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Invariance Principles for Dependent Variables 

D.L. McLeish 

A weak invariance principle for dependent random variables is proved under 
conditions restricting the size of the conditional expectation of random variables 
with respect to their distant predecessors. The conditions are shown to be satisfied 
by martingale differences, sequences satisfying weaker versions of the (p-mixing 
and strong mixing condition, functions of mixing processes, and known conditions 
for convergence to normality of these are improved under a variety of moment 
restrictions. Stationarity is not required, although there are restrictions on the 
growth of the variance of partial sums. 

1. Introduction 

Billingsley (1968) proves various invariance principles (cf. Theorems 20.1, 20.2, 
and 21.1) for (p-mixing and functionals of (p-mixing sequences of random variables 
when the sequence is strictly stationary and second moments are assumed finite. 
Davydov (1968, 1970) has extended these theorems to stationary sequences for 
which higher moments than the second are assumed finite, and slower rates of 
mixing are required. He also proves analogues for strong mixing random variables. 
Invariance principles have also been proved by Brown (1971) for martingales, 
and Loynes (1969) for reverse martingales. 

In Section 2 of this paper we give an invariance principle similar to the central 
limit theorem of Serfling (1968) under assumptions on the conditional expectations 
of variables with respect to the distant past. Tightness is proved under an "asymp- 
totic martingale" type condition, and when conditional variances of the partial 
sums are asymptotically constant, the limit is shown to be Brownian motion. 
In Section 3, this invariance principle is used to show results for (p-mixing and 
strong mixing sequences of random variables. The stationarity assumption of 
Billingsley and Davydov is dropped, and the rates at which sequences need to 
be mixing weakened (for example Billingsley's condition y ' ,  (p~< oo may be 
replaced by (p, = 0 [1/n(logn) z +~], e> 0 and a variety of moment conditions are 
considered. In Section 4, we treat non-stationary sequences which are functions 
either of (p-mixing or strong mixing variables in the sense of Billingsley's section 21. 
Again, rates at which mixing must occur are weakened over Billingsley and 
Davydov's results. In Section 5 we summarize a number of additional corollaries 
to our invariance principles, such as invariance principles for martingales, and 
random sum versions of all of the preceding theorems are given. 

Proofs of all of the theorems of this paper, as well as two interesting lemmas, 
are given in Section 6. 
12" 
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Several authors have recently and independently obtained results of a similar 
nature to those of this paper, but generally under somewhat stronger dependence 
restrictions. Scott [16], and Heyde [-9] prove central limit theorems, invariance 
principles, and iterated logarithm results for stationary sequences under similar 
but stronger conditions, and W. Phillips and Stout have imbedded an analogue 
of our "mixingales" in Brownian motion under suitable restrictions on the mixing 
coefficients. In [t2] the author proves a strong law of large numbers, also under 
"mixingale" conditions. 

Let {Xi; i=  1, 2, 3, ...} be a sequence of square integrable random variables 
on the probability triple (~2, ~, P) and put S, = ~7= 1 Xi for all n. We will denote 
the various types of convergence; almost sure, in probability, in Lv, and weak 
by ~ ..... ~p,--+rp, and -o w respectively. We denote E1/VlUlP by IIUllp and 
ess sup[U[ by [I UII oo. We also assume unless otherwise indicated, that 

K , z  2 
(t.1) EX~=O for all i, and E~'n---~ff 2, s o m e  positive contant. Consider the 

n 
space D=D [0, Go), the set of all functions on the interval [0, ~ )  which have left 
hand limits and are continuous from the right at every point. We endow this space 
with Stone's (1963) extension of the Skorohod -/1 topology. (Since we are dealing 
with .... continuous limits, we could use instead the topology of uniform conver- 
gence on compacta for Sections 1-4.) In order to demonstrate weak convergence 
of random elements of D with Stone's topology to an a.s. continuous process, 
it is sufficient to demonstrate weak convergence in the -/1 (or uniform) topology 
of the elements restricted to each compact interval of the form [0, K]. 

