 
define L"iu and L"~v inductively. In this case we define L"iv through (3.2) and 
L" I u = I2 I 0 + L"iu. By use of the operator L we can write 

(3.3) L f I ( f ~ ) = I ( f ~ ) ,  

(3.4) E" i0=I . ( f~) ,  f e D  s. 

Now we list some optimality equations which are easily derived from the results 
in Hinderer [6, 7]. 

(3.5) u+ e J ,  u+ = U+ u+, 

(3.6) u ' e  J ,  u*=Uu*,  

(3.7) u , ~ J ,  u , =  Uu,__l =U"0 ,  

(3.8) UmneJ, Urn+ 1,n+ 1 =~Jblmn. 
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From (3.5) we obtain 

(3.9) L :  u__<i~lu__<U+ u<u+,  

(3.10) L:u<=Uu<=U+u<=u+, for u ~ J ,  f ~ D  s. 

4. The Function u~ 

Lemma 4.1. Let (c.) be a sequence of extended real numbers and (~.) a sequence 
of non-negative numbers with ~, ~ O. I f  c, <= c," + e," for n >= m, then limc, exists. 

Proof From sup, =>," c, =< c m + e," we conclude that 

lim," sup, ~ m c, < limc," + lira era" 

Hence lira c,__< lira c,. [] 

As a consequence of Lemma 4.1 and (2.3) we obtain 

Theorem 4.2. Assume (C). Then lim, u, = u~ exists. 

Thus, in view of (3.7), we have under condition (C) 

(4.1) u .  = lira. U" 0. 

We need the following generalization of the dominated and monotone con- 
vergence theorems. 

Lemma 4.3. Suppose there is given a measure # on (S, ~), a sequence of extended 
real valued measurable functions v, on S and a sequence of non-negative functions 
e, on S with e.--+O. I f  v,=<g, e,_<g .for some #-integrable function g and v <v,"+e," 
for n > m, then lira, ~ v, d# and lira, v, exist and 

lira, ~ v, d# =~ lira, v, d#. 

Proof From the dominated convergence theorem we conclude that ~ e, d#--* 0. 
Thus v,(s), seS, and ~ v, d# satisfy the condition of Lemma 4.1 and the existence 
of the limits is proved. Upon setting ~, = sup,,_>, v,", we obtain v, < ~, < v, + e, and 
hence ~ v, d# < ~ ~, d# < ~ v, d# + ~ e, d #. The passage to the limit yields lim ~ v, d# = 
l i m ~  d#. Finally the monotone convergence theorem implies l i m ~ , d # =  
~l im~ ,d#=~l imv ,  d#. D 

Theorem 4.4. Assume (C). Then 

4.4.1. lira, Lu,  =Lu~o, 
4.4.2. Uuo~<u, ,  
4.4.3. ~d:u~<u,+a,o~. 
Proof The first assertion can be derived from Lemma 4.3 where # = q(s, a;.), 

v =r(s, a, ")+fl(s, a, ")u,, e,=fl(s, a, . )z  , g = r +  (s, a, ")+ fl(s, a, ")u+ for some fixed 
(s, a)eK. By (2.2), (2.3), and (3.5), the conditions of Lemma 4.3 are satisfied. Now 

U u~(s) = sup,~m~) lira, Lu,(s, a) 

<lim.  sup~D(s ) Lu,(s, a) =l im,  Uu,(s) 

=lim,  u,+l(s)=uo~(s), 

where use is made of (3.7). 
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The third relation may be proved by similar arguments. We remark that L"iu m 
may be regarded as the optimal reward in a certain non-stationary decision 
model and hence is universally measurable. Consequently L" I u~ = lira m L"I u,, ~ j .  

0 

5. Criterion of Optimality 

In the present paper we are concerned with the following concept of optimality: 
A policy ~ A will be called optimal if I(~)= u*. 

Lemma 5.1. Let be u ~ J  and f ~D s such that u=Llu.  Then 

u=I.(f~)+telu. 
Proof The assertion follows from (3.1) and (3.4). 
The following theorem yields a slight modification of the criteria of optimality 

given by Hordijk [8] and Rieder [14]. 

Theorem 5.2. Let be f e D  s. 
5.2.1. The following statements are equivalent. 

(i) f ~  is optimal and u~ = u*. 

(ii) L I u~o -- u~ and lim, L"f u~ _-< 0. 

(iii) Lfuoo =u~ and lira, L~ u~ --0 on {s; u~ > - ~}.  
5.2.2. The following statements are equivalent. 

(i) fo~ is optimal. 

(ii) L I u* = u* and lim, L~y u* :< 0. 

(iii) Lfu*--u* and limn L~ u* = 0  on {s; u*> - ~}.  

