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1. Introduction 

All results concerning the accuracy of the normal approximation for sums of not 
necessarily independent random variables assume Doeblin's condition or the 
condition of (p-mixing (see e.g. [1, 3, 5, 7, 9]). Both assumptions mean in some 
sense that the random variables are "asymptotically independent", and they are 
rarely fulfilled for Markov-chains. 

Using Doeblin's condition or the condition of (p-mixing the rate of convergence 
to the normal distribution obtained in some of the papers cited above is of order 
n -1/2. The authors do not know of any results on the accuracy of the normal 
approximation holding without such conditions. In this paper we prove under 
weak moment conditions that for Markov-chains the normal approximation 
is of order n -" for each c~ < 1/4. 

2. Notations 

Let No: = N u {0}, where N is the set of natural numbers. 
Let ((~, d ,  P) be a probability space and X,, n~No, be a positive recurrent 

irreducible Markov-chain on (~2, ~ ,  P) with countable state space I. For each 
v~N, iEE, denote by z(~ ~) the time of the v-th entrance into the state i, by r~)= 
z(~) - ~ )  the v-th return time of the state i and by l~, ~ the number of entrances into v+l 
the state i up to time n. 

If (p: I ---, 1R define 

~)+ ~ (~)- i 

Z 
k = ~(~) (~) 

It is well known that the functions (p~i), yeN,  are independent and identically 
distributed. 
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1 
For (p-1 we have "t'vm(i)=r(i)-v. For ~o= 1{~} we have q~(O_ 1. Let r h = - - ,  where #i 

is the mean recurrence time of the state i. Since X,, n~No, is positive recurrent we 
have ~r~ > O. 

If[q~]~i) is P-integrable then ~ ~j ~o(j) is absolutely convergent and 
j~I 

p[q~)] =--1 S(q~) 
7Z i 

where S(q~)= ~ rcj (p(j). 

L~(P) is the space of all d-measurable functions f :  f2--, IR with P [-Ifl ~] < 0% 
r > l .  

4~ denotes the distribution function of the normal distribution with mean 0 
and variance 1. 

If a,, b,e IR, ne N, we write 

an a,=O(b,) iffsup - -  <oe. 
~N b n 

3. The Results 

The following Theorem is an essential tool for the proof of our main Theorem 3. 
It seems to the authors that Theorem 1 is of some interest of its own. It shows that 
for the number I(, ~ of entrances into the state i up to time n the approximation by 
the normal distribution is of order n -1/2. So it sharpens the result of our Theorem 3 

for a special case, namely for ~o= 1{i}. In this case we have I(,/)(~o)= ~ ~0(X~(~o)) 
and vat (hi r(, i)) = var (qr i ) -  S((p) r(~i)). ~= o 

Theorem 1. Let X, ,  n> O, be a positive recurrent, irreducible Markov-chain and let 
the state ieI  be fixed. Assume that 

(a) z~i)eLl(P), r(~i)eL3(P), 
(b) o-~ = var (n~. r(~ 0) > 0. 

Then 

P n = 

Proof Since 1 - ~ b ( t ) _ t e  for t > 0  we have @(-nl/4)=l-@(n1/~)=O(n-1/2). 

Hence it suffices to prove 

sup P{co:l("i)(o))-nTh<tI-cb(t)=O(n-1/2).  
Itl <=nl/4 ff i Cn--~i 

This is equivalent to 

sup P {co: l("~176 > tl - 
= J (1) 
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Let 
noEN and c a, c2>0, q < c  2 such that 

k,(t)= (t ail/n rci+n hi), where ( x )  = m i n { k e N :  x<k}. Then there exist 

We have for n>no 

P co: ~il/n~i __>t =y{co: l~(co)>=k.(0} 

= Y {co: ~i~ (co) + rf~ (col +""  + 41~(,~-, (co) _-__ n} 

=p{o):z[~176 

where 
1 1 

a,(t)= (n- (k , ( t ) -  1)/Q and # i = - - .  

