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Summary. This paper explores the possibilities for probability-like models 
of stationary nondeterministic phenomena that possess divergent but boun- 
ded time averages. A random sequence described by a stationary pro- 
bability measure must have almost surely convergent time averages whene- 
ver it has almost surely bounded time averages. Hence, no measure can 
provide the mathematical  model we desire. In turning to lower probability- 
based models we first explore the relationships between divergence, sta- 
tionarity, and monotone continuity and those between monotone continuity 
and unicity of extensions. We then construct several examples of stationary 
lower probabilities for sequences of uniformly bounded random variables 
such that divergence of time averages occurs with lower probability one. 
We conclude with some remarks on the problem of estimating lower 
probabili ty models on the basis of cylinder set observations. 

1. Introduction 

f 
If {Xi} is a strictly stationary random process then its time averages ~R n 1.}_ L 
= n ~ X ~  converge almost surely whenever the process has finite E X  or is 

such that the lim inf and lim sup of its time averages are almost surely finite 
(Kalikow, 1984). If the random process is wide sense stationary then its time 
averages converge in mean square so long as E X  2 is finite. Hence, when 
modeling a physical or social process that we believe to be empirically sta- 
tionary (i.e., we can discern no lawlike patterns of evolution and have no a 
priori theoretical arguments to suggest generating mechanisms that are time- 
varying), we must either assume stability of long-term time averages or else 
postulate infinite moments  or unbounded time averages. Yet data may suggest 
that the time averages are both unstable and bounded. For example, flicker 
noise is a nondeterministic phenomenon that has resisted fully acceptable 
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probabilistic modeling in that the data on such processes suggest both unstable 
time averages (e.g., positive Allan variance (Kroupa, 1983)) and physical con- 
siderations suggest that moments are finite and that the time averages do not 
grow without limit. Furthermore, from a philosophical point of view it would 
be surprising if a commitment to stationarity automatically implied a commit- 
ment to statistical stability, at least in the presence of physically reasonable 
assumptions of finiteness of moments or time averages. Hence, we are moti- 
vated to explore a lower probability-based methodology in the hope that this 
generalization of probability might enable us to reconcile the presently con- 
flicting claims of physical/empirical stationarity, finite moments, and data 
suggesting unstable long term averages. 

In Sect. 2 we present the axioms for upper and lower probability, provide 
examples of lower probabilities, and identify several familes of interest. Since 
the models we seek have to be defined on infinite product spaces, we explore 
those mathematical issues that arise when constructing probability models on 
infinite spaces. Section 3 discusses monotone continuity and its implications for 
extensions of lower probabilities from algebras of events to a algebras. In 
Sect. 4 we consider the property of stationarity (shift invariance) and its impli- 
cations, particularly when combined with monotone continuity, for support of 
sequences having divergent time averages. In Sect. 5 we construct examples of 
lower probabilities that are stationary and give a lower probability of one to 
the divergence event. Section 6 addresses our ability to estimate lower proba- 
bility models on the basis of cyclinder set observations. We conclude in Sect. 7 
and observe that we must rely on the ill-understood class of undominated 
lower probabilities if we hope to achieve a stationary lower probability that is 
monotonely continuous over the class of cylinder sets and supports divergence. 
This paper is based on Kumar  (1982). Research into the uses and properties of 
undominated lower probabilities has been reported in Grize (1984) and Pa- 
pamarcou (1983). 

N o t a t i o n .  Most of the special notation is introduced as it arises in the dis- 
cussion. Some repeatedly used, standard and non-standard, notation is de- 
scribed here. In the following A denotes an arbitrary set and d a class of sets. 

(i) ~ always denotes the empty set. 
(ii) 2 A denotes the power set of A. 

(iii) ~ is used in the infix notation for set difference. 
(iv) I A is the indicator function of A. 
(v) If P and Q are real valued set functions on d ,  then P =~ Q denotes that 

P and Q agree on d ,  and similarly we write P ~ Q, P >~ Q, etc. 
(iv) (•, N) denotes the measurable space consisting of the set of real num- 

bers (IR) and the a-algebra of Borel subsets (~) of IR. 

2. The Basic Upper and Lower Probability Structure 

An upper/lower probability structure consists of a pair of set functions, on an 
algebra of events, which possess properties that are simple generalizations of 
the properties of a probability measure. This structure has previously been 
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studied in the literature in the context of coherent preference between gambles 
(Smith, 1961; Williams, 1976; Walley, 1981), upper and lower bounds to 
degrees of belief on an algebra, given exact degrees of belief on a sub-algebra 
(Good, 1962), inexact measurement of belief (Suppes, 1974), a theory of evi- 
dence based on belief functions (Shafer, 1976) and unstable relative frequencies 
in i.i.d, trials (Walley and Fine, 1982). 

2.1. Definition. Let (~2, sr be a measurable space. A lower/upper probability 
on (~2, sr is a pair of functions (_P,/5) on d satisfying. 