Let ~ be the Borel sigma algebra in D and define a random function by: 

(1.2) w . ( 0 -  st"~~ 
n ~ 7  

where Ix] is the "greatest integer contained in x". This is a measurable map 
from ((1, ~) into (D, ~3), and we will demonstrate weak convergence of W, to 
standard Brownian motion process on D. 

(1.3) Definition. A sequence IV, of random elements of a metric space is said to be 
Renyi-mixing (R-mixing) with limiting process W if 

(1.4) P{W,e" IF} converge weakly to the measure P{W~.} for every F e ~  
such that P(F) > O. 

R-mixing is a useful concept when passing from non-random to random 
invariance principles (cf. Billingsley, T 17.2) and it follows from Theorem (4.5) 
of this book that we need only verify (1.4) in the definition for all F of positive 
measure in some algebra of sets generating a(W1, W 2 . . . .  ). 

2. The Invariance Principle 

The following concept, as will be seen later, generalizes under moment re- 
strictions the notions of martingale differences, ~p-mixing and strong mixing 
sequences, and various functions of mixing processes. 

Let { ~ i : ~  < i <  ~} be a nondecreasing sequence of sigma-algebras, ~ - ~  the 
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largest sigma algebra contained in all 5 / and ~o  the smallest sigma algebra which 
contains all ~i. For brevity, we introduce the notation EkU=E(U]~k).  

(2.1) Definition. The sequence {(X,, ~')} will be called a mixingale if there exists 
a positive sequence 0k--*0 as k--*oo such that for all i>  1, k>0,  

(2.2) [[ei_kX~ II 2 < Ok 
and 

(2.3) t lXi -  Ei+kXill 2 < Ok+l. 

For fixed i, Lemma 1, p. 184 of Billingsley implies that the left hand side of 
(2.3) is non-increasing in k, and by the conditional Jensen's inequality, this holds 
as well for the left hand side of (2.2). Thus we may (and do) assume that the Ok are 
non-increasing. Observe further that these conditions imply Eo~Xi=X i and 
E |  = 0  a.s. for all i. Moreover, if each Xi is ~i measurable as will frequently 
be the case, condition (2.3) will hold trivially. Finally, it is immaterial whether the 
sequences are infinite (n = 1, 2, ...) or doubly infinite (n . . . .  - 1, 0, 1, 2, ...) for in 
the former case, we can define ~k to be the trivial a-field for k<0.  

(2.4) Definition. We will call the sequence {Ok} of size --p if there exists a positive 
sequence {L(k)} such that 

l 
(a) --  2 nL(n~ -< o% 

,b, 

(c) L n is eventually non-decreasing and 

(d) G = o  [ n~L(n) ] 2C 
1 

Remark. Observe that condition (b) will follow for any sequence L, such that 
L , - L , _  1 is regularly varying with exponent - 1  (c.f. Feller (1971), p. 280). For 
example any sequence which is 0 [n ~ log n (loglog n) 1 +~] -P with 6 > 0 is of size -p /2 .  
Also summability conditions such as ~ =  1 ~ ~176 < oo imply, for monotone sequences 

~o,, that ~G=o ~70- and hence that ~o, is of size - q  for any q<o-" 

(2.5) Theorem. Let {(Xi, ~i)} be a mixingale satisfying 1.1 with Ok of size --�89 
I f  {X~; i=  1, 2 . . . .  } is uniformly integrable, then {IV,} is tight in D and any limit 
process is a.s. continuous. 

We now state our main invariance principle: 

(2.6) Theorem. Suppose, in addition to the conditions of (2.5), 

E {(Sk+n~ Sk)2 ~k--m}-")'0"2 in Ll(f2 ) 

norm as min (m, k, n)--, oo. 
Then I/V, is R-mixing with limit W, a standard Brownian motion process on D. 

i Knopp (1946), p. 124: I am indebted to P. Billingsley for both the information and reference. 



