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Summary. In this paper, the optimal stopping problem is solved for particu- 
lar two-parameter processes, here called bi-Markov processes. A subsequent 
potential theory is developed with respect to a pair of one-parameter 
semi-groups. We introduce a new notion of harmonicity for two-variable 
functions and we interpret it in the framework of the theory of bi-Markov 
processes. 

Such a study can be motivated by the following example. Let us suppose that 
the evolutions of two stochastic systems are modelized by two classical Mar- 
kov processes X 1 and X 2. We must stop them at may be different - times T1 
and T2 such that the average of common satisfaction or the pay-off 

E(e-~ T~-~2r2f(X~, X~2) ) 

is maximum; in this formula f is a given positive bounded function, and cq, ct2 
are some positive actualization constants. Time T~ and T2 have to be causally 
chosen; that is to say, knowing the sample paths of X ~ up to T1 and X 2 up to 
T2 only. In other words, for every real tl, t2 the event {Tl<tl, T2<t2} must 
belong to the a-field generated by the r.v.'s (X~,X~2; sl<=tl, Sz<=t2). This 
problem enters into the framework of the optimal stopping theory for two- 
parameter processes. 

The optimal stopping problem for processes with index set N 2 is now well 
known. In the sequel we shall refer mainly to the works of Cairoli and Gabriel 
[16], Krengel and Sucheston [28], Mandelbaum and Vanderbei [34], the 
author and Szpirglas [38], and Millet [45]. Various existence results and 
construction methods for optimal solutions can be found in these references. 
Concerning the processes indexed on 11t 2, A. Millet [45] recently gave a 
general existence result. Her approach consists of extending the compactifi- 
cation techniques of Baxter and Chacon [3] for two-parameter processes, and 
the basic tool is the notion of randomized tactics. In this paper we propose a 
quite different method which generalizes the approach of [38]. We recall that 
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the Snell envelope of a process with parameter set IR2+ has been defined by 
Cairoli [14]. We then reduce the general optimal stopping problem of a 
process Y to the optimal stopping of its Snell envelope J on a given stopping 
line. This last problem is intrinsically one-dimensional and we solve it by using 
a straight forward extension of the compactification techniques. Namely, we 
extend a proof by Meyer [43] on the set of randomized stopping times, and we 
follow the classical method of Bismut [6] or Edgar, Millet and Sucheston [23]. 

In the second part of this chapter, we set the two-parameter optimal 
stopping problem into a general framework inspired by that of the classical 
theory as treated by Bismut and Skalli [7] and E1 Karoui [24]. Thus, under 
appropriate regularity conditions on the Snell envelope we prove that the 
maximal elements of the set of stopping points T which preserve the mar- 
tingale property of J, i.e., such that E(JT)=E(Jo)  , are solution of the optimal 
stopping problem. Our approach is appropriate to the case of bi-Markov 
processes, because we are able to compute the Snell envelope by functional 
methods. We develop a subsequent potential theory for the purpose. 

Roughly speaking a bi-Markov process is the tensor product of two classi- 
cal one-parameter Markov processes. The well-known bi-Brownian motion 
enters this class. In the second chapter of this paper, we propose a potential 
theory related to a two-parameter semi-group or, equivalently, to both the two 
classical one-parameter semi-groups of the Markov processes which compose 
the bi-Markov process. We recall various definitions introduced by Cairoli 
[12, 13] dealing with a one-parameter semi-group constructed as the tensor 
product of two classical semi-groups. These notions can be interpreted in terms 
of a bi-Markov process, and we focus on two-parameter supermartingales 
associated to bi-excessive functions. Trajectorial regularity conditions are given, 
and two different types of Dynkin formula are obtained. They generalize those 
studied by Lawler and Vanderbei [31], Vanderbei [51] for two-parameter 
Markov chains. 

Usually one pays attention mainly to the class of bi-harmonic functions. 
Within the framework of the two-parameter processes theory, we refer to the 
works of Brossard and Chevalier [11] and Walsh [52] for various properties of 
this class. If s and 2 '2 denote the generators of the two underlying Markov 
processes, a sufficiently smooth function f defined on a product space E = E  1 
x E 2 is bi-harmonic on an open subset A if 

V x e A :  s176 and ~cp2f(x)=0. 

More recently Dynkin [22] and Vanderbei [51] have studied another class 
of harmonic functions. In [51] it is said that a smooth function f is harmonic 
on a certain domain A if 

V x ~ A :  L ~'1 ~~ 

In connection with the optimal stopping problem, we introduce the notion 
of weak harmonicity. Accurate conditions will be given farther, but we can say 
roughly that a sufficiently smooth function f is weakly harmonic on a set A if 

V x e A :  5~ l f (x )=0  o r  ~a2f(x)=O. 
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Analogous definitions dealing with the discrete case have been proposed by 
Mandelbaum and Vanderbei [34]. In this paper we give an interpretation of 
weak harmonicity in terms of the bi-Markov process and the optimal stopping 
problem. Moreover, we relate it to the notion of the reduite of a function on a 
subset. Several results were announced in [-35-37]. 

The third chapter is devoted to the optimal stopping problem for a bi- 
Markov process defined as the solution of a system of stochastic differential 
equations. By applying the preceding results, we prove an existence theorem. 
Moreover, we show that if the optimal pay-off function is sufficiently smooth, 
then it satisfies a set of partial differential equations with free boundaries as in 
the classical theory of Benssoussan and Lions [4]. 

Preliminaries 

We refer to Cairoli and Walsh [-15], Meyer [,14] and Wong and Zakai [53] for 
preliminary notations, definition and results for the theory of two-parameter 
stochastic processes. Let us recall the main notions used in this article. 

The processes we consider in this paper are indexed on ~ 2 .  They are 
extended to its one-point compactification, 11/2 =IR 2 u { ~ }  as being null at 
infinity. The partial order is defined by 

Vs=(sl, s2), t=(tl, tz):S<t<=>sl <=tl and $2 ~t2;  

with t < ~ V telR 2. 
Defined on a complete probability space (f2, d ,  IP), a filtration is a family 

~ - = ( ~ ;  t e l ( 2 )  of sub-a-fields of d ,  such that [10, 33, 26]: ~-0 contains all the 
IP-negligible sets of d (Axiom F1), family Y increases with respect to the 
partial order on IR 2 (Axiom F2), and ~ is right-continuous (Axiom F3). The 
one-parameter filtrations ~1=(@t11; tlelR+) and ~>-2-~-2"-~t,, t2elR+) are as- 
sociated to ~ by the following definition: 

Vt=( t l ,  t2): ~1 ~,, = V if(,1,,,) and ~ 2 _  
u u 

We also denote ~1 ~2 ~tl  ~ i  and ~t~ by and ~t 2 respectively, and consider ff~ and 
i f2  as two-parameter filtrations. In this paper, we assume that filtration Y 
satisfies the following classical [,15], [53] conditional independence property 
(Axiom F4) 

V t = ( t l ,  t2): 
The a-fields ~1 ~2 ~t~ and ~ ,  are conditionally independent given 4 .  

The optional (resp. 1-optional, 2-optional) a-field on ~2 x N2+ associated to 
(resp. i f1 ,  .~2), and the related optional projection (resp. 1-optional projection, 
2-optional projection) of a bounded process X, denoted by ~ (resp. ~ ~ 
are defined by Bakry in [ i] .  

A stopping point (s.p.) is a random variable (r.v.) T, taking its values in 11{2+, 
such that { T < t } e ~ t ,  Vte~2+. The set of all s.p.'s is denoted by J .  To any s.p. 
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T, we associate a a-field Yr,  which is the a-field of all events A such that 
Ac~{T<t}E~, Vt. All the classical properties of stopping times [20] do not 
extend to stopping points (see [52]). The graph of a s.p. T, denoted by lIT]I, is 
the optional set defined by: 

[IT]] = {(co, t): T(CO)= t, telR2}. 

A 1-stopping point is a ~2-va lued  r.v. T=(T1, T2) such that [1] T 1 is a stopping 
time with respect to y l ,  and T2 is a ~ , - m e a s u r a b l e  r.v. The set of 1-stopping 
points is denoted by J-~. The 2-stopping points are defined symmetrically. 
Recall that [44] j = y l ~ y z .  

Given a random set H in f2 x IRe+, we denote by [[H, oo[ the random set 
[H,  oo[={(co, t)" 3s<=t such that (co, s)eH}. The ddbut of H, denoted by Lu, is 
the lower boundary of the set [[H, oo[[, with the convention that L u =  co if the 
section is empty. A stopping line (s.1.) is the d6but of an optional random set 
(see Merzbach [40] and also [1]). We denote by &# the set of all stopping 
lines. Y can be taken as a subset of ~e, by identifying any s.p. T with the s.1. 
which is the debut of the set [ T]]. 

The partial order is extended to J by: 

VT, T'EY: T<=T'~T<=T' a.s., 

as well as to 5e by: 

VL, E~q~: L<=E.e~[[E, o o [ ~ [ L ,  oo[[ a.s. 

The processes we consider are always supposed to be measurable and real- 
valued. We do not distinguish two processes which differ only on an evanes- 
cent set [44]. For  a separable process X, X* stands for sup IX~l. 

t 

Recall that a supermartingale (resp. strong supermartingale) is a process 
J=(Jt; t~N2) adapted to the filtration ~ (resp. optional), integrable (resp. of 
class (D) i.e., {Jr; r~--} is uniformly integrable) such that: 

Ys, t~lR 2" s<=t~E(JtlYs)<=Js a.s., 

(resp. : V S, T~J-: S < T o  E(Jr ] ~s) < Js a.s.). 

To each point t=(q,tz), we can associate the following four quadrants: 
Q~={s:t<s}, Q2={s:sl< q and sz>t2}, Q3={s:sl<q and s2<ta} and 
Qt* = {s: s 1 __> t 1 and s 2 < t2}. We say that a process X is i - j  limited if for each 
point t, the process X has limits in the quadrants QI and Qj (i, j =  1, ..., 4). For 
i = 2  and j = 4  we also say that X is laterally limited. It is said to be right- 
continuous if it is l-limited and equal to this limit. Quadrantal limits of 
bounded martingales have been studied by Millet and Sucheston [46] and 
Bakry [2], and we refer to [2] for quadrantal limits of optional projections. 

The notion of an optional increasing path has been introduced by Walsh 
[51] as a generalization of the discrete tactics of Krengel and Sucheston [28], 
and Mandelbaum and Vanderbei [34]. An optional increasing path (o.i.p.) is a 
one-parameter family (Z,,; u~lR+) of stopping points, such that the mapping 
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u ~ Z ,  is increasing and continuous a.s. Moreover, any o.i.p, can be parame- 
trized "canonically" by taking 

�9 1 1 2 VuelR+ : Z ,=(Z , ,  Z 2) with u=Z ,  +Z ,  =INd. 