P: ~ -~  E0, 13 

P: d-~E0, 13 
(i) _P(n)= 1, 

(ii) (V A ~ d)_P (A) _>_ O, 
(iii) (VA, B a d ) A c ~ B = O  only if _P(A)+P(B)<=_P(AuB) (super-additivity) 

and if(A) + if(B) ~= fi(A u B) (sub-additivity), 
(iv) (VA~d)_P(A)+P(AC)=I.  [] 

Remarks. All the axioms can be expressed in terms of _P and fi defined 
through (iv) in Definition 2.1. We shall find it convenient to work only with _P 
and shall henceforth denote by (Y2, d,_P) a lower probability space, the upper 
probability being implicit in this notation. 

2.2. Lemma. Let (f2, d , P )  be a lower probability space 
(i) (V A~4)_P(A)  <=P(A). (Hence the occasionally used term "Interval valued 

probability".) 
(ii) (VA, B ~ d )  A c B only if (_P (A) < P (B) and P(A) < if(B)). Thus P and/5 are 

monotone set functions. 

Proof Simple computations from Definition 2.1. [] 

2.3. Examples. Let ((2, ~4) be a measurable space. 
(i) Every probability measure # on (Q ,d )  is degenerately a lower pro- 

bability (VA ~ d ,  _P(A) = t~(A) = fi(A)). 
(ii) If _P and Q are lower probabilities then (V 2, 0 < 2 < 1) so is 2_P + (1 - 2) Q, 

i.e., the class of lower probabilities on (~, d )  is convex. 
(iii) If ~ . . . . .  _P, are lower probabilities then so is R defined by (VA~4)R(A) 

= inf ~(A). In particular combine (i) and (ii) to see that the infimum of any 
l<__i<__n 

class of probability measures is a lower probability. 

2.4. Definition. Let (f2, d ,  _P) be a lower probability space. 
(i) A probability measure/~ on ((2, d )  dominates _P on sJ (denoted # _>~P) if 

(VA ~ ~4)/~(A) >_P(A). 
(ii) The class of dominating measures of a lower probability _P is denoted 

by/ffp and is defined as 
~_p={/~:/~ is a probability measure on (Q,~r [] 

Remarks. (i) Jgp may, in general, be empty. 
(ii) There exists P for which /alp is nonempty (trivially, every probability 

measure # has nonempty ~ , ) .  



4 A. Kumar and T.L. Fine 

2.5. Definition. Let (O, s~r _P) be a lower probability space 
(i) _P is said to be dominated if ~_p + 0. 

(ii) A dominated _P is said to be a lower envelope if 

(VA~sJ)_P(A)=inf{#(A): #~dr }. [] 

Note. Not every dominated lower probability is a lower envelope (for an 
example see Huber, 1976, p. 84). 

3. Lower Probabilities on Infinite Spaces 

In Sect. 4 and 5 we shall be studying models for unstable relative frequency, 
models that will necessarily have to be defined on infinite (product) spaces. In 
this section we present some of the mathematical details associated with upper 
and lower probability structures on general infinite spaces. Our discussion will 
focus on lower envelopes and dominated lower probabilities, as these are the 
models we use in the sequel. The issues that concern us are the continuity of 
lower probability and the unicity of extensions of lower probability. 

Let f~ be an arbitrary, infinite space and let d be an infinite algebra of 
subsets of f2. ~ - ( d )  denotes the smallest a-algebra containing ~ # will always 
denote a countably additive probability measure on Y ( d ) .  

To begin with, we examine continuity of lower probability. 

3.1. Lemma. Let P be the lower envelope of a class of countably additive 
measures on (f2, ~ (d)) 

(i) (continuity from above of P). I f  {A k, k> 1} is a decreasing sequence of sets 
in i f ( d ) ,  s.t. Ak+A, then _P(A)= lim_P(Ak), 

k~oo  

(ii) (countable super-additivity of P). I f  {Ai, i>=l } is a pairwise disjoint 

sequence of sets in ~-(~r s.t. ~) Ai=A , then P(A)>= ~ _P(Ai). 
i = 1  i ~ l  

Proof. (i) (V k > 1) (V# _-> _P) _P (Ak) =< # (Ak) 

.'. (V # >_P) lim sup _P (Ak) _--< lim # (Ak) = # (A). 
~ ~ ~ ~ ( a )  

.'. (V# =>_P) lira sup _P(Ak) __< inf #(A) =_P(A). 
k ~ c c  # > P  

Also (V k > 1) _P (A) <_P (Ak) (by monotonicity of _P). 

.'._P(A) __< lim inf _P(Ak). (b) 

Combining (a) and (b) {_P(Ak)} converges and 

lim _P (A k)= _P (A). 
k~oo  

(ii) P(A)= inf#(A)= inf ~ #(Ai)> ~ inf#(Ai)= _P(Ai). [] 
P-~_P gt=>- P i = 1  i = l  l~>=_P i = 1  
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The following example demonstrates that, in general, lower envelopes are 
not continuous from below. 