168 D.L. McLeish 

(3.2) 

(3.3) 
and 

(3.4) 

3. Mixing 

We now apply the concept of mixingale to prove invariance principles under 
strong and y-mixing conditions. Define two measures of dependence between 
sigma algebras ~ and ~l by 

p (~, ~)  = sup ]P(GIF)- P(G)I 
{FE~, GEql, P(F)> O} 

and 
~(~, 9.I)= sup [P(FG)--P(F)P(G)T. 

Fe~,  G~9.1 

In this section we consider a doubly infinite sequence of random variables 
{ X i ; - ~ < i < ~  } defined on (O,~ ,P)  and put ~m=~(Xi;n<=i<=m),9l'~= 
~(S , , -S ._ I )  for all n<=m. 

(A one-sided sequence may be handled within this framework by defining 
Xj = 0 for all negative j.) For each m _-> 0, define 

(3.1) +,, = sup p (~"  ~, ~2+,.), 
?1 

am = sup  c~ (~"_ ~, ~.+.3, 
n 

pro=sup sup p(~" | 
n j>=n+m 

~(~_ ~, ~ .+ ~). gm= SLip sup n J 
n j > n + m  

Observe that the variables are p-mixing if ~m ~ 00 strong mixing if ~r~ ~ 0 
as m ~ .  It is clear in general that &m= < c~m, and ~,,_--__p,n_--<~,~, and so in this 
section we will treat only the two weaker conditions p ~ 0  and % ~ 0 .  The 
following lemma relates the concept of mixing to that of a mixingale. (3.6) is due to 
Settling (1968). 

(3.5) Lemma. Suppose X is a random variable measurable with respect to 9.1, 
and l <=p<_r<_ oo. Then 

(3.6) i lE(X I ~) - EXIIp-<_ 2 {p (~, ~)}1-1/,  II Xll, 

and 

(3.7) IIE(X I ~)- EXIIp < 2(21/p + 1) {~(~, 91)} l/p- 1/' I IXII .  

(3.8) Theorem. Let {Xi} be a sequence satisfying (1.1) and 

(a) {X 2} is uniformly integrable, 

(b) sup II X~ II ~ < oo for some 2 <= fl <-_ 0% 
i 

(c) E(Sk+"- Sk)2 ~ ~2 > 0 as min(k, n) ~ oe and 
n 

(d) {p,} is of size 2 @ - 2  or 
I 

-[3 
(d') f l>2  and {c~.} is of size f l _ ~  

Then IV. is R-mixing with limit a standard Brownian motion process on D. 
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Remarks. Observe that this theorem with (d) and/3 = 2 improves on the condi- 
tion ~,~1 (p~<oo of Billingsley's theorem 20.1 and drops the assumption of 
stationarity at the expense only of the additional requirement (c). The theorem 
also improves on the stationarity assumption and the condition ~ ,  c~(, ~- 2)/2~< oo 
of Davydov's (1968) Theorem 42. 

For uniformly bounded stationary random variables, d(d'). Becomes "(o,(c~~ 
is of size - � 8 9  1)" which improves on Davydov's condition 

(p~< o�9 ~ < o o  . 
n = l  \ n = l  

When the sequence is weakly stationary, the method of Billingsley's Lemma 3 
(p. 172) shows that under the stronger conditions 

i ( i1.  ) (pln-l l#<o0 o r  c ~ - 2 / / ~ < ~ o o  , 

n = l  \ n = l  

the sequence E $2 converges to some 0-2>0. This combined with (3.8) leads to 
n 

the following corollary. 

(3.9) Corollary. Let {X~} be a stationary sequence centred at expectations satisfying 
the conditions: 

(a) IIXl lip < oo for some 2 <= fl < oo and 

(b) ~ (01-1/p < oo or 
n = l  

(b') f l>2 and ~ cal,-e/a< oo. 
n = l  

Then if az>O, W, is R-mixing with limit a standard Brownian motion process 
on O. 