Proof Since the two parts of this theorem have similar proofs, only that of 
Part 1 is given here. The implication "(i) ~ (ii)" is a consequence of (3.3) and the 
fact that L~ I ( f  ~176 <= L=f I+ (f~)-> O. The implication "(i) ~ (iii)" follows from (3.3), 
Lemma 5.1 and (2.4). For a proof of "(ii) ~ (i)" we again use Lemma 5.1 and (2.4) 
and we obtain uo~ <-_I(f~). On the other hand we have by (2.5) I(f~)<=u * <=uo~. 
For a proof of "(iii) ~ (i)" we use the same arguments and obtain I(f~176 u*= u~o 
on {s; u~ > - ~}.  On {s; uoo = - ~}  these identities trivially hold. 

As a consequence of Theorem 5.2 and Theorem 4.4.3 combined with (2.2) 
and (2.5) we obtain 

Theorem 5.3. Assume (C) and let be f ~D s. 
5.3.1. foo is optimal and u~ =u* if and only if L fu~ =u~. 
5.3.2. f ~  is optimal if and only if Lyu* =u*. 

Remark 5.4. By Theorem 4.4.2 and (3.6) we have for any fED s (at least i f  (C) 
hold): L I u~ =< Uo~, L I u* <__ u*. 

Remark 5.5. Dubins and Savage in Chapter 3 of [4] gave necessary and 
sufficient conditions that a strategy be optimal. In their terminology optimality 
is equivalent to being "thrifty" and "equalizing". Their results were applied by 
Blackwell to dynamic programming in [3] and were extended somewhat by 
Sudderth in [22]. Roughly, a strategy or policy is "thrifty" if it (almost) always 
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selects actions which achieve the supremum in the optimality equation. It is 
"equalizing" if it ultimately forces the system into states from which little future 
gain can be made. Condition (C) of the present paper guarantees that all policies 
are equalizing. Thus, in view of (3.2), Theorem 5.2 and Theorem 5.3 are close 
cousins to Theorem 3.9.6 in [4]. 

6. The Sets of  Optimal Actions 
Let us write 

F*(s) = {a~D(s); Lu*(s, a)= supa, D(s ) Lu*(s, a')}. 

Then a~F*(s) if and only if Lu*(s,a)=Uu*(s)=u*(s). Thus we can rewrite 
Theorem 5.3.2 as 

Corollary 6.1. Assume (C) and let f ~ D  s. Then f ~  is optimal if and only if 
f(s)~F*(s), seX. 

The corresponding result for a model with finite horizon is the following where 
we write 

F,(s) = {a ~ D(s); L u,_ 1 (s, a) = sup,, ~D(s) L u,__ 1 (s, a')}. 

Corollary 6.2. Let be fl . . . .  , f ,  ~D s, n~N. Then 

z m ( ( L , L _ l  . . . .  , f l ) )=um,  m = l  . . . .  , n  
if and only if 

f~(s)~F~(s), s~S, m= 1,..., n. 

Corollary 6.2 can be proved by induction or, since any model with finite horizon 
is a special non-stationary model, it may be derived from Theorem 5.3 by use of 
the transformation described in w 8 below. 

F*(s) may be regarded as the set of optimal actions for the model with infinite 
horizon if the system is in state s. F,(s) may be interpreted as the set of optimal 
actions if the system is in state s and we terminate after n periods. In order to 
describe the behaviour of F, as n~oo,  let us define for any sequence of subsets 
C, of A (cp. Kuratowski [9]) 

(6.1) Ls, C , =  {a~A; a is accumulation point of some sequence (a,) 
with a, eC, ,  n~N} 7 

and 
(6.2) Fo~ (s) = Ls. F,(s), se S. 

In particular, Ls. {a.} is the set of all accumulation points of the sequence (a.) 
where a,~ A, neN.  

7. The Basic Statements 

The purpose of the present paper is to give sufficient conditions for the following 
statements. 

Statement I u~ (s) = u* (s), s ~ S. 

Statement II F~ (s) c F* (s), s ~ S. 

7 This definition makes sense for an arbitrary topological space A. 
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Statement III There is a stationary optimal policy foo with 

f(s)eFoo(s), seS.  

Referring to (4.1), Statement I implies that under condition (C) 

u* = lira, U" 0, 

i.e. u* may be calculated by value iteration. Certainly, another consequence of 
Statement I is that the optimal total expected reward for the model With finite 
horizon n tends to the optimal total expected reward for the infinite horizon 
model. It is known that Statement I is true in the discounted and in the positive 
case (or more generally in case (C-) in the terminology of Hinderer [7], cp. ibid. 
Theorem 3.5). In the negative case, however, Statement I may fail as has been 
shown by Strauch [21] (cp. ibid. Example 6.1 or Example 7.1 below). 

Statement II implies that the actions which are optimal for the model with 
finite horizon n may approximately be regarded as optimal for the infinite horizon 
model ifn is large. IfD(s) is compact, then Foo (s) c F* (s) is equivalent to the following 
statement. For any neighbourhood G of F*(s), there is some noeN such that 
~ ( s ) c G  for n>n  o. 