3.2. Example. Define a lower envelope on (IR, N) as follows. 
Let (Vn__> 1)#, denote the probability measure satisfying #,({n})= 1. 
Let (VAsN)_P(A)g inf#n(A ). Clearly P is a lower envelope of countably 

additive measures. "->- 1 

Let (Vi> 1) Ai= ( -  o% i]. 
Clearly AiTN. 
But (Vi__> 1)_P(Ai)=0 and P(IR)=I .  Hence P is not continuous from below 

at N. [] 

We now turn to the issue of the extension of lower probability. 
If _P is a lower probability on (f2, W(d) )  and # is a countably additive 

probability measure on (f2, d )  such that # _>_d_P, then, in general, the unique 
countably additive extension of # to i f ( d )  need not dominate P on Y ( d ) .  
The following result yields a condition on P under which the extension of # 
does dominate P. Note that the result applies to more general set functions 
than lower probabilities. 

3.3. Proposition. Let  _P be a monotone set function on (~2,~(st)). I f  _P is 
continuous from below on d (i.e. (V{Ai, A i ~ , i > I } ) A I T A ( 6 ~ ( d ) )  
~ P(A~)T g(A)), then # >=~ P ~=> # >_~r 

Proof  It suffices to show # >=d_P ~ #  >~(~) P. 

Let d~ (resp. d~) denote the class of sets obtained by taking unions (resp. 
intersection) of countable families of sets in sO. 

Let # be a countably additive probability measure on (f2, ~ ( d ) )  s.t. # >=d_p. 
We first show # >~_P. If Bed~ ,  3 {Biesr i>  1} Bi'~B , then since P is continuous 
from below on d we get 

#(B) = lim #(Bi)> lim _P(B~)=_P(B). 

Let A e ~ ( d ) .  Then (see e.g. Royden, 1968, p. 256) 3 ( { A i e d ~ , i > l } ,  
(Vi => 1) A i~  Ai+ 1 ~ A) s.t. #(Ai)J,#(A ). Hence, using the monotonicity of P and 
the fact that # >~r 

#(A) = lim # (A~)> lim _P (A~)>_P (A). 

Hence # >~(d)-P- [] 

In Sect. 6 we shall encounter examples which show that, unlike countably 
additive probability measures, lower envelopes of countably additive probabili- 
ty measures may not have unique extensions. Lemma 3.4 demonstrates a 
simple, natural extension to (f2, ~ ( d ) )  of a lower envelope of countably 
additive measures on (~2, d ) .  

Let _P0 be a lower envelope of countably additive measures on (~2, sr 
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Let 
J / /=  {#:/~ is a probability measure on (f2, f f(sJ))  and #->_~_Po} 

and let _P be the lower envelope of ~ / o n  (g2, ff(s~r 

3.4. Proposition. (i) P-~_Po i.e. _P is an extension of _Po to ~(sJ) .  
(ii) I f  Q is a lower envelope on (f2, ~,~(d)) s.t.Q =~P0 then Q >~r i.e. _P is 

the minimal extension of _Po to a lower envelope on (f2, ~ ( d ) ) .  

Proof. Follows easily from the fact that every countably additive probability 
measure on (g2, d )  has a unique extension to a countably additive probability 
measure on (~, ~(~ ' ) ) .  [] 

We call P the canonical extension of -Po to (s ~ ( d ) ) .  

4. Stationary Lower Probabilities 

In this section we develop some results about stationary set functions (in 
particular stationary lower probabilities) on the countably infinite product of a 
finite measurable space. Henceforth, let Q be an arbitrary finite space and d 
an algebra of subsets of Q. Let f2o~ be the countably infinite product of ~, <goo 
the algebra of cylinder sets (or finite dimensional sets) and d ~176 the a-algebra 
generated by ~oo- To discuss stationarity we need to introduce the following 
shift operator. 

(Vk__> 1) Tk: t'2~ ~ denotes the left-shift-by-k operator, i.e. if 
={o)1,co2 . . . .  } then Tkp={COk+l,COk+2,...}. We also denote, for all k > l ,  by 
T k the set function on 2 e~ defined by (VAc f2~)TkA={Tk~:~oeA} .  For  all 
k > l ,  T -k denotes the set function on 2 e~ defined by ( V A c f Y ~  
= {p: Tkp~A}.  Note that T -k cannot be thought of as a point function in the 
same way as T k can. Also observe that 

(VA ~ ~ ) ( V k >  1) T k ( T - k A ) = A  

but T - k ( T k A ) ~ A ;  for instance 

T - I ( T { ~ :  co l=O})=T  l(f2~)=g2~D{~:  (o,=O}. 

