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O. Introduction 

We discuss the existence, uniqueness and ergodicity of certain configuration- 
valued stochastic processes (it)t~+. Let V be a countable set of vertices, or 
sites, and S a compact metric space. At each time t our process assumes a value 
i, ~ S = SV; it is to be thought of as a configuration of values from S on the sites of V, 
i~(x) being the value at x. Let ID=ID(1R +, S) be the path space of right continuous 
functions with left limits from [0, oo) to & define ~t: ID--* S as the evaluation 
map co ~ co(t), co =(cot(x))~lD, and let ~ = a <(~t)t~§ be the a-algebra generated 
by the it. Also, put N~)=a<(~r)o=<,=<t). We view the desired stochastic system 
as the coordinate process (~) on (ID, 2)  governed by any of a collection (P~)~ 
of probability measures such that 

P~(go --~)= 1, ~eS.  (1) 

Er wilt denote the expectation operator corresponding to P~. 
Three additional properties characterize the transition mechanism for the 

processes (~t) which we will consider. First, the value it(x) at each site x changes, 
or "flips", only finitely often in any given interval. Next, the expected number 
of flips at x from time s to time t, given ~) ,  is determined by certain flip rates c x. 
And finally, the values at two different sites never change simultaneously. More 
precisely, let cx={cx(~, .)}~e be a weakly continuous collection of finite non- 
negative Borel measures on S, modified for convenience so that c~(~, ~(x))=0. 
(Here and below, {a} will often be abbreviated as a.) Let lD o comprise those 
paths in ID assuming finitely many values at each site in any finite interval. 
Write eot_(x)=limcou(x), and define ~t_(x) analogously. For cocIDo, E a Borel 

uTt 

set of S, x e V, and 0 < s_< t, set 

N~(s, t)(~)=l{ue(s, t]" co~_(x)+ ~(x) and co.(x)eE}[. 
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N~(s, t) is the number of flips to the set E at x between times s and t. The three 
additional properties we require of (~t) may now be stated as 

P~(IDo) = 1, (2) 
t 

E~(Nff(s, t) l ~ )  = y E~(cx(~,, E) I M~o) du, (3) 
8 

and 

Pc(~,_(x)#~,(x), ~,-(Y)#-~u(Y) for some u=>0)=0, (4) 

~ , ,=  E Borel in S, x#-y6 V, O<s<_t. A process, satisfying (1)-(4) will be called a 
spin system with rates c = {cx}x~ v. Property (3) says that the expected number of 
flips at x in (s, t], given ~ ,  is the integral from s to t of the expected flip rate given 
M~. In the leading case, when S = { - 1 ,  1}, our formulation is often called the 
spin-flip model. 

Weaker versions of (3) and (4), stressed in previous papers on spin systems, are 

P~(~t +h(X) ~ E'~ it(x)] ~ )  = cx(~t, E) h + o(h), (3') 

and 

P~(~, +h(X) + g,(X), 4, +h(Y) + g,(Y) I ~ D  ---- o(h), x #: y. (4') 

There are, however, systems which satisfy (1), (2), (3') and (4'), but not (3), and 
which are not worthy of membership in the class of spin systems. We illustrate 
this point with an example due to S. Kalikow (private communication). 

Example. Let V = Z  + = {1, 2, ...}, S =  { -  1, 1}. Define 

_~(n))=} ' l  if ~ ( n ) = - 1  and n > 2  
Cn(~, 

otherwise. 

There is a very simple (strong Feller) spin system with the above flip rates, namely 
the process for which the value at site 1 does not change, while a - 1  at site 
n > 2  flips to +1 after an exponential time with mean 1, independently of all 
other sites, and a +1 does not change. But consider the following process: 
starting from ~ - =  "all - l ' s "  the value at site n > 2  flips as above, while the 
value at site 1 changes from - 1  to +1 deterministically at time 1. Such a 
process still satisfies (1), (2), (3') and (4') for the given rates. Moreover, it is strong 
Markov, being the independen t product of two strong Markov processes. One 
cannot eliminate such behavior by requiring time homogeneity, because the 
deterministic flip can be made compatible with a homogeneous Markov semi- 
group. The idea is to view the values at sites n > 2  as a clock which is used " to  
tell what time it is." The process will then be time homogeneous for the same 
reason that the space-time modification of any nonhomogeneous process is. 
The fact that the values at sites n > 2  can be used as a clock follows from the 
strong law of large numbers, which implies that 

n ) 
P~- \,(lim'~ lnk=~=S t(k)= 1- -2e - t  for all t > 0  = 1. 
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Although spin systems have been studied actively for several years, their 
theory is just beginning to come into focus. The most important problems are 
threefold: 