For mEN, let ID,, denote the set of dyadic numbers of order rn IDm={t 
=(j2-~, k2-m); j, keN}. Then, a tactic of order m is an increasing sequence of 
stopping points (T,; nEN) such that 

Vn:T,~lDma.S. and T , + I = T , + ( 2 - m 0 )  or T,+(0,2-m), 

and T,+I is a ~ r  -measurable random variable, [28, 34, 52]. By interpolating 
between each s.p. T,,, we associate to this tactic (T,; heN), an o.i.p. Z 
=(Z,,; u elR+) whose trajectories are increasing step functions, with corners in 
lDm (a corner being a point where Z changes direction). Moreover, by using the 
definition of a tactic, it can be verified that the corners form a sequence of 
stopping points. It is proved in [52] that any o.i.p, can be approximated by a 
sequence of tactics of increasing order. We denote by ~ the set of all o.i.p.'s 
and by ~emd the set of all tactics of order m. Given an o.i.p. Z=(Zu;  uelR+), @z 
is the one-parameter filtration defined by Jz=(~-~z, =~-zu; uelR+), and ~-z is 
the set of all YZ-stopping times. 

In this paper, we need a new definition of a d6but. Let H be a random set 
in f2 x IR 2. For  any optional increasing path Z=(Zu;  uelR+), we denote by D z 
the random variable defined by 

DZ=z~ with := in f{u :  Z,~H} and DZ= oo if the set is empty. 

This variable belonging to Zw{oo} is called "the ddbut of H along Z". 

Lemma. I f  H is an optional set, then for any optional increasing path Z, D z is a 
stopping point. 

Proof The graph [[Z]] = {(co, t)Gf2 x R 2" t~Z(co)} is optional and, consequently, 
so is [[Z]lc~H. Then its d6but is a stopping line [40]. This stopping line has 
only one minimal element, which is DZ; this implies that D z is a stopping 
point. [] 

1. Optimal Stopping for Two Parameter Processes 

In this chapter we study the optimal stopping problem for processes indexed 
on the directed set IR2+ u{oo} =IR2+. 

Optimal stopping of processes indexed by directed sets was first studied by 
G.W. Haggstrom [26]. In the frame of the two-parameter processes theory the 
optimal stopping problem on N 2 is now well known. A first contribution is 
due to R. Cairoli and J.P. Gabriel [16]. The basic tools of a tactic and a 
discrete Snell envelope have been developed by U. Krengel and L. Sucheston 
[28], and by A. Mandelbaum and R.J. Vanderbei [34]. For  processes indexed 
on the set N2u{oo} general solutions have been found and explicitely con- 
structed in Mazziotto-Szpirglas [38]. A similar existence result has recently 
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been proved by A. Millet [45] using a different approach. Moreover her 
method applies to processes with parameter set N2u{oo} .  She gives various 
conditions which ensure that the optimal stopping problem admits solutions. 
The easiest condition is when the payoff process is continuous and uniformly 
bounded on IR 2 u {o e}. Further conditions are also given in Dalang [19]. 

In this paper we present a different method to solve the optimal stopping 
problem which follows the approach of [38] for the discrete case. As such 
optimal stopping points are searched amongst the maximal elements of the 
subset of stopping points which preserve the martingale property of the Snell 
envelope. To verify that such a point is a solution, we first reduce the general 
problem to the following particular one which consists of stopping optimally 
the restriction of the Snell envelope on a given stopping line. We show that 
this last problem can be solved by using the classical theory, if we assume a 
regularity hypothesys on the Snell envelope. Let us now anticipate on the third 
chapter to remark that fortunately in Markovian situations, the Snell envelope 
can be computed very precisely by functional methods and the preceding 
assumptions are easily satisfied. This approach will permit us to solve the 
optimal stopping problem for a bi-Markov process, under conditions which are 
not covered by those of [45]. 

1.1. Optimal Stopping on a Given Stopping Line 

On a complete probability space (O, d ,  IP) endowed with a two-parameter 
filtration J ~ = ( ~ ;  t~lR 2) verifying the axioms F1, F2, F3 and F4, let us 
consider an optional non-negative process of class (D)" Y=(Yt; t ~ 2 )  �9 This is 
called the pay-off process. The optimal stopping problem consists in finding a 
stopping point T* such that 

E(Yr.)=sup E(Vr). 
T~J-  

Such a s.p. will be said to be optimal. 
In this paragraph we study the particular optimal stopping problem of a 

pay-off process Y which differs from zero only on a given stopping line L, that 
is to say 

V telR2+ : Yt = Y~ ll/,~L/ i.e. Y= YI[IL~ 1, 

(recall that Yoo =0). 
We make the convention that ooeL a.s. Let 3-(L) denote the set of all 

stopping points which belongs a.s. to L, that is to say 

J ( L )  = {T~3-: n-T]] c [[L]]} = { TE3-: TeL a.s.}. 

It can be easily verified that V TeY,  {T~L}E~-r. Thus, we get 

sup E(Yr)= sup E(Yr). 
T~9-  T ~ - ( L )  

t In the sequel, the indicator function of a set A is denoted by 11A 
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The right-hand side of this equality suggests that the considered optimal 
stopping problem is one-dimensional. In fact, we solve it by a method which is 
directly adapted from the classical theory: see Bismut [6J and Edgar-Millet- 
Sucheston [23], and from Millet [45]. We first introduce a convex set contain- 
ing J-(L) whose set of extremal elements coincides with Y(L). This set in 
endowed with a topology called the Baxter-Chacon topology, which makes it 
compact. In a second step, we prove that the optimization problem admits a 
solution on this larger space and, by a classical argument, in J-(L)  also. 

Let ~ o  be the set of probabilities on O x IR 2 whose projections on ~ are 
equal to IP. To any /~//g.o one can associate a unique right-continuous process 
A, increasing in variation, with Ao=0,  Aoo = 1, and such that 

# ( X ) = E  ~ X t d A  t 

for any bounded process X. In the sequel, we often identify p with A. The 
space j/f0 is endowed with the Baxter-Chacon topology i.e., the coarsest 
topology such that, for any bounded and continuous process X on ]R 2, the 
application ~x defined by 

VA~J//~ ~x (A)=E  ~ XtdAt  

is continuous. We note that Jd  ~ can be embedded in a locally convex topologi- 
cal vector space, namely the dual of the Banach space of continuous bounded 
processes on IR 2 x ~2: see Meyer [43]. Let d / /be  the subset of d//~ of probabili- 
ties # such that the associated process A is adapted. By analogy with the 
classical theory, we call the elements of J / r a n d o m i z e d  stopping points. Indeed 
3-- can be injected into ,/~ by setting" 

V TE3--: A = 1i~T ' ~ i.e., # is the Dirac measure on T. 

The sets ,/d o and Jd are convex and compact. Moreover it has been proved by 
Ghoussoub [25] that the extremal elements of d/l ~ are the Dirac measures on 
any random variable in ]R~. But we do not know if the set of extremal 
elements of Jd  is Y,, as in the one-parameter situation (see Edgar-Millet- 
Sucheston [23]). This last remark will prevent us from extending the method 
to the general case. It  explains in a certain sense, why the compactification 
introduced by A. Millet in [45] was quite different. 

As concerns the point at stake, we restrict ourselves to the subset 
. /~ (L)~J~  of randomized s.p. A whose support is a.s. contained in L u { ~ }  
(i.e., such that #([[L]]u(~2x{~)}))=l).  It can easily be checked that the set 
J~(L) is a convex closed subset of ~ .  Then it is compact  for the Baxter- 
Chacon topology. To prove that J-(L)  is exactly the set of all extremal 
elements of ~ ( L ) ,  property F4 will be of crucial importance. 

To begin with we parametrize the stopping line L On an interval of IR. Let 
us consider the plane ~ 2  endowed with its cartesian coordinate: the index set 
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of our two-parameter processes IR2+ is the first quadrant. For 0~[0, ~/2], let Do 
be the line defined by 

Do = {t =( t l ,  t 2 ) e l R 2 :  (gl ~1- l )  sin O=(t2 + 1) cos 0}. 

It is easy to see that for any 0e]0,~z/2[, the intersection of Do and L(oo) 
contains (for each fixed a)e~2) a one only point, noted Lo(oJ). Moreover, the r.v. 
Lo is a stopping point, and Loe3-(L). To 0=0  and 0=~/2  we associate the 
point at the infinity oe. Conversely, any point of L can be represented by one 
value of the parameter 0, except for point oe which has the double representa- 
tion 0 and ~z/2. 

On the interval [0, ~/2] we may consider the classical order relation in- 
duced by that of IR, and we say that L is described according to the tri- 
gonometrical order (i.e. 0 goes from 0 to ~/2). When the orthogonal order 
relation on IR is considered, we say that L is described according to the 
clockwise order (i.e. 0 goes from ~/2 to 0). In the first case, we will consider the 
filtration ~ ;  indexed on [0, zc/2], defined by 

g0~]0, z c / 2 [ : ~ 0 ~ = ~ o , ~ o t = ~ o  and Y ~ = ~ ,  

and in the second case, the filtration ~ ;  defined by 

V 0 6 ] 0 , ~ / 2 [ : ~ 0 t = ~ o , ~ o ~ = ~ o  and ~ = ~ - o ~ .  

The restriction to the stopping line L of a given two-parameter process Y 
can be parametrized on [0, s/2] as follows 

VO~]O, rc/2[: Yo=YLo, and Yo=L/2=0.  

If process Y admits limits in the quadrants 1, 2 and 4, then I 7, admits the limits 
f '*- and f '+- defined by 

V0~]0, ~/2[: Y0 ~- =l im L and !20;- =l im L. 

~<0 ~>0 

Such a process will be said to be hi-limited. 
These one-parameter filtrations J *  and ~ *  satisfy the usual conditions of 

Dellacherie-Meyer [201, according to the trigonometrical and clockwise sense 
respectively. Then, the notions of ~ t -s topping times and ~+-stopping times 
are well defined. One can check that a r.v. 0 taking its values in [0, ~/2] is a 
J*-s topping time (resp. a ~*-stopping time, both a ~*-  and ~+-stopping 
time) if and only if Lo is a 2-stopping point (resp. a 1-stopping point, a 
stopping point). 

Let # be a random probability of /d(L) represented by the increasing 
process A. To this can be associated two processes A ~ and A + indexed on 
[0, ~z/2], increasing for the trigonometrical and the clockwise order respectively, 
~+-  and ~*-adapted respectively, by setting 

VO~O,~/2[:A~= I dA~ et Ato=O, A~/2=I; 
[Lo~, m] x [0, Lo2] 

VO~]~/2,0E:A~= I dAs et A~/~=O, A+o=l. 
[0, Loil x [Lo2, ~] 
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These processes verify the following relations 

g 0~ [0, n/23: A~ + A}-  = A~ - + A} = 1. 

Conversely, we determine one randomized stopping point of J~(L) by giving a 
process A t =(A~; 06[0, ~/2]) which is ~ t - a d a p t e d ,  right-continuous, increasing 
from A~o=0 to A~/2 = 1, and such that the process A ; =  1--A t -  is ~ - a d a p t e d .  

We are now able to prove that ,W(L) has the same properties as the 
classical randomized stopping times of Baxter and Chacon [31. 

Proposition 1.1.1. i) Every randomized stopping point A of J/I(L) can be repre- 
sented by a family (T x, x~[0, 1]) of stopping points of J-(L). 

ii) The set of all extremal elements of the convex /d(L) is exactly J-(L). 