As usual we define the relative frequency function by 

(VA ~ d )  (Vn > 1) r,(A) : s ~-~ [0, 1], 

where r , (A)(p)= 1 ~ IA(O~ d. 
i = I  

Let D be the set in d ~ defined by 

D = { ~ :  (3A ez~r lira sup r,(A) (p) > lira inf r,(A) (p)}. 
n ~ c o  n ~ c o  

D will be called the divergence (of relative frequency) event, and C~-D c is the 
convergence event. 
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4.1. Lemma. (i) V({Ci, Ci~Cd<,i>l}). (~ C i = O ~ 3 N > I  s.t. 0 C,=r 
i > 1  i N N  

(ii) Every finitely additive probability measure on cdoo is countably additive. 

Proof (i) (doo is the algebra generated by the semialgebra of measurable rect- 
angles which is easily seen to possess the property asserted for c#~. Since (d~ 
is just the collection of finite disjoint unions of rectangles, Lemma 1.6.1. of 
Neveu, 1965, p. 26, now applies. 

This result also follows from a topological compactness argument. Since ~2 
is finite, f2 ~176 can be shown to be isomorphic to a compact subset of [0, 1] in P, 
(e.g., for I1f2[I--2, ~2o~ is isomorphic to the ternary Cantor set). Measurable 
rectangles then correspond to closed subsets of this compact set. Since cylinder 
sets are finite unions of rectangles, they too are closed. The result then follows 
from the definition of compactness. 

(ii) Follows from (i). [] 

We say that a set function _P on (M ~176 d ~176 is (right shift) stationary when 

(VA~d~ > 1)_P(T-kA)=_P(A). 

We seek stationary models which support divergence in the strong sense that 
P(D) = 1. 

4.2. Proposition. Let _P be a stationary, dominated set function on (~2 ~, cd~). Then 
there exists a right-shift stationary probability measure t~ on (f2 ~, cd~) s.t. 

4' >=~_P 

i.e., there is a stationary dominating measure on (doo. 

Proof Let # be an hypothesized probability measure on (~2 ~176 cdo~ ) s.t. ff >~_P. 
So 

(VA e cgoo)(Vk __> 1)/~ (T -k+ 1 A)__>_P(T -k+ 1 A)=_P(A). 
Hence 

(VA~Coo)(Vn-=l) 1 k # ( T - k + I A ) > = - P ( A )  �9 
n k = l  

is a bou d d s quence it has 

convergent subsequences. By the countability of cd~ and a diagonalization 
argument, there exists a subsequence indexed by {ni} s.t. 

1 
(VA ~(d~) -- 

n i 

Observe now that: 
(i) 0 > ~  P, 

(ii) (VA~Cd~)(Vk__> 1) r = ~(T-kA) ,  
(iii) (VA~Cd~) O(A)__>0 and ~h(Q~)= 1, 

ni 

#(T -k+ 1A) converges to O(A) (say). 
/ = 1  
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(iv) Since Ac~B=O ~ ( V k >  1)(T-k+~A)c~(T-k+IB)=O 

O ( A ~ B ) = l i m  1 ~ #(T k + l ( A u B ) ) = l i m l  ~(12(T_k+lA)+#(T_k+lB))  
i ~  ni  k = l  i ~ m  Hi k = l  

= O(A) + O(B). 

Thus 0 is a right shift stationary, finitely additive probability measure 
on(~2~,~)  which dominates P on c~o~. Lemma 4.1 ensures that 0 is also count- 
ably additive on ~oo and hence is a probability measure in the usual sense. [] 

4.3. Theorem. I f  _P is a monotone set function on (g2 ~, d ~) s.t. 
(i) 3 a probability measure #, 12 > ~  _P, 

(ii) _P is stationary on ~oo, 
(iii) _P is continuous from below on c~ (i.e. V{CI, C i ~ . , i >  1} C i ~ C ~ ( ~ ) ,  

~_P( Ci)'~_P( C)), then there exists a stationary probability measure v on (g2 ~176 ~r 
s.t. v >-~_P. 

Proof Proposition 4 . 2 ~ 3  stationary probability measure ~b on (f2~176 s.t. 
>e~o-P" Let v be the unique extension of ~b to a (countably additive) probabili- 

ty measure on (f2 ~,sr Then v is stationary and Proposition 
3.3 ~ v  ->_d= P. [] 

4.4. Corollary. I f  _P is a monotone set function on (f2 ~, sJ ~) which is dominated, 
continuous from below on cgoo and stationary then _P(D)= 0 and P cannot support 
diverging relative frequency. 

Proof Theorem 4 . 3 ~ 3  a stationary probability measure v s.t. v>eo~_P. But 
clearly by the finiteness of ~2 and the strong erg0dic theorem v(D)=0. Hence 
_P(D)=O. [] 

Thus stationary set functions, on ( ~ , ~ r  which satisfy regularity con- 
ditions much weaker than countable additivity cannot support divergence. 
Hence stationary set functions that do support divergence are going to be 
strongly constrained. 