(i) Existence. For which rates c is there a process (~) satisfying (1)-(4)?; 
(ii) Uniqueness. What conditions on c guarantee a process which is, in some 

sense, uniquely determined by the rates?; 
(iii) Ergodicity. When is there a unique equilibrium probability measure /2 

on ff such that the distribution of it converges weakly to g from any initial state 47 

Let us review briefly some of the known results regarding (i)-(iii). In [8], 
Liggett proved the existence of a "unique" process with rates c provided that 

sup cx(~, S) < 0% (5) 
xcV,  ~ S  

and 

sup ~ sup ]]Cx(~,-)-cx(~,s,-)]] <o% (6) 
x~V yeV--x s~S, ~ 

where ~ys is the modification of ~ defined by ~y~(x)=~ "s if x = y  , and 
( ~(x) otherwise 

II ]l = variation norm. To phrase Liggett's result precisely we need more notation. 
Let c~=c~(~ be the Banach space of continuous real-valued functions with the 
supremum norm, y A  the subspace of functions depending only on sites in the finite 
set AcV,  and i f =  ~ y a  For x~V, s~S, define the operator A~: ~ c ~  by 

finite A 
(A~f) (~)=f(~)- f (~) ,  and G~: c~_~ c~ by (G~f)(~)= ~ c~(~, ds)A~f(~). Finally, 
define G: f f  ~ c6, the pregenerator with rates c, as ~s  

G= ~. G~. (7) 
x~V 

If f e n  A, then Gf= ~ G~f, since AJ=-O when x6A. Continuity of Gxf  follows 
xEA 

from the hypothesis on the c~(~, .), so Giswell-defined. Now under conditions (5) 
and (6), the methods of [9] yield a strong Feller spin system whose infinitesimal 
generator extends G. Moreover, the Markov semigroup for (~t) is the unique such 
semigroup whose generator extends G; this is the content of the uniqueness 
assertion. 

Dobrushin [1] also proved a uniqueness theorem, and gave the first general 
ergodicity criterion. Sullivan [9] unified and extended the results of Liggett and 
Dobrushin; his theorem applies in some cases when the rates are not uniformly 
bounded (i.e. when (5) fails). 

Recently, Holley and Stroock [6] have made important contributions to the 
understanding of all three of the above mentioned questions. The treatment in 
[6] is based on solutions to the "martingale problem" for c. While presented for 
the case S =  { - 1 ,  1}, their results presumably have straightforward generaliza- 
tions to our setting. A family (Pr162 of measures on (ID, ~)  forms a solution to 
the martingale problem for c if (1) and (2) hold, and in addition, 

t 

f (~t)-~ Gf(~)ds is a Pc-martingale for all ~ ~E, f e ~ .  (8) 
0 
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Among the main results of [6] are the following: (a) Always when S=  { -  1, 1} 
(and even in some cases when the rates c~ are not continuous) there is a process 
with rates c which solves the martingale problem; (b) There are rates c such that 
there are two distinct solutions to the martingale problem for c; (c) If there is 
a unique solution (PC)r162 to the martingale problem for c, then (it) is a strong 
Feller process with respect to (Pc); (d) If (5) and (6) hold then there is a unique 
solution to the martingale problem for c. In addition, they give a combined 
uniqueness and ergodic theorem which neither implies nor follows from the 
theorems in [1, 8] and [9]. 