Proof. i) Let A be a randomized s.p. of J/t(L), and let A t and A * be the 
associated one-parameter  processes. For  any x~[0, 11 we define a ~ t - s t o p p i n g  
time 0 x by setting 0X=inf{0: A~>x} for the trigonometrical order. But 0 x can 
be equivalently defined by OX=inf{O: A~ > 1 --x} for the clockwise order. Then 
0 x is also a ~*-s topp ing  time. It follows that the r.v. TX=L~o is a s.p. with 
belongs a.s. to L. It is known that the family {0x; x6[0, 11} represents uniquely 
the process A t and A *, then it represents also A. 

ii) Let us consider a randomized stopping point A which is an extremal 
element of the convex set ~ ( L ) .  To see that it corresponds to a s.p. T~Y(L),  it 
is sufficient to prove that A takes only values 0 or 1. For  that purpose, let us 
remark that any randomized s.p. A can be written as a convex combination of 
two randomized s.p.'s B and C. We consider the processes B and C defined by 
the following. V 0~ [0, ~z/23, let: 

B~ =2A~ A 1, C~ =(2A$-I )  v0 

B~ = (2A~ - 1) v 0, C~ = 2A~/x 1. 

By construction B t and C* are increasing J~t-adapted,  and B * and C ~ are 
increasing ~ l - a d a p t e d .  Moreover, 

S~ + B ~ -  = S ~ -  + B ~ =  C~ + C$- = C~- + C~ = 1. 

Then the couples (B*, B ~) and (C;, C;) represent two randomized stopping 
points of ~ ( L ) :  B and C, such that 

A = 1/2B + 1/2 C. 

But if A takes values different from 0 or 1, processes B and C are necessarily 
distinct from A. This would contradict the hypothesis that A is extremal. This 
completes the proof. [] 

Now let us come back to the optimal stopping problem on L. For  any 
given positive process Y we associate the linear form ~ r  defined on JC(L) by 
the following 

~/2 0 

VA~Jd(L):  ~ y ( A ) = E  ~ Y~dA~=E 5 YodA~ =E ~ YodA*o. 
~t~+ o ~/2 

If A is a stopping point T of ~-(L) i.e., A = I [ [ T  ' oaU, then q~r(A)=E(YT). 
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As in the classical theory we have a general existence result for the optimal 
stopping problem on L. 

Proposition 1.1.2. I f  process Y is such that function ~by is continuous on ,~N(L), 
then there exists T*c3-(L) such that 

sup E(~Y~dAs)=E(Y*)= sup E(Yt). 
AE,/IC(L) Tel (L)  

Proof It is an application of Bourbaki [-9] (Prop 1 - Chap II - Parag. 7): .~(L) 
is a convex compact subset of a locally convex vector space, and the appli- 
cation 4~y is linear and continuous. Therefore, # r  reaches its maximum at least 
on one point amongst the extremal elements of ~((L) (i.e. in Y(L) by Proposi- 
tion 1.1.1). The proof is completed. [] 

To conclude this paragraph, we need to give practical conditions on Y 
ensuring that ~y is continuous on Jd(L). Due to the definition of the Baxter- 
Chacon topology, this is trivially true if Y is bounded continuous on lRZ+. Let 
us give a better condition for Y. 

Ddfinition 1.1.1. Process Y is said to be laterally regular iff it is right-continuous 
and has limits in the two lateral quadrants Q2 and Q4, and ifffor any sequence 
(T"; naN) of 1-stopping points (resp. 2-stopping points) converging to T, such 
that 

Vn: T"=(T~, T2"): T~<-T1 and T~>=T2 (resp. Ta">Tand T~<T2), 

the sequence (E(Yr,); naN) converges to E(Yr). Process Y is said to be 
completely regular iff it is laterally regular, and iff, in addition, for any increas- 
ing sequence (T"; naN) of stopping points converging to T, the sequence 
(E(YT,); naN) converges to E(Yr). 

Examples of completely regular processes are furnished by the following 
result. 

Proposition 1.1.3. The optional projection oy of a bounded continuous process Y 
is completely regular. 

Proof. Let us verify each item of Definition 1.1.1. First recall that the de- 
finitions of the optional projections of a bounded process Y given by [-13 imply 
that E(Yr)=E(~ (resp. E(Yr)=E(~ E(Yr)=E(~ for any stopping 
point (resp. 1-stopping point, 2-stopping point) T. The property concerning 
increasing sequences of stopping points follows immediately. Let (T"; naN) be 
a sequence of 1-stopping points converging to T, such that Tin < T1 and T~ > T2, 
Vn. By definition [1]: oy=ol(o2y), then 

lira E(~ YT .) = lim E(~176 Y)T~ ) = lim E(~ YT~). 
n n n 

We now use another result established by Bakry [2] (Theorem 4c) concerning 
the continuity in the upper half-plan of the 2-optional projection o2y of a 
continuous process Y. This yields ~176 a.s., and, by bounded con- 

n 

vergence: limE(~176 Finally, we get limE(~176 The sym- 
n n 

metrical case is treated similarly. [] 
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The next proposition is analogous to those of [3] in the classical theory, 
and the idea of the proof has been prompted by Meyer [43] (Theorem 3). 

Proposition 1.1.4. Let ~ be the set of bounded processes Y such that the process 
oy is lateraly regular, and let L be a fixed stopping line. Then, for any Y ~ ,  the 
application ~y: g e / # ( L ) ~ # ( u  is continuous on Jg (L). 

Proof. Let ~' be an ultrafilter on /d(L) converging to a randomized stopping 
point p ~ ( L ) .  Therefore, for any bounded measurable process Y, {(v(Y), v~V); 
V ~ }  generates an ultrafilter on [ -E(Y*) ,  E(Y*)], whose limit is denoted by 
U(Y). To prove that for a given process Y the application 4~y is continuous at 
p, it is sufficient to verify that #(Y)= U(Y), for any ultrafilter ~ converging to 
#. 

From the definition of U(Y) it follows immediatly that 

IU(Y)I<E(Y*), U(l~g~)=l, and U(Y)=U(~ 

Moreover, from the definition of the Baxter-Chacon topology, we get 

U(Y)=#(Y) V Y continuous. 

Now, let us consider the restrictions I? of these processes Y to the stopping line 
L with their parametrization on [0, 7r/2]. The application 17-~ U(Y) defines a 
linear form [7 on the set ~ of bounded bi-limited processes on I-0, z/2]. As in 
[43] and by using results from [20] (Sect. VIIi4), one can prove that ~3 admits 
the following representation 

(J(1?)=E (i21?odBo+1?o~- dCo+1?o$- dDo], 

where B, C and D are right-continuous increasing processes. Moreover, if Y is 
optional, the processes B, C and D can be taken as adapted to the filtrations 
~ + c ~  ~, ~ and ~ *  respectively. If Y is optional and is laterally regular, we 
are to find a representation involving ~" only. With this in view, we propose to 
treat the integral by dC. It is known [43] that, if for any sequence of 3 ~- 
stopping times (0,; neN) converging in the trigonometrical order towards a 
limit 0, lim (E(1?o.)=E(Y0) then, we following equality holds 

n 

1 
where C' is the dual predictible projection of C. This assumption on 17 is a 
fortiori realized if Y is laterally regular. Similar treatments can be done for the 
integral dD, with respect to the filtration ~ ; .  Finally, we get the following 
representation for the optional and laterally regular Y: 

1 
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Coming back to the parameter set IR 2, we deduce there exists an increasing 
two-parameter process A, which is right-continuous, adapted, with Ao=0,  and 
such that 

u(v)=e[  f ~dA,3 

for any optional laterally regular process Y. This relation extends trivially to 
process YeN. By Proposition 1.1.3, this holds for bounded continuous process 
Y in particular. But for such a process we already know that U(Y)=#(Y).  
Then, for all continuous bounded process Y: 

U ( Y ) = # ( Y ) = E [  ~ YtdA,], 
R~ 

and it follows that A is the increasing process (such that A| = 1) associated to 
the randomized stopping point #. Hence we have proved that U(Y)=#(Y)  
V YeN, and the proof is complete. [] 

To conclude, let us rely on Proposition 1.1.2 and 1.1.4 in order to give the 
main existence result of this paragraph. 

Theorem 1.1. Let Y be a bounded optional laterally regular process. Then, the 
optimal stopping problem on any fixed stopping line L admits a solution, that is 
to say, 

VLeS~, 3 T*eJ-(L) such that E(YT,)= sup E(Yt). 
T ~ ( L )  

The proof is an easy consequence of what precedes. 

1.2. Optimal Stopping Problem on ~ 2  

This paragraph deals with the optimal stopping problem for a general two- 
parameter process. An optimality criterium is given, and as in the classical 
theory [4, 7, 24], the notion of the Snell envelope is the basic tool. Under 
various hypotheses on the Snell envelope process, we prove the existence of 
optimal stopping points, namely, solutions are found amongst the maximal 
elements of the subset of stopping points which preserve the martingale prop- 
erty of the Snell envelope. The assumptions made on this process appear to be 
analogous to those of the classical theory, but we will unfortunately not be 
able to connect them to the pay-off process in this paragraph. This will be 
done for bi-Markov processes in the last chapter. 

On a complete probability space (~2, d ,  1P) endowed with a two-parameter 
filtration ~ = ( ~ ;  telR 2) verifying the axioms F1, F2, F3 and F4, let us 
consider an optional non-negative process of class (D): Y=(Yt; telR 2) the pay- 
off process. The optimal stopping problem consists of finding a stopping point 
T* such that E(Yr,)= sup E(Yr). Such a s.p. will be said to be optimal. 

T E J -  
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For any s.p. T, let J(T) represent the best expected pay-off, defined by 

J(T) = ess sup E(YsI~J). 
SEJ-: S > T 

Cairoli [14] has proved that the Mertens theorem [39] extends to two- 
parameter situations. In particular, there exists one strong supermartingale J, 
called the Snell envelope of Y, which agregates the family of r.v. (J(T): Tc~--) 
i.e., VT~ Y:  JT=J(T)  a.s. 

Notice that there could exist several processes which satisfy the preceding 
formula, and which are not necessarily undistinguishible [14]. In what follows 
we construct a process I such that IT=Jr,  V T6g.  This construction is inspired 
by the classical theory [24, 49]. A similar one was obtained in [31] for the 
case of two-parameter Markov chains. 

Proposition 1.2.1. Let Y be an optional non-negative uniformly bounded process 
such that its trajectories are a.s. right lower semi-continuous functions converging 
to zero at infinity. Let I be the limiting process of the following increasing 
sequence of optional processes (I"; hEN) defined by: 

i 0 = y  and VneN:I"+l=sup{~ 
r6][O 

where ~ denotes the optional projection of the process I~+.=(I~+,; tdR2+), 
and ID is the set of dyadic numbers in IR 2. 

Then I is a strong supermartingale such that 

V TeJ-: I r = J r  a.s. 

Every optional process having such a property will be called the Snell 
envelope of Y 

Proof. This has been given in full detail in [-36] and we only recall the main 
steps. We define an operator R on the set of all optional bounded processes as 
follows 

VX optional bounded: R(X)t=sup{~ Vt~lR 2. 
r~lD 

Operator R is positive (i.e. X > Y ~ R ( X ) > R ( Y ) ) ,  and for any strong super- 
martingale X, R(X) is a strong supermartingale such that V T~Y :  R ( X ) r = X r  
a .s .  

From the fact that J > Y, we deduce that 

V T e J : J r > I " r ,  VneN, and J r > I t  a.s. 