5. Stationary Lower Probabilities That Support Diverging Relative Frequency 

In this section we give several examples of lower probabilities which support 
diverging relative frequency and are (right-shift) stationary on d ~. In con- 
structing stationary lower probability models on (f2 ~, d ~176 that support diver- 
gence, we have not proceeded by specifying marginals, constructing a lower 
probability on ((2 ~176 cg~) and then extending it to (~2 ~, d~ One of the prob- 
lems in adopting this procedure is that the lower probability on (0% cgo~ ) will 
in general have several extensions to (0% d ~ ) ;  the natural extensions (e.g. the 
canonical extension of a lower envelope) do not support divergence, and it is 
not clear how to extend so that the extension does support divergence. Instead 
we start with some kind of infinitary specification on ((2 ~, d ~ ) ;  e.g. a class of 
measures on (~2 ~176 d ~) or an infinite sequence in f2 ~ on which relative ffequen- 
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cies diverge. From this specification a lower probability is then determined 
(Examples 5.2, 5.3, 5.4). The specification is chosen so as to ensure stationarity 
and support of divergence in the resulting lower probability. We have obtained 
several classes of models using this procedure and have, specifically, shown the 
existence of stationary finitely additive models that support divergence. 

Let ~2={0,1} and d = 2  {~ Denote by l~I~i the product probability 
i = 1  

measure on (f2 ~~ ~4 ~) for which the probability of 1 on the ith "trial" is ~i- 

5.1. Example. Let 0 < _ p < F < l a n d  let ~ =  #: # =  ~ ~ci, (Vi>l ,p<rc i<p)  and 
i = 1 .  

lim inf 1 ~ ~i =_p, 
n ~  oo t l  i = 1  

1 
lim sup E 

n ~  oo F/ i 

Let P be the lower envelope on (f2% d ~~ of the class of measures ~(. 
It is easily seen that P is stationary on d ~. Also since ( V p ~ ) / ~ ( D ) = I ,  

therefore P(D)=I .  Corollary 4.4 will then have us conclude that P is not 
continuous from below on (g~. [] 

5.2. Example. Let co'e~2 ~ be a sequence of alternating blocks of 0's and l's 
such that the block length increases rapidly (e.g., ith block has length 22~). 

Let S = {O', TO', T 2 0  ", . . . .  TkO ", ...}. (VA c ~2 ~~ define 

_P(A)=lim inf 1_ i IA(Tk-Io') 
, ~  n k=l 

where IA(') is the indicator function of A. Because of the properties of lim inf, 
it is easily seen that _P is a lower probability on 2 a~. Also 

(VAc~Q~)(Vk=> 1)_P(A)=_P(T kA) 

i.e., _P is stationary, and since SoD and _P(S)=I, therefore P(D)=I .  [] 

The following example shows that it is in fact possible to contruct a finitely 
additive probability measure on (~2 ~, 2 r~) which is stationary and supports 
diverging relative frequency. 

5.3. Example. Let O" and S be as in Example 5.2. 

Index the elements of S by the positive integer sequence {j}, the cor- 
respondence being j+--~ T j-  ~ O'. 

Consider now (VAcf2 ~) the sequence 1 ~ IA(T i 10.)" Let g o 2  e~ be the 
/'/ i =  1 

class of sets for which this sequence converges and denote by P the limit 
function on g. Our objective is now to extend P on g to a stationary, finitely 
additive probability measure on 2 e=. This extension is achieved by using a 
generalizatibn of the Hahn-Banach theorem (Royden, 1968, Chap. 10, Proposi- 
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tion 5). In order to bring the problem into a form suitable for the application 
of this result an intermediate extension step is required. 

Denote by ~o(g) the linear space of all finite, linear combinations of 
indicator functions of sets in g, i.e. XES,r iff 3E 1 . . . .  ,E  m, Ei~g and real 

numbers ~1 . . . . .  % s.t. X =  ~ a i lE .  Similarly let ~ denote the linear space of 
i = 1  

all finite, linear combinations of indicator functions of sets in f2 ~. 
(VXe~) (Vk>I )  denote by T - k X  the right-shift by k of X, defined by 
( V O e f I ~ ) ( T - k X ) ( o ) ) = X ( T k o ) .  Clearly { r - k : k > O }  forms an Abelian semi- 
group of linear operators on ~ .  

Lemma 5.4 a (below) allows us to extend P on C to a linear functional e on 
~(g) .  Through e we define a function _E on 5o. Lemma 5.4b shows that e on 
~ ( g )  and _E on Y (and the semi-group of right-shift operators) satisfy the 
conditions of the generalization of the Hahn-Banach theorem mentioned 
above. Application of the theorem yields a right-shift invariant linear function- 
al E on ~ which agrees with e on ~(~).  m 

Define the real value functional e on 5F(E) as follows" If X =  ~, c~iI~q 
i = 1  

(where Eieg ,  l < i <m) then e(X)  ~- cq P(Ei). 
i = 1  

5.4a. Lemma. (i) I f (Voe t?  ~176 ~, ct~I~q(p)> ~ fijlF~(O) then 
i=1 j=l 

i=1 j=l 

(ii) e on ~F(E) is well-defined i.e. if  X(a~(E))  is s.t. X =  ~ otiI~q and X 
i= 1 