It can be shown that the class of solutions to the martingale problem for c 
coincides with the class of spin systems with rates c. In other words, (1), (2) and 
(8) are equivalent to (1)-(4). We leave the proof of this fact to the interested 
reader. Thus the existence problem for spin systems is comp!etely solved, at 
least when S = { - 1 ,  1}. The corresponding problem for strong Markov spin 
systems remains open, however; this is because there are non-Markovian 
processes which satisfy (1)-(4). These considerations also imply that a standard 
Markov process on (ID 0, N) is a spin system if and only if its generator extends 
a pregenerator of the form (7). The strong Markov process of Example 1 does 
not have Y in the domain of its generator, and hence is not a spin system. 

The main purpose of this paper is to present improved uniqueness criteria 
for spin systems. Our approach, like that used in [8, 9], and parts of [6], is based 
on the Hille-Yosida theorem, but the space of cylinder functions is exploited 
more methodically. The processes we will obtain satisfy the strong extension 
property (s.e.p.): the pregenerator G with rates c has well-defined closure G which 
generates a Feller process. In this case (40 is the unique spin system with rates c, 
a consequence of Theorem 4.2(b) in [6] and the equivalence of spin systems 
and solutions to the martingale problem. Section 1 contains notation necessary 
in the sequel, a version of the Hille-Yosida theorem most suited for our purposes, 
and some preliminary results. Section 2 contains our main result (Theorem 3), 
which may be viewed as an improved version o f  Sullivan's uniqueness and 
ergodic theorem. Indeed, certain estimates from [9] play an integral part in the 
formulation and proof. Our extension has the advantage that it applies to a 
much wider class of pregenerators; for example, a new result which is a corollary 
of Theorem 3 states that G has the s.e.p, whenever (6) holds. Finally, Section 3 
contains a very simple example of nonuniqueness, for which one can construct 
two distinct Feller processes having the same pregenerator G. 

1. Preliminaries 

If fi=(flx)x~V is a (non-negative) density on V, set 

ll(fl) ={u=(ux)x~ve]RV: ~ luxlflx< ~}, 
x ~ V  

and l ~ = {u = (u:,):,~v ~ ]R E: ux = 0 for all but finitely many x}. Note that l ~ c 11 (fl) for 
any density ft. 

Throughout the discussion, the term "operator" will always mean either a 
densely defined linear operator on c~ or a linear operator on ll(fl) or l ~ The norm 
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symbol  II II denotes 

]If l] = sup IN(~)L, fE~g; 
~eS 

Ilull = ~ lUxtflx, ucl~(fi); 
x~r 

1[# II =variation norm of #, # a signed Borel measure; 

IILII = the usual operator norm of L, L an operator; 

the appropriate meaning will be clear from the context. When f , ,  f E ~ ,  we often 
write f 4  f to mean Hf-f,][ ~ 0 as n ~ o o .  Also, if # and v are two measures 
on S, then # A v = # - ( # - v )  +. 

The symbols A and B will always denote finite subsets of V, even when this 
is not mentioned explicitly. Fix a reference state soES, and for given ~ ,  A c  V, 
define the modification 

~(x)=~(x), x~A, 
(s o otherwise. 

For f6cg, the modification f A ~ y A  is given by fA(~)=f(~A). Note that f A ~ f  
as A T V; this shows that ~ is dense in cg. Also, set 6f=((g)f)x)x~V, where 

(0f)x= sup ](AS.f)(~)]. 
s~S, ~eZ 

We remark that c~fsl ~ whenever f ~ Y .  
The domain and range of an operator L are denoted by ~(L) and N(L) 

respectively. Recall that an operator L on ~g has closure L iff the closure of the 
set {(f Lf ) }y~ (L  ~ in cg x ~ is the graph of a well-defined operator L. If L exists, 
then given any f eD(L)  we can find f ,E~(L)  such that f , 4 f  and Lf ,  ~, Lf. 
Also, L satisfies the maximum property iff whenever f e  @(L) and f (~)= lnax  f(~), 

then (Lf)(~)<O. Note that if G: ~---, ~g is a pregenerator of the form (7), then 
the maximum property is self-evident. 

Our main objective in this paper is to derive uniqueness criteria for spin 
systems with given rates c, or equivalently, with given pregenerator G. We will 
make use of Theorems 1 and 2 below, which constitute a probabilistic version 
of the Hille-Yosida theorem. Proofs of these results may be found in [2, Theo- 
rem 2.8] and [7, Theorem 2.1]. 