In the case a2= 0, SE~ t ~  converges in probability (hence weakly) to the zero 
function, n 

4. Functions of Mixing Processes 

This section provides some improvement over the results of Section 21 of 
Billingsley and of Davydov (1970) for functions of strong and (p-mixing sequences. 
The stationarity assumptions have been weakened and the conditions on the 
mixing coefficients relaxed. 

We will suppose { ~ i ; - o o < i < o o }  is a process satisfying the (p or strong 
mixing conditions, ~,~=a(~m,~,,+l,...,~,) , and X i = X i ( ~ i ; - o o < i < o o )  is a 
function of these variables satisfying; 

(4.1) IIE(X,I i+m ~i-m)--Xi[12 ~-~m for all i, m, where {Ym} is a sequence of size -�89 

All other notation conforms to that of previous sections 
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(4.2) 
(a) 

(b) 

Theorem. Let {Xi} be centred at expectations, satisfying (4.1) and: 

{X 2} is uniformly integrable, 

sup IIx~ll~< ~ for some 2 <=fl <= 0% 
i 

(c) E (Sk+" -- Sk)z , a 2 > 0 as min (k, n) --+ o% and 
n 

- [~ 

(d) {{i} is q~-mixing with {~9,} of size ~ or 

(d') f l>2  and {{i} is strong mixing with ~, of size 
~-2" 

Then W, is R-mixing with limit a standard Brownian motion on D. 

5. Corollaries 

The simplest application of Theorem (2.5) is to sequences of square integrable 
martingale differences (square integrable sequences for which each X~ is ~i-meas- 
urable, and E i_ a Xi = 0 a.s.). In this case Theorem 2.5 becomes: 

(5.1) Theorem. Let X i be a sequence of martingale differences such that: 

(a) The set {X2; - ~ < i < ~}  is uniformly integrable, and 
n 

_ _  2 >0  in L1([2 ) norm as m i n ( m , k , n ) ~ .  (b) 1 ~ ek_~x~+i_.~ 2 
n n = l  

Then W, is R-mixing with limit a standard Brownian motion process. 

It is obvious that (b) can be replaced by either of the following conditions; 

(b') EkX2+, ~ a2 in L1(~2 ) norm as min (k, n) ~ 0% 

1 " 2 2 min (k, n) ~ ~ .  (b") - -~ i~Xk+i~  a in LI(~ ) norm as 

It is also clear in view of Lemma 2.15 of [10] that (b") may be replaced by the 
two conditions: 

(b'") (i) There exists a function r(n)--+l as n-+oo 
2 2 r(n)EX k EXk+ . for all k, and 

(ii) E (Sk+" -- Sk)2 * a 2 as min (n, k) ~ oo. 
n 

such that IYy2 y2  < 
~ k  ~ k + n =  

If we are interested only in the central limit theorem, we may apply Lemma 3.1 
of Dvoretsky (1972) to weaken the assumptions of Theorem (2.5). This lemma 
allows us to look only at sequences of partial sums which are Markovian, in which 
case we may replace ~"  both in the definition of mixingale and in the condition 
of (2.6) by ~ '  for each m, and conclude that the limiting distribution of S,/n~a 
is standard normal. This remark is valid also for the theorems of Section 3, 
allowing replacement of the mixing coefficients in (3.8) with: 

~ , ,=sup  sup ~o(~,91~+,,) 
n j>=n+m 
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and 
C( ( ~ 1 '  ~ . + m ) ,  ~m = sup sup " J 

n j>=n+m 

and retain the conclusion of limiting normality for S,/n ~. 

The many results corollary to an invariance principle such as the arc-sin law, 
and the distribution of various functionals need no further exposure here, due to 
their excellent treatment in Billingsley (1968). We will state a random sum invari- 
ance principle which follows from any invariance principle in which we have 
R-mixing, and refer to Billingsley, Theorem (17.2) for the proof. 

(5.4) Theorem. I f  { Xi} satisfies the conditions of any one of the preceding invariance 
principles, and if v n is a sequence of random variables such that for some sequence of 

1~ n 
positive numbers ant 0% we have--  & v, some strictly positive random variable, then the 

St~,,t I a, process - -  converges weakly to the Brownian motion process on D. 
va a 

It should be observed that all of the invariance principles of this paper remain 
in force when P is replaced by any probability measure absolutely continuous with 
respect to P. This is true of any R-mixing limit theorem (for example see Billingsley, 
Theorem 20.2). 

