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1. Preliminaries 

Let (W, ~/K), (X, Y') be two measurable spaces and Q a transition probability 
function from (W, ~K) to (W x X, ~K x ~). It is well known that, for each weW, 
there exists a probability space (f2, oU, lPw) and a W x X valued sequence 
(J,, X, + 1), e o of random variables such that 

 w(Jo=w)=l 
IPw (J,+l EA, X,+ i + BIJo, Xi , J1, "" , X , ,  J,) 

= IP, (J,+ieA, X,+leBIX , ,  J,) 

= Q ( J , ; A x B )  IP,,-a.s. (1) 

for any neN,  A6~K and B~X (see e.g. [11], Ch. V. 2). 

Definition 1. A Markov chain (J,, X,+i),>=o satisfying the last equality in (1) will 
be called a J -  X process. 

Remark 1. The sequence (J,),~=o is also a Markov chain with the transition prob- 
ability function P given by 

P(w; A)=Q(w;  A x X) (2) 

Remark 2. Let f be a real valued measurable function defined on X. If the chain 
(J,, X,+0,  0 is a J - X  process, then so is (J., f(X,+l)),~o. Since the aim of this 
paper is to obtain (weak and strong) limit theorems for functions of (X,),=~ 1 it 
turns out that we may (and actually will) assume, without any loss of generality, 
that the space X is a borelian subset of the real line (maybe Ill itself). 

The J - X processes were first studied by Janssen [9] in the case of a countable 
W. He allowed the conditional distribution of X,+ 1 given the past to depend on 
both J, and J , - i ;  but as pointed out in [13] this assumption yields no increase 
in generality. 

Many authors have paid attention to the asymptotic behaviour of the process 
(X,),_> 1 which is sometimes called a sequence of random variables defined on a 
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Markov chain ([17]) or a chain-dependent process ([13]). However all of them 
required the space W to be finite ([17, 18]) or countable ([9, 13]). 

In Section 3 of the present paper it is shown that the results obtained in the 
quoted papers are still valid if W is an arbitrary space. On the other hand let us 
note that the results to be presented are still in force under other conditions ((A), 
(C) and (D)) than those usually assumed in the literature. 

In Section4 we prove the functional central limit theorem for (X.),> 1 and 
derive new results (Theorem 4) from it. 

The lemmas proved in Section 2 turn out to be the cornerstone of the entire 
paper since they show that the process (X,),> 1 is closely related to a stationary 
(p-mixing process. 

Finally let us mention some noteworthy classes of J - X  processes. 
1. Let (Zt),~o be a semi-Markov process with an arbitrary state space and 

(~,)n>o the sequence of jump moments. Set Xn = ~,-~,_~ for n > 1. 
It has been proved in [14] that (Z~,,X,+I),e0 is a J - X  process with the 

transition probability function Q given by the corresponding semi-Markov 
kernel. 

2. Let {(W, ~K), (X, Y), u, P} be a random system with complete connections. 
Then the associated sequence (~,, ~,)~->1 is a J - X  process with Q given by 

Q (w; A x B)= ~ P (w; dx) IA(u(w, x)), 
B 

I A (.) denoting the indicator of the set A. 

(For all the definitions and notations used here the reader is refered to [8], Ch. 2). 
For such J - X  processes our Theorems 1 and 2 have been already obtained 

in [3] respectively [7] under some milder conditions, namely assuming the uniform 
ergodicity of the system. Recently, under the same condition, our last two theorems 
have been proved in this context in [16]. 

3. A generalized random system with complete connections is also a J - X  
process. In this case 

Q (w; A x B) = ~ P (w; d x) H (w, x; A). 
B 

Here the notations are those used in [10]. 

For such processes our approach seems to be the unique appropriate way to 
studying the asymptotic behaviour of the sequence ((,)~>1. 

2. Auxiliary Results 

Let U be the Markov operator associated with the transition probability function 
P given by (2) and let (M, I['llM) a Banach space of real valued functions defined 
on W. 

Definition 2. U is said to be regular (with respect to M) if 
a) U maps M into itself boundedly with respect to the norm II'LIM, 
b) there is a linear bounded operator U ~ which takes M into itself and U ~ (M) 

is one dimensional, 
c) ILu"- u~lIM~0. 
Now we introduce some conditions. 
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Condition A. The Markov chain (J~),e0 is uniformly (p-reccurent and aperiodic 
(see [15J, p. 26 for the concept of ~0-reccurence). 