Theorem 1. An operator L on ~ is the generator of a strongly continuous semi- 
group T t of positive conservative operators on cg f and only if 

(i) L satisfies the maximum property, and 

(ii) N ( 2 -  L) = cg for some (all) 2 > O. 
L 1 Moreover, (i) and (ii) imply that R~ = ( 2 -  L)-I  exists, and II R~ ]l < ~  for all 2 > O. 

(Note that (ii) always holds when L is a bounded operator on cg satisfying (i).) 

We say that an operator L on cg has the strong extension property (s.e.p.) iff 
L has closure L which generates a semigroup T t of the above type. When L has 
the s.e.p, we put R~ =(2 - L )  -1, which exists on all o f ~  by Theorem 1. 
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Theorem 2. A pregenerator G has the s.e.p, if and only if 
~ ( 2 - L ) = C g  for some (all) 2>0.  

We conclude this section with four elementary results which will be useful 
later. The proof of the first consists of a straightforward computation. 

Proposition 1. Let L~ and L 2 be operators on cg with a common domain (or 
operators on  ll(fi)). Suppose N ( 2 - L 1 ) = ~  (or ll(fl)), 2 - L  1 is invertible, and 
][(Lz-L1)(2-L1)  -1 [I < 1. Then 2 - L  2 is invertible, and 

( 2 -  L2) - 1  = ( 2  - -  L~) -~ (1 - ( L  2 - L , ) ( 2 -  L1)-1) -1. 

Proposition 2. Suppose G 1 and G2 are pregenerators such that Go = G2-G1 is 
bounded. I f  G1 has the s.e.p., then so does G2. 

Proof G2=GI+GoI~(al). For 2>11Go][, [[ GoR~' [] < I, and hence (2-G2) -1 is 
defined on c~ by Proposition 1 and Theorem 1 applied to Gt. Since N(2-Gz)  
N(2-G2),  the claim now follows from Theorem 2. 

When G has rates c, set c~(~, ds)=c~(~ a, ds); (G~f)(~)= I cJ(~, ds)AJ(~) ,  
and G A = ~ G  A,ACV.  s 

x~A 

Proposition 3. Let G be a pregenerator with the s.e.p. Then 

(~ f )a  = Oa(fA), f e@(d) ,  A c V. 

Proof Choose f~eo~ such that f ,  & f and Gf, J* Gf. Then clearly (Gf,) A ~ (df)A. 
But also (Gf.)A= Ga(f ,A)& GA(fA), this last since G A is bounded. 

A pregenerator G is called a box pregenerator iff there is an increasing sequence 
of finite "boxes" B(n)cV,  n>O, such that B(n)'~V and Gx=G~(") whenever 
x ~ B(n). 

Proposition 4. Let G be a box pregenerator, with boxes B(n). Then 

G(fB(,)) = GB(,)(fm,)), f~cg, n > O, 

and G has the s.e.p. 

Proof 

G(fm")) = ~ G~(fB(')) = ~ Gf(")(fB("))=Gm")(fm')). 
xeB(n) xeB(n) 

Since Gm')(fB('))eo~m"), G maps o~m,) into itself for each n. Thus G[~,(,) may 
be thought of as a bounded operator with the maximum property on cg(Sm')). 
By Theorem 1 and the remark which follows, ( 2 - G ) ( ~ m ' ) ) = ~  "m") for all 2>0,  
n > 0. Hence N ( 2 - G ) = o ~ ,  and G has the s.e.p, by Theorem 2. 