6. Proofs 

(6.1) Lemma. Let x i be complex numbers, ai non-negative real numbers, and ? > 1. 
Then"  oo ? [ oo \? - 1 ~ 2 

~_ooXi ~ { 2 a i )  2... Lxils 
i= - i = - o o  - i= -oo  a~ -1 ' 

Proof. Assume without loss of generality that x~=0 whenever a~=O, and 
K = ( ~ L  - | ai) < oo. Then by Jensen's inequality, 

where all summations are over {i; az:l=0}. 

(6.2) Lemma. Let {(X/, ~i)} be a mixingale, and put Yj, k = ~ =  1 (El + kXi - Ei + k- 1Xi). 
Then for any 7 > 1, and non-negative sequence {ai}, we have: 

E{max[S~]'}< ~ 2 a,) 2 a l - 'E[Y~kr  �9 
j<n J i= -oo k= --m ' 

Proof. We show first that 

Xi= ~ (Ei+kXi--Ei+k_xXi) a.s. 
k =  - - o o  

Now 

~ (Ei+kXi-Ei+k_lXi)=Ei+nXi-Ei_m_lXi  �9 
k ~  - - m  

2 Henceforth, 0/0 will be taken to be 0 in formulae. 
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The first term on the right hand side forms, for fixed i, a martingale sequence, 
and hence, by Doob (1953), Theorem4.3 (p. 331) converges as n + o e  to 
E(XiI~00) = X i by the remarks following (2.3). Similarly, the second term forms a 
backwards martingale sequence, and converges to 0 almost surely by the same 
authority. 

Therefore 
Sj= ~ Yj, k a.s. 

k =  - 0 0  

Put =~,i= a i and observe that by Lemma (6.1) K 00 --00 

maxlS~[ '<g ~-t ~, a~-~maxlYj, kl ~ a.s. 
j < n  J - -  k =  - 0 0  j<=n 

If we now note that, for each k, {(Yj, k, ~j+k); j =  1, 2 . . . . .  n} is a martingale, we 
may take expectations on both sides and apply Doob's inequality a to get the 
result. Q.E.D. 

b 
(6.3) Lemma. Let (Xi, ~i) be a mixingale of size - �89 with Ok < k~L(k) for all 

k > m where L is a function satisfying 2.4 a)-c). Then there are finite constants K t 
and K 2 independent of m, b, Oo, and n such that for all n> 1, m> 1, 

E{maxS~} <=nKl {O2mL(m)+ K2b2k=~+ l 1 k L(k) 

Proof. Put Zi, k = Xi - Ei +kXi �9 Then by (6.2) 

( 00 ) 00 1 t " ~  a, ~ t E {max S.2.~_<4 J~" ~ ' -  i=-00 " =- ~" EEZ+kXi-EE{+k-IXi 

<4 2 a~ Ez~o EE~X~ Ar ~_ 2 - 1  
' EZi, k(ak+ 1 --a~ 1) 

i =  --00 i = 1  a l  ao k = l  

+ 

(6.4) < 4 n  Z a, 0 g + 0 ~  _a~__~l) . 
- i - -00 " t-2 ~ 0~(a~ -1 -- ( a o  k = l  

N o w  let 

mL(m) for O<<_li[<=m, 

a i = /  min - _1 for Li[>rn 
t~---J~lil jL(I') 

Let Ka, K4, ... represent generic constants independent of m, b, 0o and n. Observe 
that 

2 m + l  ~ 1 
ai < -I-2 < K 3. 

i=-~o = mL(m) j= . l jL(j)  

3 Doob (1953), p. 317. 
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1 1 
Since ~ is eventually monotone, a k - 

kL(k) KLtK) 
- -  for k > K s so 

aZ 1 - aF~ <= K 6 {kL(k) - (k - 1) L ( k -  1)} 

<=K7L(k ) for k > K  5 by 2.4(b). 
Therefore, 

0 2 ( a f l _ a ~ l  )<_K8b2 ~ 1 
- - kL(k) k = m + l  k=m+l 

and substituting for this and the values of a~ in (6.4) give the result. 