Condition B. W is a locally compact space and the chain (J,),~o is regular with 
respect to bounded measurable real valued functions. 

In this case regularity holds if and only if Doeblin's condition is satisfied, there 
is only one ergodic set and it is aperiodic (see e.g. [ l l J ,  Ch. V. 3). 

Condition C. W is a compact metric space, the transition probability function 
Q( . ;  A x B) is continuous for each A~W and BeX and the chain (J,),~0 is regular 
with respect to continuous real valued functions. 

Condition D. W is a compact metric space, (J,, X,+I),~ o is a distance diminishing 
model and (J,),>_o is regular with respect to Lipschitz functions. 

See [12], p. 31 for the definition of a distance diminishing model. 
Without further mention we will assume from now on that one of these four 

conditions is fulfiled. 

Let (t/,),~ 1 be a sequence of real valued random variables defined on (s Y ,  IP) 
and let denote by ~m,,],  re<n, the o'-algebra generated by t/ . . . . . .  t/,; ~m, oo) 
will be the a-algebra generated by t/~, r > m. 

Definition 3. The sequence (q,),>=l is said to be p-mixing with respect to lip if there 
is a function %, defined on natural numbers such that ~0e (n)~ 0 as n--, oe and 

[1P(A ~ B) - ]P(A) 1P(B)I _-< cpp (n) IP(A) 

for every A ~ I , k  j and B ~ k + n  ' o0). 

Lemma 1. There is a unique stationary probability measure ~ for P and the process 
(X,),>=I is ~o-mixing with respect to IP . Moreover 

(p~(n)=a p" 

where a > 0  and pc(O, 1). 

Proof It is known that both conditions A and B imply the existence of a unique 
stationary probability measure (see [15], p. 31 respectively [11], p. 167). This 
fact has been proved in 1-5] under condition C and in 1-12], p. 40, 50-53 under 
condition D. 

Let k and n be natural numbers and 

A = { X ~  C~, . . . ,  X ~  C~} 

B = {X~+,+le  C~+,+~ . . . . .  X~+.+~ C~+.+~} (3) 

where the C~'s are borelian subsets of the real line. Using the Markov property 
and the stationarity of u we can write 

]P,~(A~B)= ~ IP~(A~B]Jk=U,J,+k=V) lP,(Jk~dU, J,+kEdv ) 
WxW 

= ~ IP~(Jk~dU, J,+kEdV) ~ ]P,~(BlJ,+k----V, Jk=U,X~=Xl , . . . ,Xk=Xk)  
WxW Cax ' "xCk  

IP (X 1 ~dxl,  ... , Xk~dxklJ,+ k = v, Jk =U) 

= ~ 7r(du) P(')(u;dv)IP~(BIJ,+k=V)IP~(AIJk=U). 
WxW 
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By similar computations we also get 

IP. (A) IP,(B) = ~ n(du) IP,(Aldk=u) ~ n(dv) Ip=(B[J,+k=V ). 
W W 

Then 

liP= (A ~ B ) -  iP,~(A) iP,~ (B)[ < ~ n (du) iP,~ (AiJ k = u) h, (u) (4) 
W 

where 

h. (u) = ] ~ iP= (BIJ, +k = V) [P(") (u, d r ) -  n (dv)] I' 
W 

Under condition A, Theorem 7.1. in [15] ensures the existence of two constants 
a > 0  and ps(0, 1) such that 

lIP (") (u; ")-n(') l ]  < a  p". 

On the other hand by Lemma 1.2.1. in [8] we get 

h,(u)< essosc IP~ (B Ia, + k = ")11 IP (") ( u g . ) -  =(')11. 

Combining the last two inequalities and (4) we conclude that 

IIP~ (A c~ B ) -  IP= (A) IP= (B)I =< a p" iP~ (A) (5) 

for sets of the form (3). 
Under any of the conditions B, C and D regularity is assumed and U ~176 must 

be given by 

U ~ f =  ~ n(dw) f (w) .  
W 

It is shown in [12], p. 37 that for a regular operator (with respect to M) there are 
a > 0  and pc(0, 1) such that 

IIU"--U~IIM<ap ". 