A spin process with a box pregenerator is called a box process. The next 
section contains our main result, which states that if a pregenerator is "sufficiently 
close" to a box pregenerator, then it has the s.e.p. As will be seen, box processes 
play an important role. 
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2. An Improved Uniqueness and Ergodie Theorem 

We present here a uniqueness and ergodic theorem which extends results of 
Liggett [8], Dobrushin Eli and Sullivan [9]. Our theorem makes use of the 
comparison matrix a a C =(Cxy)x,y~v for the pregenerator G, i.e. certain quantities 
introduced in [1] and [8], and refined in [9]. Following Sullivan, C G is given by 

G Cxx = - inf {(Cx(~, ")/x C x ( ~ s , ' ) ( S -  {~(x), s}) + cx(~s, ~(x)) + c~(~, s)}, 
{~S, seS: 
s*~(x) (9) 

a 1 Cxy= ~ sup {[Icy(~,')-c~,(~xs,')ll+lc,(~,S)-c,(~x.S)l}, x4=y, 
~sS, seS 

and is to be viewed as an operator on 1 ~ Note that our convention that 
c~(~, ~(x))=0 simplifies C G somewhat from [9]. The intuitive meaning of the 
comparison matrix is perhaps best explained in terms of a certain Markovian 
"coupling", for which Cx~ represents the maximal rate at which two dependent 
copies of (it) grow apart at site y when their configurations differ only at x, and 
-Cx~ represents the minimal rate at which the two copies assume the same 
value at x when they differ only there. For the details of this interpretation in a 
special case, the reader is referred to [3]. Actually, a somewhat different coupling 
than the one in [3] is required in order to obtain Sullivan's ergodic theorem. 

Roughly, though, the components of C a measure the amount of influence 
transmitted by the rates from one site to another. The formal properties needed 
for our uniqueness and ergodic theorem are given in 

Lemma 1. Let G be a pregenerator with comparison matrix C a. 

(i) I f  f cog and A~f(~)=(6f)y ,  then 

C G (6f] >~A~G~f(~), x = y ,  

~'" ""=( l [A~x,G,] f (~) l ,  x4=y, 

where [A~, - ~ Gy] - AxGy-  GyA~. 

(ii) Suppose there is a (non-negative) density fl=(fix)x~V such that 

C,,)/3,, ye  V, (10) 
xEV, x:l-y 

for some pc[0,  1), c~elR. Then for each 2>c~ and A c V ,  2 - C  ~ maps l ~ into 
itself. Also, ( 2 - C a )  -1 and (2-c~A)  -~ exist, and are positive bounded operators 
on l 1 (fl). Finally, f 0 < u ~ l 1 (fi), then 

((2-  C GA) 1 u) x < ((2-  Ca) -1 u)~ for all x e A .  

Remark. The conclusions of part (ii) hold under conditions (1) and (3) of Theo- 
rem 3.4 in [9]. But, as noted by Sullivan, his (3) is difficult to check unless one 
assumes our (10). 

Proof (i) See Lemmas 4.4 and 4.5 in [9]. (ii) The argument is similar to parts 
of the proofs of Lemmas 4.6-4.8 in [9]. However, the claim made there that 
BA --c~ is dissipative cannot be justified for ct <0, and we therefore sketch a slightly 
different approach in which C G~ takes the role of BA. The first fact is obvious. 
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For the rest, write C a = - D G + E  ~ where D G is diagonal and E G has all zeroes 
on the diagonal. Then whenever u~ll(fl), 

p ( ~ -  c.)/~lu~l <pllul l ,  I[EG(2 + D~ <---- y~V ~' x.y ~' )~-- C,y~ lu, l- -<,EvF, (,~_ C~) 

and so by Proposition 1, ( ' )~-CG)-I=(2+D~176 -1, which is 
evidently a positive operator. The same argument clearly applies to the comparison 
matrix C ~ for the pregenerator G A. Finally, if O<uel~(fl), one checks that 
for x~A,  

[(2 - C GA ) -1U]x = [(2 + D ~ - 1 ( 1 - E~ + D G) -1 uJx 

=<[(2 + DO)- l (1-E~(2 + DG) lU]x, 

since E ~ - E ~ > 0. 
We are now prepared to state and prove the main result. It should be mentioned 

that our real contribution is to the question of uniqueness. Sullivan's ergodicity 
criterion depends on his uniqueness conditions, so that our extension also gives 
ergodicity for a wider class of rates. But the method of proving ergodicity, once 
uniqueness is established, follows E9] precisely. In fact, the ergodic theorem 
presented here is still essentially that of Dobrushin [1], with somewhat better 
estimates. Similar ergodicity criteria, at least in special cases, are discussed in 
[3, 4] and [5]. 