X a �9 (6.5) Lemma. Let (Xi, ~i) be a mixingale with Oi of  size 1 such that { i ,  
i= 1, 2 . . . .  } is uniformly integrable. 

Then the set 
(Sj+k-- Xk)2 } 

max ; k=  1, 2, ..., n = 1 , 2  . . . .  
(j__<n n 

is uniformly integrable. 

Proof. For positive c and m to be determined later, put 

X [ = X , I [ I X ,  I<c], g~=G+r,X~-E,_mX~, 

U i = X i - E i + m S i q - E i _ m S  i , Z i = E i + m ( X i - X ~ ) - E i _ m ( X i  - s c )  

and note that X i = Y~ +Z~ + U~. We will ~tpproach the proof in a similar way to 
that of Theorem 23.1 of Billingsley. Let us use the notation % U = ~tv>rJ UdP, 

J J J 
~ = E Y i ,  L = E z , ,  and G = E u ~ .  

i = 1  i = 1  i = 1  

Then S } _<_ 3(U/+yj2 + 22) and hence 

e, (max S]I_<_9(I+II+III)  
\ j<n rt ! 

where 
Y? 2? 

I=e, /3 ( m a x - '  ], I I = E  (max - '  ] 
\ j<n n ] \ j<n El / 

and 
I I I = E  (max -J ). 

\ j<n n ! 

Note that E ( U / -  E i+ k U/) 2 is less than 02 for k < m, and ~/2 for k > m, and similarly, 
EE2kUi is less than Om 2 for k<m, and ~,2 for k>m. Therefore, by (6.3), 

I I I < K ' {  o2mmL(m)+K2k=m+l ~' ~ 1  } 

and for arbitrary e > 0, we may choose and fix m sufficiently large that III __< e/27. 
Similarly, each of the terms E(Zi-Ei+kZ~) a and EE2kZI  are less than 

EZ~ <= EEl+ ~ (Xi - X c) 

<=maxe~X}=g(c), 
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say, for k < m, and for k > m, each of these terms is equal to 0. Therefore, putting 
a i = 1 for I i[ < m + 1, 0 otherwise, in (6.4); 

II _-< 4 (2 m + 3) 2 g (c) and for our now fixed value of m, we may choose and fix c 
such that this is less than 5/27. 

Finally, with these fixed values of m and c, we apply Lemma (6.2) to the 
sequence { Yi} with 7 = 4, and 

1 for [i[<=m 
a i = 0 for [i[>m 

obtaining 
E(max Yjg)<(~)4(2m+l)3 • ElY,  k[ 4 

J<--" ]kl<rn ' 
where ? l  

Y.,k = ~ (Ei+kYi--Ei+k-1Y/),  
i = 1  

where each term in this summand is bounded absolutely and with probability 
1 by 4c. It therefore follows from inequality 23.7 of Billingsley that E[Y.,kl4< 
6 n 2 (4 c) 4. Substituting this above gives 

say. 
Therefore, 

y.4 { 217 
E (max@i<__ ( 2 m + l ) 4 c 4 = K 3 ,  

r 
E 2 (max -J ] <  3K3 

~y13 \ j<n n ! y ' 

which, for our fixed values of m and c, may be made less than e/27 by choosing y 
sufficiently large. Then, for this value of y, 

sr (max SZ l__<e. 
\ j<=n l~l ] 

Clearly y was chosen idependently of our location in the sequence or the value 
of n, so 

is U.I. 