Since (~o, r~,), r~) .... ) is a sequence of independent functions and r~i)E L3 (P), v e N, 
are identically distributed with mean #i and variance (Pi ffi) 2 and since v] ~ is 
integrable a little modification of the Theorem of Berry-Esseen yields together 
with (2) that for n > no 

{ z~i)(co)+ r~~ ... +r~i:(t)_l (co)-(k,(t)-1)kq < a,(t)} 
sup P co: 

Itl<= "~/4 # i a i  k]/~)n(t)- i 

- ~ ( a .  (t)) I = 0 (n-1 /2) .  

Therefore it suffices to prove 

sup 14(a.(0) - ~( - t )  l = O(n-1/a). (3) 
ItI <n 1/4 

Since n~ #~ = 1 we have for n > n o that 

( k . ( t ) -  l) u , =  n + t ~,1/~-~ + ~.(t) 

with ]r.(t)l<=#i. Hence 

a,(t) = t ] ~  4- O(n -1/2) 
1 / ( k . ( t )  - 1) ~ ,  

t + O(n-1/2) (4) 
Vl+b.(t)  

1 (t a~ l/~i--+ r',(t)) where [r~ (t)[ < #J1/n. There exists n I ~ N such that with b . ( t ) = ~  

n>n~, [tl<n ~/4 implies �89 (5) 

To prove (3) it suffices to show according to (4) that 

sup " ( /  t . . , ] - ' ( 0  \ l+t) ,{0!  =O(n-1/2). (6) 
Itl =< n TM 

n>no, [tl<=n 1/4 imply k,(t)>2, q < k , ( t ) - i  - - <  c2.  (2) 
n 
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Using (5) we have for all n>nl, [tl <=n ~/* that 

<ltl  1 

1 - max(e 

1] �9 e -+t2. 

. 1 
Since ] f  l-+b,(t) 

I t <2[tll cp (1 / f f~ .~_- )  - @ ( t )  b.(t)[.e-~t2< 1 

which proves (6). 

Remark 2. Under the assumptions of Theorem 1 we have 

P{o): [l~i)(co)-nrh[ > d(n . logn) 1/2} =O(n -t/2) 

where d = ail/~i. 

Proof. According to Theorem 1 we have 

t 2 1 t 2 
2 e 2 1 + b ~ ( t ) )  

p{co:llr lr176176 >(logn)l/2} 

=2(1 - ~b((log n)1/2)) + O(n -1/2) 

=0(n-1/2). 

Theorem 3. Let X,, n > O, be a positive recurrent, irreducible Markov chain, starting 
at Xo=i. 

Let ~o be a real-valued function defined on the stare space i. Assume that 

(a) [~ol~/), r~~ 
G~ - v a r ( c p ~  (b) 2 _ ~) - S(q@ r~ i)) > O. 

Then 

sup P I o :  1 " 1)S(q@) } ~(t) 

= O(n-1/4(log n)l /*), 

Proof In the following we omit the upper state index i, if no ambiguity can arise. 
For each n > 0  let p,(co) be the time of the first entrance of the state i after 

time n, i.e. 

p,(o) =min  {v > n: X~(co)= i}. 

Let ~=q~-S(~0)r~.  Then P[qJ~]=0 (see e.g~ [2], p. 96). 

We have the following dissection formula 

~', ~p o X v - ( n +  1)S(q~)-- Y,+ V,+Z,  (1) 
v = 0  

1 <2Lb.(t)L we obtain for n>nl and [tl<n + that 

_• 
2[tle ~ (Itla~l/~+#i) 
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where 

Y.(co) = ~, {O~(co): 1 < v<Idco)}, 

v.(co) = -Y~ (q~~ x , (co) : .  < v <p~(co)}, 

Zdco ) -- - S(~0)(pdco) - (n + 1)). 