Now suppose that for any seS  D(s) is compact and for any m e n  there is some 
f , ,eD s such that the n-stage Markov policy (f,,f,--x . . . .  ,fl) is optimal with 
respect to the model with horizon n for neN,  i.e. fm(s)eF,,(s), seS, m e N .  IfA is a 
subset of the real line, then we can conclude from Statement II that foo where 
f = l i m f ,  or f = l i m f n  is optimal for the infinite horizon model. If there is one and 
only one optimal policy foo for the infinite horizon model, then f(s)  is the only 
element of F*(s) and Statement II implies that l imJ, (s )=f(s) ,  seS. 

Example 7.1. Let there be given a sequence of functions (6,) on A such that 
6 0 = 0 = •1 ~ (~2 ~> ~3 ~--~"" and choose S = A x N, D(s) = A, seS, q((t, 1), a; {(a, 2)}) = 1, 
q((t, k), a; {(t, k+  1)})= 1, teA,  k >_2, fi= 1, 

r(s,a,s')=r(s)=fik(t)--fk 1(0 for s=( t ,k )eS .  

It is clear from these definitions that F,(s)= F*(s)= A and uoo (s)= u* (s) for s = (t, k) 
where k>2.  Hence, the only interesting states are Sl={(t, 1);t~A}. A little 
consideration shows that for s~S 1 

un(s ) = sup,~A 3,(a), F,(s) = {a; cSn(a ) = sup,,~A 6,(a')}, 

U*(S) = SUPaeA boo (a), F*(s)---- {a; boo (a) = sup,,~a 5oo(a')} 

where boo = lim fin. 
Now set A=[0 ,  2], 6n(a)=b for a = 0  and 1/n<a< 1, 5,(a)=c . for 0 < a <  1/n, 

fin(a) = d for 1 _< a-< 2, n > 2, where b, c,, d are real numbers with 0__> c n > c,+ 1 > d__> b. 
Set c ~ = l i m c  n. Then for seS  1 un(s)=c ., uoo(s)=coo, F,(s)=(0, l/n], F~(s)={0}, 
6oo(a)=b for 0_<_a< 1, cSoo(a)=d for 1 _<a_<2, u*(s)=d. If b<d  then F*(s)= [1, 2], 
if b = d then F*(s) = [0, 2]. Further, uoo = u* if and only if coo = d. Thus the following 
four cases are possible. 

Case 1" Statement I fails, Statement II fails (coo > d>  b). 
Case 2: Statement I holds, Statement II fails (coo = d > b). 
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Case 3: Statement I fails, Statement II holds (coo > d = b). 

Case 4: Statement I holds, Statement II holds (c| = d = b). 

The next remark concerns Statement III. If the infinite horizon model is 
used as approximation of a model with finite horizon n where n is large, then only 
those optimal policies f ~ may be admitted that satisfy the condition f(s)~Foo(s), 
seS. Finally we note that Statement III implies that u* is Borel-measurable since 
I(n) is Borel-measurable for any 7~A. 

8. Non-Stationary Decision Models 

A non-stationary Markovian decision model is given by a tupel ((S,, ~,), 
(A,, 92,), D,, q,, ft,, r ;  nelN) of the following meaning: S, and A, stand for the 
state space and the action space at time n, respectively. D, specifies the set of all 
admissible actions at time n. q,(s, a; .) is the distribution of ~.+ l given ~, = s, % = a. 
/~, and r are the discount factor and the reward function for period n, respectively. 
Given the history (s a , a 1 . . . .  , s,+ l)~ S 1 x A 1 x ... • S,+1, one will receive for period 
n the discounted reward ill(S1 , al, $2)...fink_l(Sn -1' a, -1, S,) r,(s,, a,, s,+a). 

The purpose of this section is to show that every non-stationary problem can 
be reformulated so as to be stationary (cp. also Dubins and Savage [4] Chap. 12.2), 

For a given non-stationary model define S={(s, n); s~S. ,  heN},  ~ =  
{BcS;{s ; ( s ,  n)~B}e~ ,  for all hEN}, A={(a,  n); aEA, ,  neN}, 9,I through (92,) 
as ~ through (~,), D((s, n))=D,(s)x {n}, fi((s, n)), (a, n), (s', n'))=fl,(s, a, s') for 
n ' = n +  1 and = 0  otherwise, r((s, n), (a, n), (s', n'))=r,(s, a, s') for n ' = n +  1 and = 0  
otherwise, and let q((s, n), (a, n);') assign probability one to S,+ 1 x {n + 1 } with the 
marginal distribution of the first coordinate being q,(s, a; ')  for (s, a)~ K. 