Theorem 3. A pregenerator G has the s.e.p, if there is a density fl on V such that 
(10) holds and, in addition, 

there is a positive constant ~ and a sequence of boxes B(n) T V such that for all x ~ V, 

sup Ilcx(~, ")-cx(~ B("x), ")11 <~/L,  (11) 

where n~ is the first n such that x~B(n). 

Moreover, if inf  fl~>0, and e < 0  in (10), then the Feller spin system (it) with pre- 

generator G is ergodic. 

Proof Set G'= ~ G~ ("x), noting that G' is a box pregenerator with boxes B(n). 
x~g 

Introduce "approximate" pregenerators G ("), n>0,  defined by 

E E Gx 
xeB(n) xeV-B(n) 

Then L(")=G(")-G'= ~ (Gx-G~ (n~)) is a bounded operator. Hence G (") has 
xsB(n) 

the s.e.p, by Propositions 2 and 4. Fix )~>~, and choose g ~ .  Propositions 3 
and 4 show that for any f ~  @(G'), 

(2-G' ) fm")=((2-G' ) f )mm)J*  ( 2 - G ' ) /  as rn---, o% 

while L(n)fB(m)~ L(n)f as m---, oo by boundedness. It follows that we can take 
f .= (R~"~g)m 'n )~  m") for some m>n with 

11(2- G)L-g l l  <= II(X- G ) f . - ( 2 -  a(n))f. 1[ § 11(2- G(n)) f . -  g H 
1 

< II(a - G("))f.II + - .  
n 
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N o w  

[I(G - G("))f. [I = II ~ (Gx-  Gf("~))f.l[ 
xeB(ra) --B(n) 

< • {sup ][cx({,-)-c~('~)(~,.)lr}(Sf,)x 
xeV--B(n) gEE 

~-~ ~ E G('~) fl~(8(R~ g))x. 
x~V-B(n) 

G(n) Put vg=sup{8(Rz g)}. If vg~ll(fl), then evidentIy ( 2 - G ) f ,  ~> g as n--+ oo. To 
n 

verify the condition of Theorem 2, thereby proving uniqueness, it remains only 
to show that 

vg~Ii(fl) for all geW.  (12) 

To this end, choose ge~,~, n>0,  and write hN=(R](")g) raN), N > 0 .  For all N > n  
which are large enough that g eyS(m,  Proposition 3 yields 

g = [ ( , ~ -  G(.))(R~(-'g)]~(N) 

,.ay ] ' ~ N "  - - y  

yEB(n) ysB(N) -B(n) 

If x eB(n), then algebraic manipulations show that 

A ~ ASg=)~ASxhN--A~xGBx(N)hN--Z GBy(N)AshN - Z [ ~,GBy(N)JhN 
y~B(n )  - x y e  B (n) - x 

- 2 c"(~  ~, _ G~(",)] 
yeB(N) --B(n) yeB(N) --B(n) 

Choose ? and ~ so that A~hN(~)=(Shx)~, and evaluate at ? and ~. By part (i) of 
Lemma 1, and the maximum property, we obtain 

(8gL> ~ , , s~x- .~= t '~N~x -- ~ , ~ " ' ~ " ~ L  ~ ' x y  ~,'a~t'N)y 
yeB(n) -x  

- -  ~ [~GB(ny ) [~ I / I  ] 
V " x y  t'-" ~ ~NIy �9 

y e B ( N )  - B ( n )  

The explicit form (9) of the comparison matrix shows that c ~ is dominated ~ x y  

by C G"'~) whenever v~B(N) .  Hence - - X y  

[(;~ - c~"% (8 h~)s < (ag)x. (13) 

An analogous computation establishes (13) for x ~ B ( N ) - B ( n ) ,  while both sides 
vanish when x CB(N). By part (ii) of Lemma 1, both sides of (13) are in/l(fl) when 
considered as vectors, and we may apply the positive operator (2-C~ -~ 
to obtain 

8hN < ( , ~ -  C G ' ' % - I  (8g)__<(,t- C~)-~ (8g) ~ Z ~ (/~). 