On the other hand, it can be proved by a direct computation that: 

V T e Y :  E(Ys tYr )<Ir  a.s., 

for any stopping points S and T such that S>__T, and ( S - T )  is dyadic a.s. By 
using the hypotheses on Y, it is proved in [36] that this relation extends to any 
pair of stopping points. Then 

VT~f f :  J r < I t  a.s. 
This ends the proof. [] 
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The next result connects the regularity properties of the pay-off process Y 
with those of its Snell envelope J. 

Proposition 1.2.2. Let the pay-off Y be a non-negative optional process of class 
(D). 

i) I f  for any T and any decreasing sequence (T~; n~N) of stopping points 
converging to T, 

E(Yr) <lira infE(YT.), 
n 

then its Snell envelope J verifies 

E (Jr) = lira ~ E (Jr.). 

ii) I f  Y is a.s. continuous on ]R2+ then its Snell envelope J verifies 

E (JT) = lira $ E (JT.), 

for any increasing sequence (T,; n6N) of stopping points converging to T. 

Proof i) Let (T,; nsN)  be a decreasing sequence of s.p. with limit T: the 
sequence (E(JT.); heN)  is increasing and majorized by E(JT). Suppose there 
exists some constant e > 0 such that 

sup E(JT, ) + 2e <= E(JT). 
n 

By the definition of J it is possible to find a s.p. S => T such that 

E (Ys) + e >= E (JT). 

Thus by setting S , = S v  T~, Y,, we construct a decreasing sequence of s.p.'s 
whose limit is S. We get 

E( Ysn) < E(JT.) < E(JT) - 2e < E( Ys) --e. 

This implies that Y cannot satisfies the prescribed assumption. Therefore, 

supE(JT,)+2c>E(JT) , Ve>0. 

This proves i). 

ii) Let (T,; neN)  be an increasing sequence of s.p. with limit T: the se- 
quence (E(JT,); n~N) is decreasing, let L be the limit. Then L>=E(JT). For each 
nEN, one can find a s.p. S, such that S,>__T, and E(JT,)<=E(Ys,)+I/n. Set 
U,=Sn v T: Un~Y and Un>= T. 

By hypothesis, a.s. each trajectory of Y is a uniformly continuous function 
on lRZ+. Let d be a distance on Nz+. By construction 

d(Sn, U,)<d(T,, T), Vn and limd(Tn, T ) = 0  a.s. 

Therefore, the sequence (Ys . -Yv , ;  heN)  converges a.s. to 0 and by uniform 
integrability this implies lira E ( Y s . -  Yr.)=0. 

n 

We deduce that lira [E (JT.) -- E (Yv.)] = 0, and lim E (Yu.) = L. 
n n 
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But T <  U, implies E(JT)>E(Yvo), Vn. Thus, E(Jr)>L, and this provides the 
proof. [] 

Note that all these properties do not depend on the chosen representative 
for the Snell envelope. 

In what follows, we consider a different approach to the optimal stopping 
problem. This consists of reducing the two-parameter problem to the some- 
what classical distributed control problem of finding an optional increasing 
path passing by an optimal stopping point. In addition, this method gives a 
characterization of the Snell envelope generalizing those of [35, 36]. 

The main idea of this paragraph is resumed in the following result. 

Proposition 1.2.3. Let Y be a given two-parameter optional, non-negative process 
of class (D). Then, 

sup E(Yr)= sup { sup E(Y~Z)}, 
T a J  Z~L~ z ~  z 

Proof. For any o.i.p. Z and any gZ-stopping time z, Z~ is a s.p. and, conversely, 
for any s.p. T, there exists an o.i.p. Z which passes by T (i.e. T=Z~ a.s. where 
is a ~Z-stopping time [52]). Then the set 3 - c a n  be identified with the set 
{(Z, ~); Z ~  and ~ j z } ,  and that proves the proposition. [] 

The equality in Proposition 1.2.3 shows that the general problem can be 
split up into the two following problems. 1) Finding an optimal optional 
increasing path. 2) Finding an optimal stopping.time on it. 

This approach enables the characterization of the behaviour of the Snell 
envelope J on the set on which Y is strictly less than J. The definition of the 
debut of a random set along an o.i.p, will be used. 

For every ~ ] 0 ,  1[-, set H~={(~, t): Y,(e~)__>2J~(m)}, and denote by D z the 
d6but of H a along the o. i .p.Z.  Domain H ~ is optional; therefore D z is a 
stopping point. Moreover, the process J ~  is non-negative optional and of 
class (D). We denote by J~ its Snell envelope. This process is usually called the 
reduite of J on the set H ~. The following result extends classical properties of 
reduites. 

Proposition 1.2.4. For every stopping point T one has 

J~=Jr a.s. 

Proof. This has been borrowed from [-24]. J is a strong supermartingale greater 
than the process Jllu~,, this is necessarily greater than its Snell envelope JZ. 
Consequently, for any s.p. S, we get 

d~ >= l ~ s ~  Js >= Jl{s~) J~, 
then 

J~=Js a.s. on the set {S~HX}. 

Let I be the strong supermartingale 2 J + ( 1 - 2 ) J  x. Obviously, Js>Is VS~J .  
To prove that Js<ls  VS~J,, it is sufficient to verify that Ys<Is VSeJ.. 

On the set {S~HX}, we have Js=J~, then Ys<=Is. On the set {SeHX} ~, we 
have Ys<r then Ys<Is. This achieves the proof. [] 
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F r o m  this we deduce the fo rmula  which character izes the behaviour  of  the 
Snell envelope J on the domain  H ~. It  extends a result given in [35, 36]. 

Proposi t ion 1.2.$. For any fixed 26]0 ,  1[, the Snell envelope J of the process Y 
satisfies 

~(J0) = sup ~(J@, 
Z ~ e  

where D z is the ddbut of the set {Y=>2J} along Z. 

Proof The equali ty is p roved  for process Ja, it then holds for J itself by 
Propos i t ion  1.2.4. Fo r  a given s.p. S, let ~ s  denote  the set of  all o.i.p, passing 
a.s. by S (i.e. V Z ~  fs, 3 ~re3 - z  such that  S=Z~). By definition of J~, we have 

E(Jo ~) = sup E(J s ~l~s~H~}). 
S ~ J  

Let us p rove  the following: 

V S~J~ V Z ~ S :  3 T ~ Y  

such that  T ~ D z and E(Js ~(s~u~) = E(Jr Jl(r~ux~). 
For  this purpose,  set for any S ~ "  and Z ~ f s :  T = S  on {S>D z} and T =  oo 

on the c o m p l e m e n t a r y  set. T is a s.p., due to the fact that  { S > D f } ~ s .  It is 
easy to verify {SeH ~} = { T e H  ~} ~ {S --- T}. 

Then, we obta in  
E ( J s  ]l {s~ H~-}) = E ( J T  ]1{ T~ H'~}) �9 

F r o m  this fo rmula  we deduce the following equalities. 

E(Jo) = sup E(J s ]l~s~H~) = sup E(J r ]l~T~nZ~) = sup E(Jv~ I(D~aH~) = sup E(JD~ ). 
S~ ~- T~ J Z ~  Z ~ "  

This settles the proof.  []  

Remark 1.2.I. Let L ~ denote  the s topping line d6but of  the set 
H~: V Z ~ :  DZ> L ~. Then  we get, a f o r t i o r i  

E ( J0 )=  sup E(JT) 
T ~ -  (L .~) 

which is identical to the result ob ta ined  in [36]. 
N o w  let us come  back  to the original p rob l em on IR 2. 
As for the classical theory  we have the following opt imal i ty  criterium. 

Proposit ion 1.2.6. A stopping point T is optimal if and only if the two following 
conditions are satisfied 

i) E (Jr) = E (YT). 
ii) E(Jo) = E(JT). 

The p roof  is exactly the same as in [24] or [28], and therefore is omitted.  

Ddfinition 1.2.1. A stopping point  T is called max imal  if it is a max imal  
e lement  of  the subset  {S~3-:  E(Jo)=E(Js)} i.e., if and only if, 

ii) E(Jo)=E(JT). 
ii) V S ~ -  such that  S____ T and 1P({S = T}) < 1 : E(JT) > E(Js). 
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The existence of a maximal s.p. follows from appropriate conditions on the 
Snell envelope in the following result. 

Proposition 1.2.7. I f  the Snell envelope J is left-continuous in expectation on 
stopping points, then there exist maximal stopping points. 

Proof It is a simple application of Zorn's lemma: The set 

{T ~ J :  E(Jr) = E(Jo)} 

is non-empty, and is inductive thanks to the hypothesis on J;  therefore it admits 
maximal elements. [] 

Assuming further conditions on J we can prove that maximal s.p.'s are 
optimal. 

Theorem 1.2. I f  the pay-off process Y is such that its Snell envelope is completely 
regular and bounded, then there exist maximal stopping points, and any maximal 
stopping point is optimal for the stopping problem. 

Proof The existence of maximal s.p.'s follows from Proposition 1.2.2. Let us 
prove that such an element T is indeed optimal. 

By definition, T satisfies the following 

E (Jo) = E (Jr), 

and VSeJ -  such that S>  T and iP (S= T)<  1" E(Js)<E(Jo). To prove that T is 
actually optimal, we must verify that: 

E(JT)=E(YT). 

For that purpose, let us consider the random set 

HZ={(co, t): Yt(o)>ZJt(e)), t>T(e))}, for Ze]0, 1[. 

This set is optional. Let L ~ be the stopping line d6but of H z. From Remark 
1.2.1, we get 

V Ze]0, 1 [: E(JT) = sup E(Js) = sup E(J  s ~{SeL~I). 
Seg-(L "a) SE• 

Recall ~-(L x) denotes the set of s.p. S such that ~S]I c ][LX]]. This formula defines 
an optimal stopping problem on a stopping line which enters the framework of 
Sect. 1.1. Then, there exists a stopping point S~, such that 

E(JT)=E(Js~ ) and [[S~[[L~]]. 

By definition, we have Sz> T. Because of the maximality of T, this implies 
Sz= T a.s., and therefore T belongs to the stopping line L x a.s. By the con- 
struction of H ~ and L z, this is possible only if T belongs to H z a.s. Then 

VZe]0, 1[: Y T ~ } J T  a.s. 

It follows that YT = J r  a.s., completing the proof. [] 



116 G. Mazziotto 

2. Bi-Markov Processes 

Bi-Markov processes are particular two-parameter processes. The well-known 
bi-Brownian motion, particularly studied by Brossard and Chevalier [11] and 
Walsh [52], belongs to this class of processes. In this chapter we construct 
general bi-Markov processes and present various notions of the corresponding 
bi-potential theory. Then we study various types of supermartingales associated 
to a bi-Markov process. Finally new notions of reduite and of weak harmo- 
nicity for two-variable functions on a open set are proposed and studied in full 
detail. 

2.1. Construction of bi-Markov processes 

Roughly speaking, bi-Markov processes are defined as the tensor product of 
two classical - one parameter - Markov processes. In the sequel, super- or sub- 
script i will take values 1 and 2. 