As 
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hn(u ) = I(U n - U ~) IP~(BIJn+k = ") (U)l 

it only remains to prove that lP=(BIJn+k = ") is bounded under condition B, 
continuous under condition C and Lipschitz under condition D. The first assertion 
is obvious and the last two are proved in [5] respectively [8], p. 128. 

Hence (5) holds true for sets of the form (3) regardless of which condition we 
assume. The validity of (5) for arbitrary sets A~3C'}[1.kl and B ~ k + n + l  ' o~) follows 
by a usual argument of monotone class, q.e.d. 

Remark 3. Lemma i under condition B is to some extent a generalization of the 
result in [4], except that there the Marker  chain (dn)n > 0 has the (p-mixing property 
for any initial distribution. 

Corollary 1. The tail a-algebra of  the process (Xn)n>=l is IP~-trivial. 
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Lemma 2. Let  # be an arbitrary probability measure on ~K. Then there are two 
constants a> 0 and pc(O, 1) such that 

liP s (A) -  IP u (A) I < a p" (6) 

for any A~:/~r.+k, ~). 

Proof  It is sufficient to prove that (6) holds true for A = {X.+I~ C a .... , X.+r~ Cr} , 
where r ~ N  and the Ci's (borelian subsets of the real line) are arbitrary. For such 
a set A we get 

[1P.(A)- IPu(A)I = 1~ ]P~(AIJ.=u) IP~ (J.Edu) 
W 

- S ~ ' . ( A I J .  = u) ~' .  ( J ,~du) l  
W 

= [ ~ g (u) [~ (du)- ~ # (dr) P(") (v; du)] I 
W W 

= I g (u) ( d u ) -  # P,., (du)? I (7) 
w 

Here 

g (u) = IP. (AIJ. = u) = 1P u (AtJ.  = u) 

= ~ Q ( u ; d w a •  ~ Q ( w l ; d w 2 •  ~ Q(%_~;dw , •  
WxC1 WxC2 WxCr  

A thorough inspection of the arguments in the last part of the proof of the 
previous lemma shows that (6) can be derived from (7) under any of the conditions 
A - D ,  q.e.d. 

Corollary 2. I f  A is an event in the tail a-algebra of  the process (X,)~>=I , then 

]P~ (A) = IP~ (A) 

for any probability measure # on ~iU. 

Remark 4. The process (X.).~ a is IP:stationary. Indeed 

IP~(X.+I +A) = ~ ]P=(X.+I+AIJn =w) ]P~(Jn+dw) 
W 

= ~ ( d w )  Q ( w ; W •  
W 

and the last term above does not depend on n. 

3. Strong Limit Theorems 

We restrict ourselves to the proof of the strong law of large numbers and the 
loglog law; nevertheless other results can be derived in the same way. 

Theorem 1. Assume that E~( [XI [ )<~  and let m = E ~ ( X  0. 
Then 

n 

(l/n) ~ X i --> m IP:a.s. (8) 
i=1 

as n ~ ~ for any probability measure # on ~/C. 
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Proof As a result of Remark 4 and Birkhoffs theorem (see e.g. [2], p. 113) (8) 
takes place lP=-a.s. But the event in (8) is in the tail a-algebra of the process (X,), > 1 . 
The desired conclusion follows from Corollary 2, q.e.d. 

Theorem 2. Assume that E~([Xll2+O)< ~ for some 6>=0. Then the process (Xn)n~ 1 
obeys Strassen' s version of the loglog law with respect to IP u where # is any probability 
measure on r 

Proof By virtue of Lemma 1 and Remark 4 we can easily check that all conditions 
of Corollary 3 in [6] are verified and therefore so is its conclusion meaning that 
the loglog law (in Strassen's version) holds true with respect to IP~. Use Corollary 2 
to conclude the proof, q.e.d. 

Remark 5. In [7] it has been proved that some non-stationary sequences (namely 
the uniform ergodic random systems with complete connections) also obey 
Strassen's law. Theorem 2 above furnishes other such sequences (classes 1 and 3 
mentioned in Section 1). 