= ~ flj IFr , then 

i = 1  j = l  

(iii) e is monotone on ~ ( r  i.e. (VX, Y ~ ( g ) ) X >  Y ~ e X  > e Y  

Proof. (i) From the definition of the set function P on g, and indexing the 
elements of S by k in the following expressions, we have 

otiP(Ei)= O: i lira t (k)= lim -1 o:ilEi(k ) 
i = 1  i = l  t~oo  k =  t ~ c o  t k = l  i =  

which, by hypothesis, 

(ii) and (iii) follow immediately 

>l im-1 ~ ~ f l j i f j (k)  
t ~ o o  t k = l  j = l  

n 1 t 

_~1 fljlim t ~=11Fj(k) 
~ j =  t ~ e o  k =  

= ~ ~jP(Fj). 
j = l  

from (i). [] 



Stationary Lower Probabilities and Unstable Averages 11 

Clearly e is a linear functional on the linear space 50(C). Further we 
observe that, ( V k > l ) g  is closed under T -k, 50(g) is closed under T -k, 
(VEIN) P ( T -  k E) = P(E) and, consequently, (VX~ 50(4~ e (T-  kx)  = e(X). 

Define the function _E on 5 ~ as follows. 

(VX6 ~q~ = sup {e(X'): X 'e  50(•), X' < X}. 

5.4 b. Lemma.._E defined above has the following properties. 
(i) (V2 > 0)E (2X)= 2_EX, 

(ii) (VX, Ye50)_E(X + Y)> E_X + E.__Y, 
(iii) (VXa50(N)) EX <_ eX, 
(iv) (VXe~)(Vk > 1)_E(T-kX) >_EX. 

Proof (i) Obvious. 
(ii)(Ve>0)3X'e50(g), X ' < X ,  eX'>=E_X-e/2 and 3Y'e~(6~), Y'<=Y, 

e Y' > E Y -  e/2 then (X' + Y')E 50(g) and (X' + Y') =_< (X + Y). Hence_E(X + Y) > e (X' 
+ Y') 

(iii) Follows from the monotonicity of e on 50(g) (cf. Lemma 5.4 a). 
(iv) (VX~Y)(Vk> 1) 

E_ (T-k  X) = sup {e(X'): X' e 50 (g), X'  < T-k  X} 

> sup {e(T-kX'): X'e50(g), T - k x ' <  T - k X }  

=sup {e(X'): X' ~ 50(g), X'  < X} 

where the last step follows because of the stationarity of e and because 
T - k x ' < = T - k X  iff X'<=X. 

Thus E_(T-kX)>E_X. [] 

We now state and use the following result from Royden, 1968. We use 
Royden's notation in stating this result. 

5.4e. Proposition. X is a linear space and S is a linear subspace of X. G is an 
Abelian semigroup of linear operators on X s.t. (Vs~S)(VA~G)As6S. I f  p is a 
real-valued function on X s.t. (Vx, yeX),  

(i) (V c~ > 0) p (~ x) = ~p (x), 
(ii) p (x + y) > p (x) + p (y), 

(iii) (VAsG)p(Ax)>p(x)  
and f is real-valued linear functional on S s.t. (Vs6S) 

(i) f(s)>=p(s), 
(ii) (VA e G)f(As) = f(s) 

then B a real-valued linear functional F on X s.t. 
(i) (VseS) F(s)  = f ( s ) ,  

(ii) (Vx e X) F (x) > p (x), 
(iii) (VAEG)(Vx~X) F(Ax) = F(x). 

Proof See Royden 1968, pp. 188-190. 

Returning to our notation in the present example. 

$.4 d. Lemma. The function E_ on the linear space 50, the linear functional e on 
the subspace 50(g) of 50, and the Abelian semigroup of linear operators 
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{T -k, k > 0} on ~Cf satisfy the conditions of Proposition 5.4 c. Hence there exists a 
linear functional E on ~ s.t. 

(i) E >~e_E, 
(ii) E=~(e)e , 

(iii) (VX~ 2,~ ~ (Vk __> 1) E ( T - k X ) =  EX.  

Proof. Direct application of Proposition 5.4 c. [] 

So now we have a linear functional E on ~ s.t. (VXeL, e ) ( V k > I ) E ( T - k X )  
= EX.  Observe that 

(i) ( V X ~ F ) X > O ~ E X > O ,  which follows because (VX~ .L~ ' )X>O~EX>O 
which in turn follows because ( V X ~ e ( E ) ) X > O ~ e ( X ) > O  which follows by 
the monotonicity of e, 

(ii) (i) ~ monotonicity of E, 
(iii) EIo~ = elr~ = 1. 
Thus the function m: 2 ~ - ~ [ 0 ,  1] defined by m(A)=E(IA), is a finitely ad- 

ditive probability measure, m is stationary because of the stationarity of E and 
since S c D (S as in Example 5.3) and re(S) = 1, therefore m(D) = 1. [] 