Let (Qi, J{~o) be a measurable space endowed with a right-continuous 
filtration d/ti=(Jg,~; ueR+),  and let U be a locally compact metric space with 
Borel a-field E i. Let XI=(X~; ueR+) be an U - valued random process on 
(~2 ~, ~ )  which is right-continuous and left-limited, and adapted to the fil- 
tration J~.  The set of bounded Borel (resp. continuous, bounded and con- 
tinuous, bounded and uniformly continuous) functions is denoted by b(E i) 
(resp. C(Ei), Cb(Ei), Cu(Ei)), and the set of probability measures on (Ei, g i) 
by M(U). Let IPi=(1P~;xeE i) be a Borel kernel of probability measures 
on (~21, J{i) .  For each i i #eM(E)IP~ represents the probability measure 
#.lP=SIP~#(dx).  Let us denote by Jl~u=(J//~U;uelR+) the smallest filtration 

E i 

which contains (J/r ueR+),  is right-continuous, and such that all the IP~- 
negligible sets are in j~u.  In the sequel, Ex(U ) (resp. Uu(U)) will represent the 
expectation U(U) with respect to probability IP~ (resp. IP~) of the random vari- 
able U. Let us define a family U=(P~; uelR+) of operators on b(U) by setting 

Vue]R+, V feb(El): i i i P~f(x)=Ex(f(X,)), VxeU. 

In this paper, we suppose that the Markov property of the collection 
((21, X{/, jgl, X i, lp~) is specified by the following hypothesis, drawn from Meyer 
[42]. 

Hypothesis HI. U=(P~; ueR+)  is a semi-group such that for every function 
feb(E i) and every ueR+ ,  the process Pif(X()=(P~f(X~); yeN+) is the op- 
tional projection, with respect to the filtered space (~2 ~, .~l ~u, IP~), of the process 
f(X[++.)=(f(Xi+v); veR+), for each #eM(Ei). 

Denote by U~=(U~; peR+)  the resolvent family of semi-group U, by ~ i  its 
generator, and by @(s the domain of this generator. For peR+ ,  we also 
note 5r the operator ~ - p I  (Identity). Then, 

Vfe~@(s : f =  Up g-c:>g = - Y p f  
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Next, we define the bi-Markov process X=(X, ;  tEIR2), on the product 
measurable space (O=f2~ x f22, d ~  ~r |162 endowed by the two-parame- 
ter filtration 

~ ~ 1 7 6  - ,~| t = ( t , ,  t~)~m2+) 

and the family of probabilities (IPx=IP~,| x=(X1, X2)EE 1 x E2), by the 
following. 

Vt=( t , ,  t2): X t=  (X~,, Xr22). 

Process X takes its values in the product space E=E ~ •  2 endowed with 
the a-field g = ~ ~ 1 7 4  2. Notice that process X enters in the classes of two- 
parameter Markov processes studied by Nualart and Sanz [48], Korezlioglu, 
Lefort and Mazziotto [27], Carnal [18] and Dozzi [21]. The set of bounded 
Borel (resp. continuous, bounded and continuous, bounded and uniformly 
continuous) functions on E is denoted by b(E) (resp. C(E), Cb(E), C,,(E)), and 
the set of probability measures on (E, g) by M(E). For each #eM(E), IP, 
represents the probability p - IP=~ lPx #(dx), and f ~ = ( ~ t " ;  t~lR 2) is the smal- 

E 
lest two-parameter filtration which contains filtration fro, is right-continuous 
(Axiom F2), and such that all the lPu-negligible sets of (Q, d )  belong to fro". In 
addition, f ~  satisfies the conditional independence property of Axiom F4 with 
respect to IP~. Similarly, we define the one-parameter filtration f,l=(o~,, ,~; 
uelR+) (.resp. fu2=(~,,u2; u~lR+)) to be the smallest filtration which contains 
filtration (Jd~| u~lR+) (resp. 1 2 (M/+QJ/{s ; u~lR+)), is right-continuous 
and contains all the IPu-negligible sets of sO. Finally let f = ( ~  
f ~  =(~t~ ; t~elR+) and f 2 = ( ~ 2 ;  t2MR+) be the filtrations defined by 

t , -  ~ i=1,  2. 
#EM(E) lzEM(E) 

We define a two-parameter semi-group on b(E) P=(Pt; t~lR 2) by setting 

V t = ( t ~ ,  t2 ) :  P, ~ 2 

The associated resolvent is the two-parameter family of operators on b(E) 
defined by 

V p=(pl, p2): Up= Uffl | U22. 

Operator P,}, UpS, or Pt 2, U22 will be considered as operating on b(E) as well 
as on spaces b(E 1) or b(E 2) with no risk of ambiguity. Similarly, generators s 
and ~ z  will be considered on the domain ~(s s of functions f e  C(E) such 
that functions 5~ and s are well defined and belong to C,(E). It may be 
noted that the operators P,~, Pt 2, U~ and U22 commute each with other V t~, t2, 
Pl, P2. 

The following result expresses the Markov property of process X. It is a 
consequence of Hypothesis H1. 

Lemma 2.1. For each feb(E) and each s~N2+, the 1-optional, 2-optional and 
optional projection of the process f(X++.)=(f(X~+t); t~lR2), with respect to 
probability IPu and filtration f~, are given by the following formulas 
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ol( f (xs+.) ) ,  = e,t  f (x~,~. , ,  +s,,) 

~  3), = P d f ( x ~ , l  +~,, ,.)) 

~ + .))t = P~ f(Xt) ,  

independently of  the considered probability #eM(E) .  

f=f  | with f~eb(Ei), i=  1, 2) the Proof. In case f has a product form (i.e. 1 2 
first two formulas are easy consequences of Hypothesis H1. By a monotone 
class argument these formulas extend to any feb(E) .  The third formula follows 
from the definition of an optional projection for two-parameter processes given 
by Bakry [-1]. [] 

New let us study a strong Markov property for process X. 
We denote by Y (resp. j-o, y u  for i teM(E)) the set of stopping points on 

IR2+ with respect to the filtration ~- (resp. yo ,  ~ , ) ,  and by J- '  (resp. ~-ol, y,~) 
the set of/-stopping points on N. 2 with respect to the filtration ~-i (resp. ~0~, 
~"i),  for i=1  or 2. It can be easily verified that, for instance, a ~01_1_  
stopping point (i.e. with respect to .~01) T = ( T b  T2) is a r.v. on (fJ, sr such 
that: 

Vw2ef22, fixed: TI(', w2) is a ~/l-stopping time, and 

T2(', w2) i s / d ~ . ,  w~)-measurable. 

A symmetric property holds for jo2_2_s topping  points, and both are verified 
for stopping points of 3 -~ 

Proposition 2.1.1. Process X has the strong Markov property in the following 
sense. 

V#eM(E), V T e J  u, VSaYrU-measurabler.v., Vfeb(E): 

E , ( f ( X r +  s) [ ~-~) = Ps f(Xr)IPu-a.s. 

Proof It is similar to that in the classical theory: see Meyer [,41]. First notice 
that, for given f~b(E)  and seN.2+, the process M~={MT; t<s)  defined by. 

V t < s = Mt s = ~ = P~_tf(X,) 

is a bounded martingale which is right-continuous and left-limited due to the 
results of Bakry [2] and Millet-Sucheston [46]. Such a two-parameter mar- 
tingale verifies the optinal sampling theorem with stopping points by Kurtz 
[-29]. Then we achieve the proof as in the classical theory. [] 

To conclude this paragraph, we study additional regularity properties for 
process X. 

Proposition 2.1.2. I f  in addition to Hypothesis H1, the processes X 1 and X 2 are 
quasi-left-continuous (see [,8]), the process X satisfies the following. 

Let us give a sequence of  random variables (T"; heN) on ]R 2 w{oQ} converg- 
ing to T and let I~eM(E). I f  one of  the three following conditions is fullfilIed 
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i) Vn~N: T " e Y  ~', T~> T2, and sequence (T~; n~N) is non-decreasing; 

ii) Vn~N: T"~J-~ 2, T~> T1, and sequence (Td'; neN)  is non-decreasing; 

iii) VnEN: T " ~ Y  ~, and sequence (T"; neN) is non-decreasing on IR2 ; 

then the sequence (XT,; n~N) converges to Xr ,  IPu-a.s. 

Proof Let us prove i). For  a.s. all w2~f22, the collection (TI"(', w2); n~N) is a 
non-decreasing sequence of ~ l " - s topp ing  times converging to T~(', We). Then 
thanks to the quasi-left-continuity of X 1, the sequence (X~,(. ~); n~N) con- 

1 i i " �9 ' i ~ ' verges to Xr~ (. ~), IPx -a.s. VXlEE  . This implies that (Xr~; n~N) converges to 
Xr~ IP,-a.s., V/~M(E).  The convergence of the sequence (X 2 ;n~N)  to X~ 

. . . .  ~ . . . . .  2 

proceeds directly from the nght-contmmty of X 2. The proofs of n) and m) are 
similar. [] 

We conclude by few definitions. 
A right-continuous two-parameter process which verifies the conclusion of 

Proposition 2.1.1, will be called quasi-l@ continuous. 
Bi-Markov process X is said to be normal if processes X 1 and X 2 are 

normal [8]. Then the 0-1 law of Blumenthal also holds for X i.e., 

V A t ' o :  IP~(A)=0 or 1, Vx~E. 

A bi-Markov process X is said to be Fellerian if the semi-groups P1 and p2 
are both Feller. It has been proved in [12] that for each t~lR2+, the operator Pt 
maps Cb(E) into Cb(E). The process X is considered as strongly Feller if the 
processes X z and X 2 are strongly Feller (i.e. for i=  1, 2 and for any pelR2+, 
operator U~, maps the set of Borel function with compact support on E ~ into 
Cb(E')). 

2.2. Towards a bi-Potential Theory 

Given two classical semi-groups on two spaces E 1 and E 2 different classes of 
functions on the product space E = E  ~ x E 2 can be defined separately, accord- 
ing to their properties on each space E 1 or  E 2. Such a study has been done by 
Cairoli [12, 13], dealing with the one-parameter semi-group constructed as the 
tensor product of two classical semi-groups. In this paragraph, we first recall 
definitions and results of [12] in the frame of two-parameter semi-groups. 
Later, we study the two-parameter processes associated to the functions men- 
tionned above. Dynkin formulas which generalize the classical one, and these 
of LaMer and Vanderbei [31] and Vanderbei [51] for Markov chains, are 
obtained for various classes of supermartingales. Trajectorial regularity proper- 
ties of these supermartingales are given. 

Definition 2.2.1. Let f be a positive function on the product space E = E l x  E 2, 
and let p~lR+. For i=  1, 2, f is called p-i-supermedian (resp. p-i-excessive) on 
E, if the function on E i defined by: Xi -* f ( x l ,  X2), VxIEE i, is p-supermedian 
(resp. p-excessive) when the other variable is fixed. 
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Let f be a positive function on E, and let p=(pl,p2)~lRZ+, f is is called p- 
bisupermedian (resp. p-biexcessive) if f is both P1-1-supermedian (resp. P l -  1- 
excessive) and P2-2-supermedian  (resp. P2-2-excessive). 

We refer to [4l]  for the definitions of the classical potential theory. It is 
proved in [-12] that any positive function on E which is both p~-1-excessive 
and Pz-2-excessive is measurable on E and is lower semi-continuous when 
processes X ~ and X 2 are strongly Fellerian. 

For P=(Pl, P2) and t=(tl ,  t2)~lR 2, denote by p. t  the scalar product pit1 
+ P2 t2. It should be noted that if function f is p-bisupermedian then: 

Vt~]R 2" e-v' tPtf  <=f, 

and if, moreover, function f is p-biexcessive, then: 

lira e-;t(")Pt(,)f = f for any sequence (t(n); n~N) decreasing to zero. 

function f on E is said to be p-biharmonic iff: 

VtE]R2 : e - p t P t f = f  

For any function g~b(E) (not necessarily positive), the function f = Uvg is p- 
biexcessive (hence positive) iff functions U~,g and Up22g are positive. Such a 
function is calledp-potential in the sequel. More generally, a function f ~ ~(5~ 1, L# 2) 
such that 5r f < 0 and 5a~, f < 0 is p-biexcessive. 