Letting N - +  0% we see that a(Rf(~ is bounded by an l*(fl) vector which is 
independent of n, so (12) holds. This completes the proof of uniqueness. The 
proof that ergodicity obtains when inffi~>0 and c~<0 mimics [9] exactly. 
Actually the methods there show exponential convergence to the unique equi- 
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librium measure #, in the sense that 

sup H P*o(~, [A ~ "  ) - -  ]2(~ IA ~')H < K A  e -o~t, 
~os~ 

finite A c V, for s o m e  KA> O. 
An easy consequence of Theorem 3 is the following useful uniqueness 

criterion, which includes the result mentioned in the introduction. 

Corollary 1. Let My~= sup Ilcx(r ")-cx(r ")11, y4=x. G has the s.e.p, whenever 
seS, ~e,~ 

there is a density f with i n f f x = e > 0  such that 
x~V 

sup 2 ( f ' ]  ~ v  y~V-x f J  My~=M<oo.G (14) 

In particular, G has the s.e.p, whenever (6) holds. 

Proof. Weak continuity of the cx and the triangle inequality show that 

Ilcx(~,')-cx(~ B("x), ")IL_-< ~ M,Gx (any B(n)T V). 
yeV - x  

Assuming (14), this implies (11) with 7=M/e,  while (10) follows immediately 
from the fact that Cy~<MyGx. Theorem 3 now yields the first claim; the second 
is the special case f ix-1.  

We remark that Corollary 1 does not follow from Sullivan's methods, since 
the analogue of (11) in [9-1 is the more restrictive condition 

cx(r S) 
sup - -  < oe (15) 

x+V, ~e ~. fix 

and (15) is equivalent to (5) when f is bounded away from 0. 
The next two corollaries are useful in comparing Theorem 3 to Sullivan's 

existence and uniqueness theorem. 

Corollary 2. Let G be a pregenerator satisfying (10) and (15) for some density 
f>O and constants ~ and p~. Let G ~ be a box pregenerator with boxes B(n) 
satisfying (10)for the same density f and (possibly different) constants ~2, P2. 
Then G+ G o has the s.e.p. 

Proof. G+G ~ satisfies conditions (10) and (11) with density f, a=cq+c~2, 
p = max {Pl, P2} and boxes B(n). 

We remark that if S is a finite set every pregenerator G' which satisfies the 
hypotheses of Theorem 3 can be written as a sum G + G ~ with G and G o as in 
Corollary 2. This  is not true when S is infinite. 

A special case of Corollary 2 occurs when G o is a pregenerator for a product 
process (i.e. a process for which the flip rate cx(~, .) depends only on r We 
call such an operator G o a product pregenerator. 

Corollary 3. Let G be a pregenerator satisfying (10) and (15) (or (10) and (11)), and 
let G o be a product pregenerator. Then G+ G o has the s.e.p. Moreover, if G satisfies 
the ergodicity criteria of Theorem 3, then so does G + G ~ 

Proof A product pregenerator satisfies (10) for any density f >0, with p = ~ = 0 .  
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It appears to be an open question whether or not the sum of an arbitrary 
pregenerator with the s.e.p, and a product pregenerator always inherits the s.e.p. 

3. An Example of Nonuniqueness; Open Problems 

We give a simple construction of two different Feller processes with the same 
rates, by using the duality theory developed by Holley and Liggett in [-5]. Holley 
and Stroock [6] suggested this method of producing nonuniqueness examples. 
Let V=2~+w{oe}, where Go is an adjoined point "at  infinity." We describe a 
certain process {At} called a branching process with interference (b.p.i.); for 
details see [5]. A~ can be thought of as a finite collection of particles at time t 
positioned on distinct vertices of V; thus the state space of {At} is 3 - =  {all finite 
subsets of V}. The particles jump at random times, independently of one another, 
with rates which depend on their positions: a particle at site n~2~ + waits an 
exponential time with mean 1/n 2 and then jumps to site n+  1. If two particles 
attempt to occupy one site, then they merge into one. A particle at site oe does 
not jump at all. Finally, if there are infinitely many jumps in a finite time (this 
will happen with probability one), we write T~=the time of the n'th jump, 
T =  lira T,, and set Ar=(lim ~ As)w{oe}. After time T, the process continues 