6 .  E s t i m a b i l i t y  

Having demonstrated the existence of stationary models that support diverging 
relative frequency, we turn now to the important question of estimability; i.e., a 
rational selection of a model from a given family on the basis of observations. 
The most general question that can be framed in this context is whether there 
exists a notion of estimability for the entire class of stationary models (i.e., 
including countably additive, finitely additive and non-additive structures). If 
we restrict considerations to the class of countably additive, stationary and 
ergodic models then, at least in principle, the ergodic theorem provides a 
notion of estimability with an asymptotic justification. The general problem is, 
however, fraught with difficulties, many of which are induced by a rather 
intractable subclass of models. If such a notion of estimability for the entire 
class of stationary models existed, then it would allow us, to estimate a model 
on the basis of observable events (i.e., cylinder sets). Thus, a fortiori, it would 
allow us to induce support of divergence or convergence of relative frequency 
in the estimated model. That such a notion of estimability with respect to the 
entire class of stationary models is impossible is shown by the following 
example. 

6.1. Example. Let p_,p,M and P be as in Example 5.1. Let 

- ~ ' = { # :  # =  ~ rci,(Vi>l,P<ni<=p) andlim 1 ~ P+P~ - 2_. ~ i  = ~  ( i)  
i = l  - -  n ~ w n i = l  2 J 

Let _19, be the lower envelope of ~ '  on (f2 ~, d ~ ) .  It is then easily seen that 

(i) _P' and P are stationary on d ~. 
(ii) e ' - - ~ e .  

(iii) ff(O c) = 1 and P(D) = 1. 
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Thus P and P' are stationary lower probabilities that agree on cg~ and yet 
one of them supports divergence whereas the other supports convergence. [] 

However, obviously, no finite collection of observations from an infinite 
sequence can convince us of the convergence or divergence of that sequence. It 
is thus hardly surprising that one is unable to base a notion of estimability, for 
the entire class of stationary models, just on observable events. In the classical 
theory, by choosing to model all stochastic phenomena with countably additive 
measures, it is as if one independently imposes the constraint of convergence of 
long-run averages on all stationary models. What then if we have independent 
reasons to expect divergence in a stationary model? Thus it is interesting to 
examine whether certain sub-classes of stationary models that support diver- 
gence are estimable in terms of specific notions of estimability. 

The following is a direct extension of weak-law type estimability to the 
framework of lower probability. 

6.2. Definition. We say that a class of models • on (f2~176 is strongly 
estimable if 

(VC~Cgoo)(Vn>=I)(3P~(C))P~(C): f2~176 and _Ps 

is measurable w.r.t. (f2 ~, cg,) s.t. 

(v_P~g)(vc~:oo)(w>o)g(lg~(c)-p(c)l <~)~1. [] 

Note that since the models we are considering are in general not de- 
termined by their restrictions to (f2~176 for any n, an infinite number of 
observations will be needed to estimate the complete model on ((2~,cg~). 
Further, since these models are in general not determined by their restrictions 
to (~2 ~, cg~), this notion is estimability cannot distinguish between models that 
agree on the cylinder sets (cf. Example 6.1). 

Consider, for instance, the models discussed in Example 5.1. We might 
expect that at least the marginal lower probabilities for these models can be 
estimated through an estimator of the form 

Ps = min rj(1), 
n<j<n+k(n)  

where k(n)---, oo as n ~  oo. However, no matter what the choice of k(n) it can 
easily be shown that for 0 < e < p - p  

-P(I min rj(1)-_P(~" col= 1)l < e)~O. 
n<j<n+k(n)  

This last result holds even if we were to impose a natural choice ofk(n) on the 
class of models by defining _P as the lower envelope of: (k(n) is fixed) 

J / " = {  #: #= ~] ~i'(Vi> l)p-<rci <-- 

min 1 ~ ~i~l im inf 1 ~, ~zi=_p 
n<-j<n+k(n) J i = l  n~co n i ~  1 

1~, 1 "  } 
max ~zl---,lim sup ~ ni = P �9 

n<_j<=n+k(n) J i = 1  n ~ c o  F / I =  1 
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In the latter case the following strong law type result holds: 

P{~:  min rj(1)~_P(co: col = 1)=p} =1. 
n<=j<=n+k(n) 

But lack of continuity in the models denies us the weak law. This phenomenon 
seems surprising since we have borrowed the 'strong/weak' terminology from 
the theory of countably additive measures, where a strong law is indeed strong 
in the sense that it implies the weak law. 

A very similar situation arises for Example 5.3 where it can be shown that 

(VC~o~)(3k(n))_P{p: min rj(C)(p)-~_P(C)}=I 
n<=j<=n+k(n) 

I 

where rj(C)(~) & ~. ~ Ic(T i-' ~). However, it also turns out that 
J i =1 

(Ve, l > e > 0 ) P { ]  rain rj(~o: c o l = 0 ) - P ( ~ :  c o l = 0 ) l < e } = 0  
n<j<n+k(n) 

for all n. (Note that in this example _P(p: col =0)=0 . )  
Thus if we adopt strong estimability as the relevant notion then in all the 

examples we have considered, the models are not estimable through the na- 
turally identifiable estimators. 