4. The Functional Central Limit Theorem 

For the sake of simplicity we assume that E~ (Xt)=0. In the sequel ~W is the 
Wiener measure on ~ [0, 1] endowed with Skorokhod topology and " ~ "  means 
weak convergence. 

Theorem 3. Assume E=(X~)< ~ and set 

a 2 = E~ (X~) + 2 ~ E~ (X 1 Xk), 
k - 2  

Then 

(i) 0 < a 2 < ~ ,  

(ii) I f  a 2 > 0 then 

y o ;l w (9) 

for each probability measure # on ~lt#. Here 

Y.( t)=(1/an 1/2) ~, Xk. 
O <k<=[nt] 

Proof Since (X,),=>I is IP~-stationary and ~o-mixing (with ~ ( n ) = a p  n) (i) is 
immediate (see e.g. [1], p. 175). Moreover 

Yn o IP~r 1 =:> ~ / .  (10) 

Choose a sequence (P.).>_l of natural numbers such that 

lira p. = oo 
n ~ o o  

lim (p./n 1/2) = 0 (11) 
n ~ o o  
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and define 

II ' ( t )=(1/an 1/2) ~ X k. 
pn<=k<=[nt] 

Set 

c5. = sup I r .  (t) - Y.' (t) l. 
t~[O, 11 

By T h e o r e m  1 and ( l l )  we get 

Pn 

C~n<=(1/ffnl/2) 2 IXkl "--~0 Ipu-a.s. (12) 
k = l  

Use (10) and (12) to derive 

Y" o IP~ -1 ~ W .  

Select a set A in ~ [0, 1] such that  ~ ( F r  A)--0.  Since Y~' -1 ( A ) ~ p n ,  oo ) we obtain  
by L e m m a  2 

lip. (~; -1 ( A ) ) -  ip~( Yn -1 (A))I < a pP". 

F r o m  the last two inequalities we have 

Y;oIP-1 ~ W  

which in turn  combined  with (10) and (12) concludes the proof,  q.e.d. 

Remark 6. By using T h e o r e m  3 we can easily prove  the classical central  limit 
t heorem as well as T h e o r e m  4 below by the usual procedures  described in [1], 
Chap te r  3. 

However  we need some further notat ions.  Set 

S n = ~ Xk, 
k = l  

m. = rain (1/0. n 1/2) Si, 
O<i<=n 

M. = max  (1/o- n 1/2) Xi, 
O<i<=n 

T . = m i n  {ilSn, S ._ l ,  ... ,Si+ 1 have all the same sign and either S i = 0  or S~ 
has the same sign as S.} if S. q=0 
1 otherwise 

U . = c a r d  {i lO<i<n, Si>0} ,  

V . = c a r d  { i [ 0 < i <  T., S i>0} ,  

If X = IR +, then set 

N ( t ) = m a x { k J S g < t }  if X l  < t  

0 otherwise 

N ( n Q - n t m  -1 
Z .  (t) = n 1/2 m -  3/2 
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If  X = [0, 1] set 

F*(t)=(1/n) ~ Ito,,loXk, t ~ [ 0 ,  1] ,  
k = l  

V~ (t) = ~,~ (x l  =< t )  

T h e o r e m  4. For any probability measure # on Y~ we have 

(i) (Maximum and minimum distribution) 

l imlP. (a<m.< M.<b,  u<S . <v )  

+oo v +  2 k ( b - a )  

= ~,, (1/(2n) 1/2) S exp( - t2 /2)  dt 
k =  - oo u +  2 k ( b - - a )  

+ oo 2 b - u +  2 k ( b - a )  

- 2 (1/(2n) 1/2) ~ exp( - t2 /2)  dt 
k =  --oo 2 b - v +  2 k ( b - a )  

for any a<O<b and a < u < v < b .  

(ii) (The arcs in  law) 

l im IPu ((1/n) T , <  e ) = ( 2 / n )  arcs in  ~1/2, 0 < ~ <  1. 
n ~ o o  

(iii) (The renewal theorem) 

1P.oZ21~W 
as n---> oo. 

(iv) (Kolmogorov-Smirnov's test). 
n t/2 (F2* ( t ) -  F~(t)) converges weakly 

S. Grigorescu and G. Opri~an 

to a Gaussian random element in ~ [ 0 ,  1]. 
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