The following result proves that any p-biexcessive function can be approxi- 
mated by p-potentials. 

Proposition 2.2.1. For P=(P~,P2) such that Pl >0  and p2>0,  any p-biexcessive 
function f is the limit of a non-decreasing sequence of p-potentials (Upgn; n~N). 

Proof. Let f be a bounded function. To any t=(tl ,  t2) not contained by the 
coordinate axes we associate a function gt as follows. 

gt=(t 1 t 2 ) - l ( f  + e-v.tptf  . - w ~ p l  f ,-v2t202 f~ - - ~  ~ t l d  - - ~  x t 2 d , l "  

The following identity is easily proved. 

~ t l  t2 

Uvgt= ~e-v'~Psgtds=(tlt2)-x~ ~e-p~P~fds. 
O 0  O 0  

Moreover, if the function f is p-biexcessive, then the right-hand side of the 
previous expression increases to f when (tl t2) decreases to zero.. This gives the 

proof .  [] 

Note that in this proof the functions g"s associated to a p-biexcessive 
function f are not necessarily non-negative, as in the classical theory. The 
subclass of such functions f has been considered in [13], and a Riesz type 
decomposition obtained. 

Let us now study the two-parameter processes associated to these functions 
and the bi-Markov X. To any function f on E and pEIR2+ we associate a 
process J as follows 

V telRZ+ : Jt=e-P'rf(Xt). 
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It is easy to verify that f is p-supermedian if and only if the associated process 
J is supermartingale with respect to any probability IP~, x~E. 

We shall now study the processes associated to p-biexcessive functions by 
beginning with the case of p-potentials. 

Proposition 2.2.2. For pclR 2, let J be the process associated to the p-potential f 
= Upg with g~b(E) given. Then, for any probability IP~, 126M(E), J is un- 
distinguishable from the optional projection (with respect to ~ and IPu) of the 
process C defined by 

oo  e- 'sg(Xs)ds. 
t t  t 2  

Moreover J is a right-continuous bounded supermartingale, with respect to any 
probability IP,, ~t~M(E). 

Proof. Coming back to the definition of optional projection [1], we verify 
directly that: 

o _ _ ~  oo 

v t ~ + : (  c ) , , -  S e - ' ~  ~ 
tl t2 

Then, using Lemma 1.1, 

~ = ~ _ ,  g (X , )  v s >__ t, 

tl t2 

and this leads to the formula: (~ -p t  Upg(XJ=J~. Let Bt= ~ ~ e-p'sg(Xs)ds, 
0 0 

V t. Using the definition of optional projections [1], we get: 

o o B _o C= ( oo~ + B-Btloo-Boot2 ) -  Boooo + B-~176 

The right-continuity of almost all trajectories of J, for a given t~M(E),  
follows from results of Bakry [2] because B is continuous. [] 

The first consequence of this result is a Dynkin-type formula. Let T be any 
stopping point. Using properties of an optional projection [1], we obtain 

1 T2 

The second consequence is a decomposition of process J which is anal- 
ogous, in some sense, to the Doob-Meyer decomposition of supermartingales 
[20]. Let define the process m by: 

t l  t2 

V t~lR 2 : Jt =mt + ~ ~ e -ps  g(Xs)dsl ds2. 
o o 

It can be verified by straightforward computation that m is a weak martingale 
(see [44] for this definition). 

It can be noticed that enters in these results the fact that f = Upg, but not 
the fact that f was a p-potential (i.e. U~ g >= 0 and U 2 g >= 0). 
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Now let us study the processes associated to p-biexcessive functions. In 
order to simplify things, we only deal with the case of p not belonging to the 
coordinate axis in IR 2. 

Proposition 2.2.3. Let P=(Pl,P2) be such that Pl > 0  and p2>0. The process J 
associated to a bounded p-biexcessive function f is a strong supermartingale, and 
almost all its trajectories are lower semi-continuous functions for the right 
topology on IR2+, with respect to any fixed probability IP~, #eM(E). 

Proof It follows from Proposition 2.2.1 and Proposition 2.2.2 that J is the limit 
of an increasing sequence of right-continuous supermartingales. Its trajectories 
are then lower semicontinuous for the right topology on IR2+. Moreover, the 
supermartingale property has been verified on stopping points in [52]. [] 

Remark 2.2.1. In case X 1 and X 2 are both strong Feller processes every p- 
biexcessive function is lower semi-continuous, [12]. Then Proposition 2.2.3 can 
be proved directly, as in [37]. 

For  the sake of simplicity we shall only consider points p with equal 
positive coordinates. Moreover, for any given p eN + ,  we shall make no distinc- 
tion between the number p and the vector (p, p), and we shall also note p. t for 
p(tl + t2). 

By studying the restrictions of a two-parameter supermartingale to optional 
increasing paths we obtain a second type of Dynkin formula. 

Let J be a two-parameter process. For  any optional increasing path 
Z=(Zu ;  ueN+),  the restriction of J to the o.i.p. Z is the one-parameter process 
jz ,  defined by JZ=(JuZ=Jzu; ue]R+). This process is YZ-optional if J is itself 
Y-optional,  and is a strong supermartingale with respect to ~ z  if J is a strong 
supermartingale. 

Remark 2.2.2. Let Z=(Z, , ;  uelR+) be a given optional increasing path. As a 
consequence of Proposition 2.2.2, the process j z  corresponding to a p-potential 
f =  Upg with geb(E) is right-continuous. But in addition to Proposition 2.2.3, 
we can see that the process j z  corresponding to a p-biexcessive function f is 
undistinguishable from a right-continuous (one-parameter) process. This pro- 
ceeds from the classical result (see [20], VI-18) which says that the limit of an 
increasing sequence of one-parameter right-continuous supermartingales is also 
a.s. right-continuous, and from Proposition 2.2.1. 

In case the strong supermartingale J is associated to a p-biexcessive func- 
tion f of 9(2 ,1 ,  2,2), we obtain the following Dynkin formula. 

Proposition 2.2.4. Let Z = ( Z , ;  uMR+) be a given optional increasing path and let 
f be a p-biexcessive function of ~(2,1, 2,2) for p>0.  There exist two one- 
parameter ~Z-adapted processes, 2 lz, and 22z, non-vanishing simultaneously and 
taking their values in [0, 1], such that for every pair of ordered ~Z-stopping 
times, a<r,  one has VxeE:  

E~(e- P~f (X z) - e-P~f (XZ) l.Fz) 

1 Z 1 Z  2 Z 2 Z  - - p u  g ~ Z  =Ex X.))~,, + 2 ,p f (X.  2u )e du l l s ) .  
x a  
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Proof. If the o.i.p. Z = ( Z , ;  uelR+) is a tactic of order m, say (T~; heN), the 
formula can be computed step by step, i.e. between each pair of successive 
points T,, T~+ i by means of the classical Dynkin formula. We obtain the 
following: 

g i D - p ( n + l ) 2 - ' ~ { i y z  ~ _ _ o - - p n 2 - m [ ' [ y Z  "~[o~Z 
x \  ~ d t ~ ( n + l ) 2 - m , I  ~ d \ l X t t 2 - m ] l  n 2 - m . ,  

( ( n +  1~ 2 - r n  1 Z ] I  2 2 

=E~ (2,e~f(X.) {z(~+.~-~=z~ ~} 
\ n 2  m 

+ ~ C . C . ~ 2 f ( x Z ) ~ - , z  ~ z ~. ,)e-P"dul~ z ) p �9 i (n+1)2  - m ~  n z - m ~  n 2 - m  " 

Therefore, we define processes 2 lz and 222 by the following formula: 

and 

1 Z  __ 2 Z  2, - 1 = 1 -2~  

2Z - -  1Z 2~ - 1 = 1 - 2~ 

o n  

o n  

for k 2 - " N u N ( k  + l)2 -n. 
Then the formula is extended to any stopping times, as stated in the 

proposition. 
Now let us consider a general o . i .p .Z .  It can be approximated by a 

sequence of tactics of increasing orders (Z";neN),  such that the paths 
((Z",; u~lR+); neN) converge a.s. uniformly on any finite interval to the path 
(Zu; uelR+). For  each tactic Z" we can write the preceding Dynkin formula 
with processes 2 iz" and 222~. By continuity, processes (Gapa(XZn); neN) and 
(G~ neN) converge to processes 5e~(X z) and 5r z) respectively. We 
now need to verify that the sequence of processes (21z"; neN)  and (22z"; neN) 
converge. For that purpose we modify a method developed in [15] to define 
stochastic integration on increasing paths. Namely, we remark that processes 
2 lz" and 22z" can be associated to Radon-Nikodym derivates of measures on 
IR+, with respect to the Lebesgue measure. For  arbitrary u, velR+ such that 
u<v  we define the quantity AlZ~([u,v]) (resp. A2Z"([u,v]) to be the Lebesgue 
measure on N2+ of the domain determined by Z", the vertical lines of abscissas 
u and v, and the horizontal line of ordinate - 1  (resp. determined by Z", the 
horizontal lines of ordinates u and v, and the vertical line of abscissa -1) .  It is 
clear that A lz" and A 22" are random measures on IR+ absolutely continuous 
with respect to the Lebesgue measure. Let )~,z- and )~22- be their Radon- 
Nikodym derivates. It is a matter of verification to see that the processes )jzn 
and )o2z~ previously defined coincide with the processes (;~lZn/1 + Zu,,2., uelR+) 
and (22Zn/l+Z~'l; uslR+). Moreover, the convergence of (Z"; heN) to Z im- 
plies that the sequences of measures (AlZ"; heN)  and (A2Z"; neN) converge 
weakly to measures A ~z and A 22 similarly constructed. This allows us to define 
212 and 222, and the Dynkin formula for the o.i.p. Z follows by arguments of 
weak convergence. This achieves the proof. [] 

2.3. Weak Harmonic Function and Reduite 

The bi-harmonic functions are well known; their connections with one-parame- 
ter or two-parameter processes have been widely studied in [11, 52]. Another 
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notion has been introduced in [22, 51]. The definition we propose here is 
different in its being motivated by the optimal stopping problem; it is anal- 
ogous to the notion considered in [34] dealing with the optimal stopping of 
several Markov chains. 

Given a subset A c E  and an o.i.p. Z, the d6but along Z of the optional 
random set {(co, t): X~(co)~A} is called the entrance point of X in A along Z and 
denoted by D z. The exit point of X from A along Z is defined by SAZ--DAc,-- Z 
where A c is the complement of A. 

First, we define a harmonic operator similar to those of the classical theory. 
For A c E  and pMR+, let Ha p be the operator defined from b(E) in the set of all 
bounded functions on E, by 

V feb(E), Vx~E: Hapf(x)=supEx(e-P'Df, f(Xo~)). 
Z ~  

It may be noticed that Hapf has no reason to be measurable. Although Hap is 
non-linear, it verifies several properties of classical harmonic operators. 