Proof  of  Theorem (2.5). Clearly we may restrict ourselves to functions on the 
closed unit interval; functions on the interval [0, K] for arbitrary finite K are 
treated in the same way. Put Sk , ,=Sk+, - -Sk .  For tightness we use (14.9) and 
Theorem 8.4 of Billingsley by which it is sufficient to show; 

lim sup 22 P {max INk, j I > / ~  g/-~} = 0 
~ o o  j<=n 

uniformly in (n, k). Clearly this follows from the uniform integrability of the set 

~max S~j ; . . . .  } k =  1,2, ..; n = l ,  2, 
[ j < .  n 
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which is shown in Lemma (6.5). Theorem 15.5 of Billingsley also shows that 
thightness in the modulus Wx, also implies that any weak limit process of W, 
must be a.s. concentrated on the continuous functions, 

Proof of Theorem (2.6). Since Uff=1.9" is an algebra generating a(W1, W 2 . . . .  ) 

we need only verify for arbitrary m and F e  5 "  with P(F)> 0 that (1.4) holds where 
W is standard Brownian motion. Tightness of the measures P(W,~.[F) and 
continuity of their limits follows directly from Theorem (2.5). We will verify the 
conditions 1 ~ a, 2 ~ and 3 ~ a of Billingsley's theorem 19.4 with p(t) =0 and az(t)= t, 
and with P(.) replaced by P ( ' ) = P ( "  IF), E( ' )  by E ( . ) = E ( .  [F). 

Observe first that (6.5) implies 

{ (W"( t+h) -W~( t ) )2 ;O<t<t+h<o%n=l ,  2, .,h=> ~-} is uni- (6.6) the set h - '" 

formly integrable. 

Consequently, both 2 ~ viz.: sup lira supE(W, 2 (t) tF) < oo for all K < o% and 3 ~ a t<_K n~oo 
follow. We can easily show that 1 ~ a can be replaced in our case by the condition; 

(6.7) For arbitrary k, real Ux,Uz, ...,Uk_ p and O<=h<...<tk<tk+ ~, 

(a)/~ [exptk~iuiW,(ti)}{W,(tk+l)--W,(tk)}]~O as n~oo ,  
L1=1 

and 

converge to 0 as n--, oo. 

These conditions differ from Billingsley's 1 ~ a only in that we replace tk_ 1 <<_ t k 
by tk_ 1 < t k. 

Define 

Un= Elntk_ll (k~lui Wn(ti) ) 
\ j = l  

and V. = W.(tk+ 0 -- W~(tk). Then 

U,-  ~ ujW,(ti) n~ G ~ ~ IlEl,,k _,lXi-x~l[2 
j= l  j= l  i=1 

/ l[ntk-ll \ 
=o o 4 

and thus converges to 0 by Kronecker's lemma and (2.4). This and the uniform 
integrability of V, imply 

k-, }v. (6.8) E expj~liujW,(t j)-expiU . --*0. 



176 D.L McLeish 

But for sufficiently large n, F c ~t,,t,,-11 and 

1 
[E (exp i U.) V.I = ~ Ij  (exp i U.) Et.t~_ll V. dP I 

- - < ~  IIEt,,~_llV, II2 

[ 1 [.~k+d \ 

and this converges to 0 by (2.4). This, with (6.8), verifies (6.7. a). 
For (6.7. b), observe that the uniform integrability of V 2 implies 

(6.9) E exp ~ iujW.( t j ) -expiU.  {V2--(tk+l--tk) } ~ 0 .  
k j=l  

But 
1 2 

IE(expiU.){V2--(tk+l-tk)}l<~-F-~l[Et.t~_llV;, --(tk+l--tk)ll 1 ~ 0  by (2.5). 

This with (6.9) verifies (6.7. b)., 

Proof of (3.5). (3.6) is proved in Serfling (1968) for r < ~ .  For the case p, r = ~ ,  
use the continuity of the Lp norms at p = ~ .  