Stationary policies (resp. optimal stationary policies) in this stationary model 
correspond in an obvious way to Markov policies (resp. strongly optimal Markov 
policies in the sense of Hinderer [6] p. 132) in the original model. 

For readers which are particularly interested in non-stationary decision models, 
non-stationary versions of the present paper are available for distribution. 

9. Set-Valued Mappings 

Throughout this section, (S, ~) is allowed to be any measurable space and 
(A, p) may be any separable metric space. We use E(A) to denote the set of all non- 
empty compact subsets of A. One may introduce a metric on E ( A ) -  the Hausdorff 
me t r i c - t ha t  is for any C, C'~E(A) 

d(C, C')=max(supc~c p(c, C'), supc,~c, p(c', C)) 

(cp. Kuratowski [9], 21 VII). We write C , ~ C  if d(C,, C)~O. The Hausdorff 
metric was probably first used in stochastic optimization problems by Dubins 
and Savage in Section 2.16 of [4]. 

Proposition 9.1. 9.1.1. (~(A), d) is a separable metric space. ( I f  A' is a countable 
dense subset of  A, then the set of  all finite subsets of A' is dense in ~(A).) 

9.1.2. I f (A ,  p) is locally compact, so is (~(A), d). 

The proof follows from Michael [12] Theorems 3.3, 3.6, 4.5, 4.9. 
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A mapping (p: S ~ ( A )  is called measurable if it is measurable with respect to 
the a-algebra of Borel subsets of (I$(A), d). 

A mapping (p: S ~ ( A )  is called separable (with separating set A') if 

(i) A contains a countable dense subset A' such that A'r,(p(s) is dense in 
(p(s), se S. 

(ii) {s; (p ( s )~a}~ ,  a~A. 

Proposition 9.2. If(p: S ~ ( A )  is measurable, then {(s, a); a ~ (p(s)} is a (product-) 
measurable subset of S x A. 

The proof can be found in Furukawa [5] Lemma 3.1. 

Proposition 9.3. Every separable mapping ( p : S ~ ( A )  (with separating set A') 
is measurable. 

For a proof it is sufficient to observe that 

{s; d((p(s), C)<6} = U,~a,, e~a,C)<a {s, ae(p(s)} for Ce~(A),  6 > 0 .  

Proposition 9.4. (p: S--+r is measurable if and only if (p is the limit of a sequence 
of separable mappings. 

Proof The "if" direction can be deduced from Proposition 9.3 above and 
from Kuratowski [9] 31 VIII Theorem 1. Now suppose that (p is measurable. 
From Proposition 9.1.1 and Kuratowski [9] 31 VIII Theorem 3, we conclude that 
there is a sequence of measurable mappings (p,: S--,g(A) taking on only countably 
many values with (p,(s)--+ (p(s), sES. By virtue of the separability of A and Pro- 
position 9.2, it is easily seen that the mappings (p, are separable. I1 

For the remainder of this section, suppose that S is a topological space and 
is the a-algebra of Borel subsets of S. 

A mapping (p:S--+g(A) is called upper semi-continuous (u.s.c.), if for each 
open G o d  the set {s; (p(s)c G} is open in S s (cp. Kuratowski [9] 18 I). 

We note that (p is u.s.c, if and only if for any seS  and for any open G containing 
(p(s) there is a neighbourhood H of s such that (p(H)cG (cp. Kuratowski [9] 
18 III Theorem 3). 

Proposition 9.5. Suppose that A is a locally compact separable metric space and 
( p : S ~ ( A )  is u.s.e. Then (p is measurable. 

Proof By the one-point-compactification theorem of Alexandrov, we may 
assume A to be an open subset of some compact metric space ,4. Then ~(A) is an 
open subset of ~(A) and (p may be regarded as an u.s.c, mapping r  
From Kuratowski [-10] 43 VII Theorem 1 we know that ( p : S ~ ( A )  is measurable. 
Hence (p:S--,~(A) is measurable. 

Remark 9.6. Proposition 9.5 remains true if the condition that A is locally 
compact is replaced by the following: S admits a measurable partition S =  US,  
such that UseS. (p(s) is relatively compact. 

s This definition makes sense for an arbitrary topological space A. 
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10. Upper Semi-Continuous Functions 
Throughout  this section, S and A are allowed to be any topological spaces. 

We use C~(A) to denote the set of all bounded continuous functions u:A~IR  and 
C(A) to denote the set of all upper semicontinuous functions u:A-- ,N which are 
bounded from above. If v~C(A) and A is countably compact 9, then v attains its 
supremum on A. If A is a metric space, then we know from the theorem of Baire 
that v ~ ~(A) if and only if v is the limit of some non-increasing sequence of functions 
v,E~(A). The following result is basic for this paper. 