Proposition 2.3.1. Operator Hap satisfies the following; 

i) IfA is closed, then HP(~IAf)=HP(f) 
ii) I f  f > g, then Hapf >__H~g 

iii) Vx~A: Hapf(x)= f(x) 
iv) I f  f is p-biexcessive; then 

V x EE: H]f(x)  >= sup Ex(e- P" r ll~xT~a1 f (Xr)) 
T ~ Y  

Proof If A is closed, then XDy,~A, V Z ~ e :  this implies i). ii) is obvious. If xEA, 
then DA z--0.  This proves iii). Let Z be an o.i.p., denote by z the YZ-stopping 
time such that Z~=D z, and let cr be any ~Z-stopping time. Then the following 
inequalities hold: 

E~(e- p Z~(ll af)(xZ)) <= E~(e- P z~ ( l l  af)(XZv ~)) 

<=E~(e-v'z~f(XZv~)) 

<=E~(e-PZ~f(XZ)). 
We deduce from this: 

sup sup E~(e-P'Z~(~lAf)(Xz~))<=H~f(x), VxeE. 
Z ~  a ~ 9  - z  

Using the fact that for any stopping T there exists Z e ~  and ~ - z  such that 
T = Z ~  a.s. [52], we deduce iv). [] 

The last assertion of Proposition 2.3.1 suggests that harmonic operators are 
connected with optimal stopping of functions of bi-Markov processes. 

The following definition of weak harmonicity extends those of [35]. 

Definition 2.3.1. A function f on E will be said to be p-weakly harmonic on an 
open subset A c E, if and only if 
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V xEA: f (x)  = H~c f (x)  i.e. f (x)  = sup Ex(e-p'S~f(Xs~)) 
Z ~  

where S z denotes the exit point of X from A along Z. 
If a p-biexcessive function f is p-weakly harmonic on A, then f is p-weakly 

harmonic on any subset B contained in A. Moreover 

V B ~ A : H~4 Hf~ f = Hf~ HVA f = Hf~ f 

The set of p-weakly harmonic functions on a given subset contains the set of p- 
harmonic functions [-35]. 

If a function f is sufficiently smooth, then weak harmonicity on a given 
subset can be expressed locally. The following proposition is proved by using 
various results of Sect. 2.2. 

Proposition 2.3.2. Suppose the bi-Markov process X is normal and quasi-l@- 
continuous. Let f be a function in ~ (  c#1, t~2), p a positive number, and let A be 
an open set, then f is both p-biexcessive and p-weakly harmonic on A if and only 
if 

5 f J f  <O and ~c#zpf <O on E, and max(Sev~f &~ on A. 

Proof. Let us prove the necessary condition; suppose f is p-biexcessive and p- 
weakly harmonic on an open set A. For  x e A  fixed, there exists an open 
rectangle B = B  1 x B  2 containing x and contained in A. Then f is p-weakly 
harmonic on B. It is easy to see that the family of exit point (SZ; Ze~()  forms 
a stopping line L, which could also be defined by: 

L =  {t=(t l ,  t2): t i= inf  {u: Xi(~Bi}, tj<inf{u: xJq~BJ}; i~-j6{O, 1}}. 

According to Proposition 2.1.2 and Theorem 1.1, the optimal stopping problem 
on L associated to f and X admits a solution T Let Z be an o.i.p, passing by 
T: Z~= T = S  z. Using Proposition 2.2.4 and Definition 2.3.1 we get 

f (x )=  E~(e-psf~f(Xsf))=f(x)+ Ex (i(~J f(X.)2~ z + ~J f(X,,)2~ z) e-'" du) 
I 

and necessarily: 

i 1 Z 1Z 2 Z 2Z ( ~ f ( X , , ) 2 ,  + ~ : f ( X , ) Z u  ) d u = 0  a.s. 
0 

X 1 and X 2 being Normal and B 1, B 2 being open, we have g x e B :  lPx({0~L})=0. 
This implies that , > 0  a.s. Now let us work with a fixed coef2 chosen in 
the set of IP~-probability 1 where the above expression is strictly negative. 
Suppose Y ~ f ( x ) < 0  and L~~ Then the right-continuity of process X z 
and the continuity of the functions ~ f ,  ~r imply there exists a time a such 
that 0 < a < z and 

1 Z 2 Z ~w~ f ( X , ) < 0  and Vu< ~p f(X, ,)  < 0 a. 

In accordance with what precedes this is possible only if 

~LulZ 2Z  =2u =0  for u__<a. 
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This contradicts the result of Proposition 2.2.4 which says that 2 lz and )~2z 
cannot be simultaneously null. Thus, we have proved that either ~ f ( x )  or 
~2f (x )  must be equal to zero. 

Conversely, let us suppose f satisfies the system of the proposition. Ob- 
viously f is p-biexcessive, and it remains to be proved that f is p-weakly 
harmonic on A. For xsA  and e > 0  given, we can construct an o.i.p. Z such 
that: 

f(x) - Ex (e- p" sz f(Xsy~) ) <= e. 

For the purpose, consider the following open sets: 

B={y:ls  and C={y:l~q~2f(y)[<~}. 

Obviously B u C = A ;  suppose that x=(xl,  x2)~B. Let us construct Z as fol- 
lows. Let T 1 =(T~, T2 a) be defined by 

T11 =inf{u:  (X], xa)~B c} and T2 ~ =0, 

let T2 =(T1 z, T 2) be defined by 

T(= T1 ~ and T2=inf{u:(Xll ,  X~)~CC }. 

It can easily be verified that T 1 and T 2 are s.p.'s. By iterating the foregoing 
procedure, we construct an increasing sequence (T"; n6N) of s.p.'s, which 
induces an o.i.p. Z, as in Paragraph 2.2. 

Everything has been done to ensure the following inequality 

( i  ( 5q~ f ( X  z) 2~z+ ~ f ( X  z) 2, zz) e -pu du) E~, <e/p. 

Thus, we deduce that 

sup Ex (e- P . s5 f (Xsz)) < f (x) < sup E~ (e-p" sS f (Xss)) + e/p, 
Z E . ~  Z e  ~ 

which leads to the desired conclusion. [] 

According to the classical potential theory we set the following definition 
for the reduite of a given function. 

Definition 2.3.2. Let f be a given positive function on E. If the set of p- 
biexcessive functions majorizing f is non-void and has one minimal element, 
this p-biexcessive function is called the p-reduite o f f  and is denoted by R f  

By interpreting this notion of reduite in the framework of the two-parame- 
ter optimal stopping, we obtain an existence result and a construction of the p- 
reduite. 

Proposition 2.3.3. Let f be a non-negative Borel bounded function on E such that 
the process f (X)=(f(Xt);  t~lR 2) is lower semi-continuous for the right topology 
a.s. for any probability 1Px, x~E. Then, the function q defined as the limit of the 
increasing sequence (q"; n~N), defined by the following recurrence formulas 

qO=f and for n>=O:q"+l=supe-P"P~q ", 
reiD 
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is the p-reduite off. Moreover, q verifies 

Y xeE: q(x)= sup Ex(e -p" T f(XT)). 
T e J  ~ 

Proof. For xeE  fixed, let us consider the optimal stopping problem on the 
probability space (f2, ~'~, IPx) associated to the following pay-off process Y: 

Y te]R2+: Yt=e-P'tf(Xt).  

Let jx denote its Snell envelope constructed as the limit of the sequence of 
processes (I"; heN) defined by Proposition 1.2.1. We verify immediately that 

VneN:  I?=e-V t  q"(Xt), telR2+. 

By construction (q"; neN) is an increasing sequence of uniformly bounded 
Borel functions: the limit q is also in b(E), and 

VxeE:  J2=e-V'tq(Xt)  , teN2+. 

This proves that the Snell envelope jx can be chosen independently from x, 
and in particular 

u xeE: q(x)= sup Ex(e-V" f(XT)). 
T e l  ~ 

Now let us prove that q is the least p-biexcessive majorant off .  
By the supermartingale property of J, we get, V x~E: 

VtelR2" Ex(Jo)>__E~(Jt) i.e., q(x)>e-PtP~q(x). 

Moreover we proved in Proposition 1.2.2 that the right lower semi-continuity 
of the pay-off process Y implies the right-continuity on R2+ of the function 
t~Ex(J~). Then, for any sequence (t(n); nsN),  decreasing to zero we have 

V x ~ E : q (x) = E~ (Jo) = lim E~ (Jr (n)) = lim e-  p.t (,) p~(,) q (x). 

Hence, q is p-biexcessive. It remains to be verified that q is the least p- 
biexcessive majorant of f. Suppose q' is a p-biexcessive function greater than f. 
Then the process J '  defined by J',=e-;'tq'(Xt),  Vt~R2+, is a strong super- 
martingale which majorizes Y. This implies that J '  majorizes the Snell envelope 
J, and 

q'(x) = E~ (J'o) > E~(do) = q (x). 

This gives the proof. [] 

This result can be used to define the notion of p-reduite of a p-biexcessive 
function on a given open subset, and links with the weak-harmonicity. The 
following proposition extends a result given in [17], the idea of the proof is 
similar. 

Proposition 2.3.4. Let q be a p-biexcessive bounded function, and let A be an 
open subset in E. There exists a function qa which is the least p-biexcessive 
majorant of function q on the subset A. Moreover 

Vx~E: qa(x) =H~ q(x). 
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Proof Function q being p-biexcessive bounded, the process Y=(e-P~q(Xt); 
tsR2+) is lower semi-continuous for the right-topology by Proposition 2.2.3. A 
being open, this also holds for the process 

YA=(e-Vt q(Xt) ll~xt~A~; t~lR2). 

Then, existence of qA proceeds from Proposition 2.3.3. We get qA<=H]q by 
Proposition 2.3.1iv). Let us prove the converse. By definition, qA is p-biex- 
cessive and majorizes q on A. Let Z=(Z,;u~]R+) be any given optional 
increasing path. From Remark 2.2.2 we know that processes q(Xz. ) and 
qA(Xz.) are one-parameter a.s. right-continuous supermartingales and 

VuEN.+:qA(Xzu)>=q(Xz,) on {Zu6A}. 

By definition, the time DZ=inf{u:  Zu6A} is a.s. adherent, with respect to the 
right-topology on N+,  to the set {u: Z~,~A}. Therefore 

qA(XDs)>=q(XDs) a.s. 

This implies V Z e ~  -~e and Vx~E: 

Ex(e - p  D~ qA(Xo~)) >= Ex(e -~'" D~ q(XD~)). 
A fortiori, 

qA(X) > Ex(e -~' o~ q(XD~) ) 'r Z e ~ .  

From this, we deduce, Vx~E: 

qA(x)>=H~(x). 

This achieves the proof. [] 

The evolution of the p-reduite R f  of a function f, on the subset in E where 
it majorizes strictly f, is described by the following result. 

Proposition 2.3.5. Let f be such as in Proposition 2.3.3. Then, for any 2~]0, 1[-, 
the p-reduite R f  o f f  is p-weakly harmonic on the set {x~E: f (x )< 2Rf(x)}. 

The proof is a straightforward application of Proposition 1.2.5. 
Without further assumption on the regularity of functions f and R f, it 

seems difficult to characterize R f  on the set { f < R f } .  But the converse is true. 