(2) 

(3) 

(4) 

Since O,eL3(P), yEN, are independent and identically distributed and 
o-iZ=var 0~>0 we obtain from Lemma 5 and Remark 2 that 

sup,~ P{co: ailf ~ < ~b(t) =O(n-1/~(logn)l/4). 

According to (1), (5) and Lemma 6 it suffices to prove that for each c > 0 

e j'co: I g&))l > c .  ( l~  n)l/4f~ - O(n-1/4(log•) 1/4) (6) 

and 

P {co: IZ.(co)[ _ (log n) 1/4) >C" ~-f=O(n-1/4(logn)l/4). (7) 

If we replace in (3) the function ~o by the constant function -S((p) we see that the 
"new" V,(co) leads to Z,(co) of (4). Therefore it suffices to prove only (6). 
According to Remark 2 there exists a constant d > 0  such that 

P{CO: Iln(co)-nzcil> d(n- logn) 1/2} =0(n-1/2). 

Let K =  {yeN: [ v-nrcii <d(n. logn)U2}. Since 

n+l  

I v.(co)l_-< Z I ~olJco) 1{~: I.(~o)= ~} 

(8) 

we obtain, using (8), that 

p {co: Iv,(co)t> (logn) 1/4) 
l /n  c nl/- ~ 

<P{co: [ I,(co) - n~i[ > d(n logn) 1/z } 
+ P {co: I V,(co) I > c n 1/4(10g n) 1/4; [ l,(co) - n zh[ < d(n log n) 1/2} 

<0(n-1/2)+ ~ P{co: [~ol~(co)>cnl/4(logn) 1/4} 

< O(n -1/2) + (2 d(n logn) 1/2 + 1)en-3/4(logn) -3/4 

= O(n -1/2) + 0(n-1/4) = O(n -1/4) 

(,) 

where (,) follows from the Markov-inequality with some appropriate constant 
e > 0. This proves (6) and hence the proof is finished. 
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Remark 4. The assertion of Theorem 3 also holds true for a general initial distribu- 
tion of Xo, if we assume additionally that 

z~ i) - 1  

v~i)eLi(P ) and ~ ]~ooX~]eLi(P). 
v = 0  

Proof Use the notations of Theorem 3. Then we have the following dissection 
formula 

i ~o o X~-(n+ 1)S(q))=R,+ Y,+ V,+Z,  
v = O  

z~ ~) -- 1 

where [R,[__R = ~ [qo o X JeLl(P). Since by the Markov inequality 
v = O  

p f R ,  >n_X/4~=O(n_l/4) 
the assertion follows with Lemma 6 by applying the same methods as in the proof 
of Theorem 3. 

For the sake of completeness we cite the following results: 

Lemma 5. Let X., n~N, be a sequence of independent and identically distributed 
random variables with P(X,)=O, p ( X 2 ) = I  and P(IXn[3)<O0. Let l,: f 2 ~ N  be 
d-measurable and assume that for some constants a, d > 0 

p{o:["(~)-a>dn-l/2(logn)i/2}=O(n-i/~). 

Then 

e l  ["('~)Z X~(o) I ~(t) =O(n-1/r176 A , = s u p  co: ,=t 
t ~  ~ <_-t - 

Proof See [4], Theorem 1. 

A counterexample given in [4] shows that under the assumptions of Lemma 5 
A,=O(n -1/4) does not hold true in general. 

The result of Sreehari [8], applied under the assumptions of Lemma 5, leads 
only to A,=O(n-1/6). 

The following Lemma is well known. 

Lemma6.  Let Y,,Z,: s be d-measurable and e~>0, neN,  be a sequence 
with ~, --* O. Assume that 

sup IP(Y~ < t) - (b(t)l = 0(e,) 
t ~ - .  

and 

P(IZ, I > ~,) = O(e,). 

Then 

sup IP(I1. + Z .  = t) - ~(t) l = O(~.). 
t 6 lR  
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