For (3.7), put ~=~(~ ,  9~), C=~-l/"[ISqlr, and Xl=Xl ( lX l<c) ,  where I(A) is 
the indicator function of the set A, and X 2 = X - X 1 .  Here we have neglected 
the trivial independent case and assumed ct > 0. Then 

IIE(X I ~ ) -  EXqbp < IIE(X~ I ~ ) - E X l  lip+ liE(X21 ~ ) -  EX211p 

< (2 c) (p- 1)/p E 1/p [E (X 11 ~) - EXll + 2 I1 X2 II 1, 

< (2 c) (p- 1)/p (4'7 c) 1/p + 2 tl X211E/P 
-- c(r-p)/p ' 

where the first term in the last step follows from Lemma 5.2 of Dvoretsky (1972), 
and the second from the standard inequality 

1 
EIXIP I([XI>C)< c--;~_p EIXI~ I(IXI>c). 

Substituting for c and using the fact that IIX211,< IIXl[,, this bound becomes 

2(2a/P + I)~I/P-1/'IIXII ~. Q.E.D. 

Proof of (3.8). If we apply Lemma (3.5) to the sequence, 

IIE,,X,,+mII 2 <min  (2 r -~/~, 5~m -l/a) IlXn+mllfl 
so by (d) or (d'), {(Xi, ~i)} is a mixingale of size - �89 

We now verify (2.5). 

Put Sk,,, = Sk+ . -  S k and for some c to be determined later, 

S 2 
Sk, n-~Sk, n I ( - - ~ - ~ s  �9 
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Observe that 
g(c) -  sup SkZ"" 

k, n H 

by Lemma (6.5). Then, 

Ek-'~ Sk2'nn 

Sk 2 . 
n - 0  as c ~ o o  

~2 1< 2 Ske, -2 Sk, n 
n n 1 

E~_ m ~2 + e 
n rl 1 

+ E ~ - -  ~7 2 

S e 
<2g(c)+min(2~0m, 5 ~ ) c +  E ~ •  -2 . 

We choose and fix, c sufficiently large that the first term is less than e/3. Clearly 
the second and third terms can each be made < e/3 for min (m, k, n) sufficiently 
large. 

Proof of (4.2). We first show that the sequence {Xi} is a mixingale with @, of 
size - �89 Note that by Theorem (4.1) and Lemma (3.5), 

HEi_2mXfN2 ~ [IEi_2,~E(Xi i+,,, + ~i+m) X [~i-m)ll2 I [E(Xi  ,J i - -m/- -  i[12 

< . ~, i - l i b  = mm 2 gore , 5 i l / e - l l f l )  N E ( X i  [ q~i_m)Hei+m + 7m 

and this is of size - 1/2 by assumption. Also, by Lemma 1, p. 184 of Billingsley, 

Ilei +mXi- XiN2 < NE(XiI qSI +~,)- X~II2 < Ym. 

Therefore, Theorem (2.5) is in force. We now use Billingsley's theorem 19.1 to 
characterize the possible limits of the sequence 13 { I47, ~- } - P { W, ~. IF} where m 
is arbitrary, and F any member of ~m of positive measure. Again, put/~ (.) = E (" iF). 
For national simplicity we consider only the intervals (0, q) and (t2, t3) with 
0 < ts < t 2 < t 3 and put 

U,=E{W,(tl)I~t~} and Vn=E{Wn(t3)-Wn(tz)l~nt2]}. 

Then by (4.1) and Lemma 1, p. 184 of Billingsley, 

1 [ntl] 

II u.- wo(q)ll < ~ # i  ~=1 IIX,- E(X, I ~U~)N 2 

(6.10) ,[nh] \ 
=o +o 

i = 1  I 

by Kronecker's lemma. Similarly, 

(6.11) rl V. - [W.(ta) - W.(t2) ] Jl 2 ~ 0 as n --* o9. But by the mixing assumption, for 
any Borel sets A1 and A2, 

P(U.EA1)-P(V.eAEIF)~O as n ~ 0 .  
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Thus U, and V, are asymptotically (P) independent and by (6.10) and (6.11), 
so are W,(q) and W,(t3)-W,(t2). The remaining moment and uniform inte- 
grability conditions of Billingsley's theorem 19.2 are satisfied by assumption and 
Lemma (6.5). 
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