Proposition 10.1. Let (w,) be a sequence of functions w.~C~(A) and let (e,) be a 
sequence of non-negative numbers converging to zero such that w,(a)<wm(a)+ 
era, re<n, a6A. x~ Then 

10.1.1. wo~ =l im w, exists and w ~ ~ ( A ) ,  

10.1.2. Ls, W,~  Wo~ where W,={a~A;  w,(a)=supa w,}, h e n  or n =  oo, 

10.1.3. lira, suPA Wn=SUpA lim, w, provided that A is countably compact or more 
generally that Ls W, is not empty. 

Proof The existence of w~ follows from Lemma 4.1. From the relation 

{a; woo(a)<r} = ~),~N {a; w,(a)+ e, <r}, r~lR, 

we infer that w~c~(A) .  Since sup w,<sup  w,,+em, re<n, we further know that 
lira, SUpA W n exists and lim, supA w,>  SUPA lirn, w = supA w~. Now suppose that 
aoeLs W,, i.e. there is some sequence (a,) with a,~ W, such that a o is an accumula- 
tion point of (a,). Without loss of generality we may assume that SUPa Woo > -- oO. 
Otherwise we have W~ = A. Now choose some M < lim, SUpa W n . Then SUpA W n > M,  
n > n  o, for some no~N. Hence W e { a ;  w . (a )>m},  n>n  o. For n>_m>_n o we have 
w, , (a , )>w,(a , ) -em>=m-e  m. Since {aeA; w,~(a)>m-em} is closed, we infer that 
wm(ao)>M-em.  From the obvious passage to the limit we obtain w~o(ao)>M for 
any M < l i m ,  SUPA W n. Thus w (ao)>lim" SUpAWn>=SUPA w>w~o(ao)  and we 
realize that equality holds throughout. 

We need the following generalization of results by Dubins and Savage [4] 
Lemma 2.16.7, Maitra [11] Lemma 3.4, Hinderer [6] Lemma 5.10. 

Proposition 10.2. Let S and A be any topological spaces and ~o : S ~ ( A )  be u.s.c. 
Letbe v~c~(q~) where tb= {(s, a); a6q~(s)} is endowed with the relativization of the 
product topology and set v*(s)= max~o(~ ) v(s, a). Then v* 6c~(S). 

Proof We have to show that for a fixed r~IR and a fixed s6 V= {s'; v*(s')<r} 
there is a neighbourhood X of s such that X ~ V Since v(s, .) attains its supremum 
on q~(s), we can rewrite se Vas v(s, a)<r for a~o(s). Thus sE Vimplies that there are 
open neighbourhoods/4,  and G~ of s and aetp(s), respectively, such that v < r on 
H, x G c~ ~b. As q)(s) is compact there is a finite subset F of q~(s) such that (p(s)c 
U ~ F  G,. Set G=U,~FG, ,  H r = ~ , ~ F H ~ ,  HG={S'; (p(s')cG}, and X = H F c ~ H  G. 
From the semi-continuity of q~ we conclude that H~ and hence X are open. Now 
v < r o n X x G c ~ @ = X x A c ~ e b .  T h u s X c V  [7 

9 For a definition cp. Ash [1] p. 384. 
to If (%) is non-increasing, we may choose e,=0. If (%) is uniformly convergent, we may choose 
e. = sup., ~. Hu.,-u.l[. 
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11. The Set of Functions ~(S x A) 

Throughout this section, (S, ~) may be any measurable space and (A, p) may 
be any separable metric space endowed with the a-algebra of Borels subsets of A. 
We use M(S) to denote the set of all bounded measurable functions u: S~IR and 
~(S) to denote the set of all measurable functions u: S~IR which are bounded 
from above. Further, we introduce the following sets of functions 

(11.1) ~(S • A)= { v ~ ( S  x A); v(s, " ) ~ ( A ) ,  s~S}, 

(11.2) .~(S • A)= { v ~ ( S  • A); v is the limit of some non-increasing sequence of 
functions v , ~ ( S  x A)}. 

Remark 11.1. If u ~ ( S  • A), then u(s, .)~C(A), s~S. 

Remark 11.2. If S is a metric space then the theorem of Baire implies that 
~(s  x A) ~ ~(S • A) 

Remark 11.3. If (v,) is a non-increasing sequence of functions v , ~ ( S x A ) ,  
then lim v~ ~ ( S  • A). 

Remark 11.4. Since A is separable, it may be shown that u ~ ( S  • A) if and only 
ifu is bounded and u(',  a ) ~ ( S ) ,  a~A, u(s, " )~(A) ,  s~S. 