n ~ o v  " t ~ f T  t < s <  T 

as before. T can be thought of as an explosion time, and since [At-{oe}l is 
diminished by one at each explosion, the number of explosions is bounded by I A01. 
Although Holley and Liggett only consider b.p.i.'s without explosion, it is easy 
to use their methods to construct explicitly the above process, and to verify that 
it is Markov. Let {Pv}v~9- be the collection of probability measures governing 
{At}, where Pe(A0=F)=I .  We now use the duality formula of [5] to define a 
transition semigroup for a Feller spin system on S v, where S = { - 1 ,  1}. For 

F~J- ,  write I~(~)=flo if ~(x)= - 1  for all x~F 
otherwise. When t > O, define 

~I~(~)=P~(A,~ C(~)=O), FeY-, (16) 

where C(~)= {x~V: ~(x)= 1}. Extend T t to all of f f  linearly. It is easy to check 
that the {T t}, > 0 are positive and conservative, so they may be uniquely extended 
to all of c~. The claim is that these operators give rise to a Feller transition 
semigroup for a spin system on S v with rates coo-0, and for n~7/+, 

cn(~ ' ~(n+ 1))=~n 2 if ~(n)+~(n+ 1) 
(17) ~o otherwise. 

We will check the Feller property, but leave the semigroup property and the 
rates to the reader. To see that {T t} is Feller, it suffices to show that for each 
g>0, F e J ,  t > 0  and ~ E ,  there is a finite A c  V such that ITtle(~)--TtlF(~A)I<e. 
By (16), the difference we wish to control is 

IPF(A, c~ C(~) =0)-P~(A,m C(~ A) =~)l <-_PF(Atc~A~=O)<= ~ P~}(AteAO. (18) 
x ~ F  

Note that when A contains aD we have P~o~(At~A0=0, so one can assume that 
~ 6 F  in (18). Choose n~FmZ +, and for k = l ,  2 . . . .  , let *k be exponentially dis- 
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tributed with mean 1/k 2, the z k all governed by a probability measure Q. If 
AM={me;g+:m>M}w{oe}, M~TZ +, then P~,~(AtcACM)=Q( ~ zk<t, 

n<_k<_M-1 
~ Z k > t  ), which tends to 0 as M ~  oo. Therefore, the sum in (18) can be made 

n<k 
smaller than e if M is chosen large enough. 

Now the state space for our spin system can be divided into two sets which 
do not communicate: Z + = { ~ e S: ~ (oe) = 1 } and Z - = { ( ~ Z: ((oe) = - 1}. When 
the system starts in ~+,  it can be thought of as a Feller spin system on the state 
space S e* with rates given by (17). But there is a Feller spin system on S e+ with 
the same rates, corresponding to the original system starting in the set Z- .  One 
may easily check using (16) that the first of these systems on S e§ has the "all + l 's" 
configuration as a trap, while the second does not, so they are distinct. 

The above construction raises the question of a "boundary  theory" for spin 
systems. One way to get spin systems with rates c is to take weak limits of box 
processes (ilk)), where (~}k)) has boxes B(k)(n) and rates c~ (k)(~ when xeB(k)(O), 
by letting B(k)(0)T v as k--+ or. The methods of [6] show that {(~}k)); k > 0} always 
has a weak subsequential limit which solves the martingale problem. Ideally 
one would hope for an analogous weak compactness theory for the class of all 
strong Markov processes with given rates, and a description of precisely which 
processes are weak limits. In particular, is there always (i) a strong Markov 
process, (ii) a Feller process, with rates c? Another open problem is whether the 
strong extension property is equivalent to uniqueness of a spin system with 
prescribed rates. In other words, can it ever happen that the pregenerator G has 
closure G which is not a generator, but such that there is a unique extension of 
which is a generator? These strike us as some of the leading open problems 
relating to existence and uniqueness of spin systems. 

Acknowledgements. Thanks to Professors R. Holley, T. Liggett, F. Spitzer and S. Goldstein for their 
help. 
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