Proposition 2.3.6. Let f be such as in Proposition 2.3.3, and suppose there exists 
a function q which verifies: 

i) q > f  
ii) q is p-biexcessive. 

iii) q is p-weakly harmonic on {q >f} ,  then q is the p-reduite o f f  

Proof Using iii) and Proposition 2.3.3, we get 

q(x) = H~=f~ q(x) = sup Ex(~I{q(XT)=f(XT)) e -p" r q(Xr)) 
T e ~ -  

= sup Ex(~q(xT)=f(xT)~ e - P r f ( x r ) )  <= sup Ex(e-Prf(Xr)).  

Thus, q < R f  Taking into account i) and ii), it follows that q = R f  [] 
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3. Optimal Stopping of Bi-Markov Processes 

In this chapter we give an existence result for the optimal stopping problem of 
a bi-Markov process X defined as solution of stochastic differential equations. 

Moreover we prove that, if the optimal cost function is sufficiently smooth, 
it then satisfies a set of partial differential equations with a free boundary 
similar to those of the classical theory (see Bensoussan-Lions [4]). 

For  i=1  and 2, let Bi=(Bi~;ueI(+) be a Brownian motion and 
N z=(N~(dz, du)) the stochastic martingale measure associated to a Poisson pro- 
cess (see Jacod [-30]), defined on the probability space (Qi, Jg~, IP ~) endowed 
with the filtration (Jg~; ue~+) .  Consider the stochastic differential equation on 
E i .= ]Rdi: 

(I) dX~=bi(X~) du+ai(X~) �9 dB~ + ~ c'(v, Xi_) �9 N~(dv, du) 
zq{o} 

where a ~, b ~, c ~ are matrices of appropriate dimensions, such that for any yeE i, 
there exists a unique strong solution xiy=(X;~;uelR+) with initial value 
X~oY=y. For i = l  or 2, the processes (XiY; yeE ~) form a Markov flow to which 
one can associate a canonical Markov process X ~. Thus, by setting 

vt=(tl, t2): x,=(x:,, xS), 

we get a bi-Markov process as treated in Sect. 2. In the sequel, it will be more 
convenient to work with the families of processes ( X l X ' ; x l e E  1) and 
(X2X2; xZeE 2) directly. For  that purpose we define the following family of 
processes 

VX =(X 1, x 2 ) e E = E  1 x E2: X~ = (X~, x', X 2xq 
t 2 I~ 

on the probability space (O=f21 x(22, d = ~ l |  2, I P = I p I |  2) endowed 
with the smallest two-parameter filtration ~ = ( ~ t ;  telR2+) satisfying Axioms 
F1, F2, F3, and containing the filtration (Jg~| (tl, t2)elR2+). In addition, 
~ satisfies Axiom F4. Let Y be the set of stopping points with respect to ~ .  

The following result is a straightforward application of Gronwall's in- 
equality. If the coefficients a z, b ~, c z are bounded and Lipshitzian then, for any 
constant A >0  and for any JEZ-stopping time T such that T < A  a.s., 

E ( I X ~ - X ~ l ) < l x - y l  e Kr Vx, yeE  i 

where K is a function of A, strictly increasing positive, and depending only on 
a i, b z, c z. (See Stroock-Varadhan [50], Corollary 5.1.2 for the Brownian case). 

This result extends to X as follows. 

Lemma 3.1. For i= 1 and 2, let d, b z, c ~ be bounded and lipshitzian. Then there 
exists a positive strictly increasing function K such that, 

VA>0,  VTe3T with ITI=T~+T2<=A 

E(IX~r--XYT[)<=Ix--y l  e K(A), Vx, yeN. 
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Proof Let us assume that the norm on E is defined by: V x = ( x  1, xe)eE:  [xl 
=lxll+lx21, where Ixil represents the norm of x i on E/. It is sufficient to verify 
that, for i=1 ,  2: 

E~,(I X ~ ' -  X~?~])< Ix i -Yll e K(A~, Vx ~, y leU.  

Let us derive this formula for i = 1. 
It  can easily be verified that if T is a stopping point, then TI(., co2) is a J//~- 

stopping time on (01, J /~,  IP 1) for IP2-almost all co2. Moreover  TI<A a.s. 
Then we get lx~ X~yl __< ]x 1 

En'I(IXTI(',  ~ z ) -  Tt(', ~2)1) - Y l l  et':(A)" 

By integrating by IP 2, we obtain the inequality. [] 

For  a positive real number  and a function feb(E),  we define a family 
y = ( y x ;  x~E) of pay-off processes by 

Vx~E, Vt~IR2+ " Yff=e-V'tf(X~). 

f is called the pay-off function, and p the actualization factor. Let us denote by 
J~ the Snell envelope of the process Y~, for xeE.  

Suppose that f is continuous. Then, by Proposition 2.3.3 we find that there 
is a function qeb(E) which is the p-reduite o f f  such that 

Vx~E: J}=e-PTq(X~.) ,  V Te ~.. 

This formula holds for general b i -Markov processes, but under additional 
hypotheses on processes X 1 and X 2 the Snell reduite q has a better regularity 
property. 

Proposition 3.1.1. I f  the pay-off function f is bounded and uniformly continuous 
on E, and if the bi-Markov family X satisfies the condition of Lemma 3.1, then 
the p-reduite q o f f  is also uniformly continuous on E. 

Proof It is analogous to that of [47] for the classical case. Let T be a s.p., A a 
positive constant, and let x, y be two distinct points in E. Let us study the 
random variable U defined by 

g = ]e- v. r f ( X ~  ) _ e- v. rf(Xyr)]. 

It can be noticed that, for a given s.p. T and a constant A, there exists a s.p. T A 
such that TA<T with TA=T on { I T ] < / }  and [TAI=A on {]T]>A}. One can 
obtain such a s.p. by choosing an o.i.p. Z passing through T, and by defining 
TA=ZIrl ^A. Then, we get the following inequalities. 

U < ]e - p ' r f ( x } ) - e  -v" r~ f (X~) [  

+ [e -p" T'~f(X}~) - e  -v" TAf(XYT.4) [ + ]e - v  TAf(XYTA ) - e - ; "  Tf(XYT) l 

< 4 e -  vA 11 f I] + l e -  p T~ (f(X~.A) --f(X~-~)) 1. 

The function f being uniformly continuous on E, we have 

g ~ > 0 ,  ~5 such that I z - z ' ] < c ~ ] f ( z ) - f ( z ' ) [ < ~ .  
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Using the Chebyschev inequality, we thus obtain: 

2 
E (IN(X}~) -f(XYr~)I) --< e + ~ I I f 11 E(X}~ - X}~ [). 

According to Lemma 3.1, we then deduce a majorant of E(U), independent of 
the s.p. T: 

"3 

E(U)<= 4e-pA ]If I[ + a + ~  [If[I I x - y [  cK(A) .  
o 

Therefore, 

I q (x) - q (Y) I = I sup E (e - v. r f ( x } ) )  _ sup E (e- p rf(x~-)) I 
T ~ 3 -  T E •  

< sup E(e - v ' r  If(X})-f(X}-)[) 
Te~- 

<= 4e-p'A []fH + e + ~  IlfU Ix - y [  e K(A). 

By choosing A, then e and finally x and y, we can make this majorant as small 
as we want. This implies the uniform continuity for q. [] 

As an application of Chapter I, we obtain an existence result for a bi- 
Markov process defined as solutions of two independent stochastic differential 
equations. 

Theorem 3.1. Let X=(XX; x~E) be the flow associated to the system (I) of two 
independent stochastic differential equations with bounded and lipschitzian 
coefficients. Let f be a bounded uniformly continuous function, and let p be a 
positive real number. Then, the optimal stopping problem associated to the pay-off 
process Y defined by 

VteN2+ �9 Y t=e-V" f (X , )  

admits solutions. Moreover the maximal stopping points are optimal. 

Proof In order to apply Theorem 1.1, we must only verify that the Snell 
envelope is completely regular. By Proposition 3.1.1, we know that, for any 
x~E, the Snell envelope J~ is given by 

J~ = e v't q (X~') 

where q is a uniformly continuous function. Let us prove that if (T ' ;  heN)  is a 
sequence of 1-stopping points converging to T such that TI" < T1 and T2 ~ > T2, 
then limE(J~n)=E(J}). Recall that the solutions X 1 and X 2 of equations of 

n 

system (I) are quasi-left continuous and right-continuous [30]. Then, by Propo- 
sition 2.1.2, we get 

lim X}~ = X }  a.s. on (~2, d ,  IP), Vx~E. 
n 

Function q being continuous bounded, we get by dominated convergence: 

lim E(e p r~ q(X}~)) = E(e - p  rq(X})). 
n 

The other situations are treated similarly. This achieves the proof. [] 
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It may be underlined that we proved an existence result for a pay-off 
process which does not enter into the existence conditions studied by A. Millet 
[45]. Moreover Theorem 3.1 gives optimal solutions as the maximal elements 
of the set of stopping points which preserve the martingale property of the 
Snell envelope. This characterization is similar to that given by Mazziotto- 
Szpirglas [38] in the discrete parameter set case. Unfortunately, for the mo- 
ment, we do not know how to generalize the effective construction of [38] to 
obtain a solution. But let us notice that e-optimal tactics could be found, such 
as in the proof of Proposition 2.3.2, and in Bismut [5]. 

By using the results of Chapter II, we can characterize the Snell reduite q 
associated to the preceding optimal stopping problem. From Proposition 2.3.5, 
we know that q is p-weakly harmonic on any subset { f<2q}  for 2~]0, 1[. If 
we assumed further regularity conditions on q, we could then characterize it as 
the solution of a system of variational inequalities similar to those studied by 
Bensoussan-Lions E4]. 

Theorem 3,2. I f  the pay-off function f is such that its p-reduite q belongs to the 
domain ~ (~1 ,  s then it verifies the following system of partial differential 
inequations with free boundary 

(S 1) q _->f. 
($2) ~ l  q<pq and ~q~2 q<pq on E. 
($3) max(s q -pq ,  ~ 2 q - p q ) = O o n  {q>f}. 

Conversely if system (S1, $2, $3) admits a solution in ~(5:1, s then it is the 
Snell reduite q. 

Proof By Proposition 2.3.5, we have (S1), ($2), and ($3) on { f<2q}  for any 
2~]0, 1[. But if q e g ( ~  ~ ~q~2), functions &Olq and s are continuous and the 
inequality extends to {q>f}.  The reciprocal assertion follows from Proposition 
2.3.6 directly. [] 

System (S1, $2, $3) is partly similar to the one considered in the classical 
theory of optimal stopping [2]. The main difference seems to be the existence 
of a non-linear operator in relation ($3). Such an operator appears commonly 
in classical distributed control problem, more precisely in the Hamilton-Jacobi- 
Bellman equation. 

The following associated Dirichlet problem (i.e. with a smooth fixed bound- 
ary) is well known and solved by Brezis-Evans [10], and by Lions-Menaldi 
E22]. 

(S'I) q = f  on the boundary of a smooth domain A. 
(S'2) Max(Sfl q -pq ,  ~2 q-pq)=O in A. 

System (S1, $2, $3) is a free boundary problem which can be interpreted as 
follows 

(S"I) f -q<=O, ~ q-pq<O,  ~2 q -pq~O.  
(S"2) M a x ( f - q ,  ~ q-pq ,  5:2 q-pq)=O in E. 
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Such a system has been recently studied and solved by P.L. Lions [33] in 
appropriate Sobolev spaces. 

Acknowledgements. The author is grateful to an anonymous referee for his helpful comments. 
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