Remark 11.5. If u: Sx A~IR  is bounded from above and if 

(11.3) u(', a ) ~ ( S ) ,  a~A, 

(11.4) limo,-, u(s, a')=limo, . . . .  'cA' U(S, a')=u(s, a), s~S, a~A,  

where A' is some countable dense subset of A, then u~.~(S • A). This fact follows 
from the proof of 

Proposition 11.6. Let cp: S ~ if(A) be a separable mapping with separating set A' 
and set ~ =  {(s, a) ~ S x A; a~0(s)}. Let u: qo ~ ~ be bounded from above. Suppose 
that u(', a) is measurable on {s; q~(s)~a}, a~ A, and 

lima, ~ u(s, a')=lim,, ~ u(s, a')=u(s, a), a~cp(s), s~S. 
a" Ecp(s) a" ~A" c~cp(s) 

Then u admits an extension fi~,~(S• A). Such an extension is given by setting 
ft = - o 0  on S x A - qE 

Proof. Set fi = u on q' and h = -  ~ on S x A -  q~. Then ~ has the properties 
(11.3) and (11.4). As there is an order-preserving homeomorphism of IR and [0, 1), 
it is sufficient to show that any function ~: S • A--, [0, 1) enjoying the properties 
(11.3) and (11.4) is an element of ,~(S • A). Set v,(s, a) = sup~,~a {fi(s, a ' ) -  np(a', a)}. 
As, by (11.4), ~(s, .)r s~S, we know from the proof of the theorem of Baire 
(cp. Ash [1] p. 390)that v, > v,+ ~, Vn(S, ")~Cg(A), lim v, = ft. From (11.4) we conclude 
that v,(s,a)=supo,~a,{fi(s,a')-np(a',a)}. Thus, by (11.3), v , r 2 1 5  A) which 
implies that v , z~ (S  • A). [3 

12. Selection Theorem 

In this section, we shall list some results proved in [18-]. Again, (S, ~) may be 
any measurable space and A may be any separable metric space. 
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Theorem 12.1. Let be ue~(S  x A) and let (p: S---,~(A) be measurable. Then there 
is a measurable mapping f :  S--* A such that f (s)e~o(s) and 

u(s,f(s))=max,~o(s ) u(s, a), seS .  

In view of Proposition 9.4, this result is Theorem 2 in [18]. 

Proposition 12.2. Let (f,) be a sequence of measurable mappings f,:  S ~ A and 
qo: S---,~(A) any mapping with f,(s)etp(s), seS. Then there is measurable mapping 
f :  S ~ A such that 

f (s )e  Ls,~ oo { f,(s)} c (p(s), se S. 

This is Lemma 4 in [18]. 

13. Proof of the Basic Statements 

The proof of Statements L I I I  can be carried through with aid of 

Condition (A). 
(A1) D(S)~G(A) and D: S ~ G ( A )  is measurable, 

(A2) Lu,  1 admits an extension v, ~d(S  x A), neN .  

Remark 13.1. The measurability condition in (A1) implies that the condition 
(2.1) imposed in the definition of the decision model is satisfied. This may be seen 
from Proposition 9.2 and Theorem 12.1. 

In Section 15 and 16 we shall give sufficient conditions (condition (S) and 
condition (W)) for (A) about D, q, d, and r. 

Lemma 13.2. Assume (A). There exist f ,  eO s, n~N,  such that f,(s)eFo(s), s~S, 
n~N,  i.e. ( f ,  . . . . .  f l)  is an optimal n-stage Markov policy for the decision model with 
horizon n, n~lN. 

Proof From Theorem 12.1 we know that there are f . eO s such that v,(s,f,(s))= 
maxa~ms)v,(s,a ). Because of v , [ r = L u  . -1, it will be found that f,(s)eFo(s), seS,  
n elN. In view of Corollary 6.2, the proof is complete. 

Theorem 13.3. The basic Statements I, II, III are valid under conditions (C) 
and (A). 

Proof For an arbitrary fixed seS, set w,(a)=Lu,_ ,(s,a), aeD(s). Then by 
condition (A2), w, eCd(D(s)). Further, we infer that W<Wm+Zm(S), re<n, from 
the following inequalities 

Lu,-1 <L(um_ 1 + u  . . . .  1)--<Lure - 1  ~-UR . . . . .  1 

=Lure 1 +Um+l,n~Lum-1 -~Zm 

where use is made of (2.3), (3.1), (3.9), and (3.8). Now Proposition 10.1.3 applies 
and we obtain 

(13.1) suppeD(s) lim, w,(a) = lim, sup,~o(s ) %(a). 

From (3.7) and Theorem 4.4.1 we know that 

supa~D(s ) w,(a) = Uu,  -1 (s) = u,(s), 

lim, w.(a)=Lu~o(s, a), aeD(s). 
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Now we can rewrite (13.1) as 

(13.2) U u~(s) = u~(s). 

Hence an appeal to Proposition 10.1.2 shows that 

(13.3) Ls, F,(s) ~ {aED(s); Lu~o(s, a)= u~ (s)}. 

Let F'(s) denote the set on the right-hand side of (13.3). By Lemma 13.2, there are 
f ,~D s, n~N, with f,(s)~F,(s), s~S, neN. In view of Proposition 12.2, there exists 
some f ~D s with 

(13.4) f(s)ELs,{f ,(s)}cLs, F,(s)=Fo~(s), s~S. 

Now, appealing to (13.3), we have L s uo~ = uo~. Combining this result with Theo- 
rem 5.3.1, Statement I and the first part of Statement III are proved. The second 
part follows from (13.4). From Statement I we conclude that F ' =  F*. Now State- 
ment II is a consequence of (13.3). [~ 

14. Topologies on Spaces of Probabilities 

Throughout  this section, (S, 6)  may be any measurable space and A may be 
any topological space, unless otherwise indicated. ~(S), the set of probability 
measures on 6,  may be endowed with the s-topology or with the w-topology 
(weak topology) in the following ways. 

A mapping #: A ~ ( S )  will be called s-continuous if a~v(s)p(a;ds)  is 
continuous for any v ~ ( S ) .  

Proposition 14.1. Assume A to be a separable metric space. I f  v ~ ( S  x A) (resp. 
.~(S x A)) and if #: A ~:~(S) is s-continuous, then the function 

a-~ Sv(s, a) #(a; ds) 

is an element of ~(A) (resp. ~(A)). 

Now suppose that S is a topological space and ~ is the system of Borel subsets 
of S. 

A mapping #: A - ~ ( S )  will be called w-continuous if a-~v(s)#(a;ds) is 
continuous for any v~(S) .  

Proposition 14.2. Assume S and A to be separable metric spaces. I f  vE~(S • A) 
(resp. c~(S • A)) and if #: A ~ ( S )  is w-continuous, then the function 

a--* ~ v(s, a) #(a, ds) 

is an element of C~(A) (resp. C~(A)). 

Proofs of Proposition 14.1 and 14.2 can be found in [19]. 

15. The Conditions (S) 

We define ~(S x A x S) and ~(S x A x S) through (11.1) and (11.2) on replacing 
S with S x S. For functions as r that are defined on K • S only, we had to modify 
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this definition as follows. 

~(K x S ) = { v ~ ( K  x S); v(s, ", s')e(g(D(s)), s, deS}  

~(K x S)= { v e d ( K  x S); vnSv for some sequence (v.) with v . e ~ ( K  x S), neN}. 
Now we can introduce 

Condition (S). 
(S 1) D(S)~E(A),  D: S-~E(A) is separable, 

($2) q(s, "): D(s)--->~(S) is s-continuous, s6S, 

($3) r e ~ ( K  x S), fle~.(K x S). 

Condition (S)' (cp. Furukawa [5]). 

(S 1)' (A 1) is satisfied. 

($2)' q admits an extension gl: S x A ~ ( S )  such that ~l(s, "): A--+~(S) is s-contin- 
uous s~S. 

(S 3)' r admits an extension ?e~(S x A x S) and fi admits an extension f i ~ ( S  x A x S) 
with fl >= O. 

Lemma 15.1. Suppose that either condition (S) or condition (S)' is satisfied and 
that ue~(S) .  Then 

15.1.1. L u  admits an extension v ~ ( S  x A), 

15.1.2. UuE~(S).  

Proof Assume (S). By hypothesis there are functions r, ,e~(K x S) with r,,J,r 
as m~oo.  Upon setting win=max(u, -m) ,  we have w,,eN(S) and WmSU as m~oe.  
Define now 

L m win(s, a)= S q(s, a;ds')[r~ (s, a, s')+ fi(s, a, s') wm(s')], (s, a)~ K.  

Then Lm w~ e ~(K).  From Proposition 14.1 we know that L m win(s, . )~C~(D(s)), se S. 
Upon setting v , ,=L m w,, on K and v,, = -  oo on S x A - K ,  we may infer from 
Proposition ll .6 that v , , e~(SxA) .  Now v,,$v for some v ~ ( S x A )  (cp. Re- 
mark 11.3) where v[K---Lu. From these arguments it is clear that under condition 
(S)' Lu=Sdq[?+f lu]  is an extension of Lu and that L u ~ ( S  x A). In this case no 
appeal to Proposition 11.6 has to be made. Finally, 15.1.2 is a special consequence 
of Theorem 12.1. 0 

Theorem 15.2. I f  condition (C) and either condition (S) or condition (S)' are 
satisfied, then the basic Statements I, II, III are valid. 

Proof In view on Theorem 13.3, we have to show that condition (A) is satisfied. 
By Proposition 9.3 it is clear that (A1) is satisfied. From (3.7) and Lemma 15.1.2 
it may be shown inductively that u,e~(S) .  Now condition (A2) follows from 
Lemma 15.1.1. I7 

16. The Condition (W) 

In this section we shall make use of the following 

Condition (W) (cp. Maitra [11], Hinderer [6] Theorem 17.12). 
(W1) D(S)c~(A) ,  D: S ~ ( A )  is u.s.c., 
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(W2) q: K ~ ( S )  is w-continuous, 
(w3) r ~ ( K  x s),/~e(g(K x s), 
(W4) A is locally compact. 11 
From (W 1) it follows that (cp. Kuratowski [9] 18 III Theorem 1) 

(16.1) K is closed in S x A. 

Lemma 16.1. Assume (W) and let be uE~(S). Then 
16.1.1. Lu admits an extension v6C~(S x A), 
16.1.2. Uu~@(S). 

Proof From Proposition 14.2 it will be seen that LueC~(K). Upon setting 
v=Lu on K and v = - o o  on S x A - K ,  we have by (16.1) v~C~(SxA). Finally, 
16.1.2 is a consequence of Theorem 10.2. [7 

Theorem 16.2. I f  condition (C) and condition (W) are satisfied, then the basic 
Statements I, II, III are valid. 

Proof We have to verify condition (A). (A 1) derives from Proposition 9.5. 
In view of (3.7) and Lemma 16.1.2, it is easily established inductively that u,E~(S). 
Now an appeal to Lemma 16.1.1 and Remark 11.2 confirms condition (A2). 

Corollary l6.3. I f  IIz.[I-~O as n ~  and if condition (W) is satisfied, then 
u*~(s). 

Proof As has been shown in the proof of Theorem 16.2, we have u,c~(S). By 
(2.3) we obtain U,<Um+llZmll, m<n. Now the assertion follows from Propo- 
sition 10.1.1 and Statement I. D 

17. Non-Compact Sets of Admissible Actions 

Whereas the continuity conditions ($2), ($3), ($2)', ($3)', (W2), (W3) are 
likely to include all cases arising from any practical situation, the compactness 
condition D(s)~E(A) sometimes turns out to be somewhat restrictive. When 
dealing with single item dynamic inventory models, for instance, we are concerned 
with sets of admissible actions D(s)= [s, ~)  where s is the stock on hand plus on 
order. In this section we are going to show that the condition D(s)~E(A) may be 
replaced by the condition that the "good" actions are contained in some compact 
set D(s)~ D(s). More exactly, we shall utilize the following 

Condition (B). There is a measurable mapping _D: S ~E(A) such that 

(17.1) D_ (s)cD(s), s~S, 

(17.2) supa~o(s ) D~s)Lu,_a(s,a)<supa~D~s)Lu,__l(s,a), s~S, n~N. 

In view of Remark 13.1, we obtain a new decision model if we replace D with _D. 
Certainly, this model inherits the general assumption (GA) from the original 

11 cp. Remark 9.6. 
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model. All quantities referring to the modified decision model will be underlined, 
e.g. 

Uu  = sup,~(s) Lu( ' ,  a), u ~ J .  

From (17.1) we conclude that A_ a A, _DS c D s. Thus 

(17.3) u* --< u*. 

Further (17.2) implies that 

(17.4) Uu. l=UUn 1, n~N,  

(17.5) F,(s)cD(s), n s N ,  s~S. 

By induction, we obtain from (17.4) and (3.7) 

(17.6) _un=u,, noN,  

(17.7) u~ =u~o. 

Finally, by (17.5) and (17.6), it is easily seen that 

(17.8) _/_,(s) = F,(s), n~N,  seS,  

(17.9) F~(s)=Foo(s), seS.  

Theorem 17.1. Assume (B). I f  the Statements I, II, lII are valid for the modified 
model, then they are valid for the original model. 

Proof On making use of (17.3), (17.7) and (2.5), we obtain u0o=_u~=_u*< 
u*<u~.  Hence equality holds throughout and we know that Statement I holds 
for the original model and 

(17.10) u * - u *  

Further, by (17.9), F~(s)=F~(s)a_F*(s)cF*(s), where the last inclusion is a 
consequence of (17.1) and (17.10). Hence Statement II holds for the original 
model. Finally, for any fe_D s with I(f~)=u_ *, f(s)e_F~(s), seS, we obtain by 
(17.9) and (17.10) I ( f  ~176 = u*,f(s)~F~(s), seS. This completes the domonstration. [3 

For the modified model, we may replace condition (C) by the weaker 

Condition (C_). zn~O as n ~ o o .  
In correspondence with conditions (S 1) and (W 1), we define Condition (SB 1) 

and Condition (WB1) through condition (B) upon replacing "measurable" by 
"separable" and "u.s.c.', respectively. Now, the following theorem is a corollary 
of Theorems 15.2, 16.2, and 17.1. 

Theorem 17.2. Assume ~ ) .  The Statements I, II, III are valid provided that either 
conditions (SB 1), ($2), ($3) or conditions (B), (S 2)', ($3)' or (WB 1), (W2), (W3), (W4) 
are satisfied. 
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