That  such situations, as have been described in the above examples, can 
arise is due to the lack of continuity of the probability models considered 
therein. All the examples considered in Sect. 5 involve dominating measures on 
(f2~,r and hence, according to Corollary 4.4, cannot be continuous from 
below on qf~ if they are to support diverging relative frequency. So, if we 
confine ourselves to dominated lower probabilities, the natural question that 
arises is whether there is some restricted notion of continuity from below 
which when coordinated with a notion of estimability, such as strong estima- 
bility (Definition 6.2), will lead to an estimable class of models. 

Given our present strategy for constructing lower probabilities that support 
diverging relative frequency, it appears that such a notion of continuity cannot 
exist. We start with some kind of infinitary specification (i.e., do not specify 
marginals) and then the lower probability (_P) is determined from this specifi- 
cati0:~ ln one way or another (see Sect. 5). This method of specification enables 
us to assure stationarity and support of divergence, and the way in which 
divergence is assured motivates an estimator (say _Ps A weak law type result 
(and hence estimability) would now hold if, through some kind of continuity, it 
is possible to approximate the divergence event through events of the form 
{]_Ps <e}. However, if there is a dominating measure on (/2~176 its 
continuous extension to (~?~,d  ~176 will clearly be able to approximate the 
divergence event in the same way, and the limit under the dominating measure 
will domina~te the limit under _P. Since the dominating measure can always be 
taken to be stationary (cf. Corollary 4.4) this will imply that _P(D)= 0 which is a 
contradiction. 

To illustrate this argument we provide the following example. 
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6.3.Example. Let _P be specified through a class of measures J//" defined earlier 
in this section. P is continuous from above by virtue of being a lower envelope 
(Proposition 3.1). Suppose _P is also continuous from below on (cg~)a~cg~. Now 
for e > 0 (small enough) 

= lim g Ir~ - r;[ > 
m ~ o o  

= lim lira _P 0 
m~oo l~c~ l>= m 

( )) < lim l imp I r~-r ; l>e  
m ~ o o  I ~ o o  I >  _ m  j 

where # > ~  P and # 

(by continuity from below on (cgoo)a ~ ~ )  

(by continuity from above) 

is stationary 

=~t (n+k(n) rj,>8)) 
= 0 since p(D c) = 1. 

Hence we have a contradiction and P cannot be continuous from below on 
(%)~~%. [] 

Thus, if we confine ourselves to the present class of stationary models that 
support divergence, it seems futile to look for an estimator under which this 
class of models (or a subclass of it) is strongly estimable. Absence of continuity 
disallows derivation of a "weak law" type result (which is what strong estima- 
bility amounts to), even through we have forced these models to satisfy the 
corresponding "strong law". Instead we turn to the following notion of estima- 
bility which has its obvious counterpart in the classical theory of hypothesis 
testing. We restrict to finite classes of models. 

6.4. Definition. We say that the class of modeis  g = {_/'1,..., _Pk} is estimable if 

3 {{E~}i__> 1 ... {E~}i>=~(Vi,j,l<j<k,i>l,E~eCgi) 

(Vj~,j2 , 1 ~Jl <J2~ k and Vi> 1 E{lc~E~2 = 0)} 

s.t. V j, 1 < j  < k_Pj (E~ all but f.o. in i) = 1, 

i.e., in words, there exists a sequence of (disjoint) acceptance regions (or critical 
regions) such that the lower probability of accepting the "correct"  hypothesis 
all but finitely often is equal to one. []  

6.5. Example. Let -PI,~ and P2 be lower envelopes of J//1,~ and Jr defined as 
follows. 
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Let 0 < p < p < l  and o<5<p-8, k(n)--*oo as n--*oo 

~11'~={ #:#=I~Ir t / 'vi>I ' -p~i--<p:i : I  

min 1 ~, i~ converges 
n<j<_n+k(n) J i=1 

1• 
max - rc i converges 

n<=j<=n+k(n)J i-1 

and the limits differ by more than 5} 

d/2 = {#: # = 1~176 ~z> gi > 1' -P < ~z~ < P ' !  ~ ~zl c~ " ~=1 ~1 

tn+~) (n) 5} 2 Let E.~= I r . - r j l>~  and E. =(E~) c. 
~ j=n 

Then clearly 

(i) _P~,~(U ~ E~)=I  
m>_ln>_m 

m>_ l n>_m 
(ii) _PI,~=~_P2, and 

(iii) -PI,~ and -P2 a r e  stationary on ~cr ~. 

Now according to the testing procedure in Definition 6.4 Px,~ and -P2 are 
distinguishable, yet as far as observable events are concerned they are in- 
distinguishable ! [] 

7. Conclusions 

Our principal result is that if a model for a stationary stochastic phenomenon, 
(on a finite sample space) with unstable sample averages, is a monotone set 
function, dominated by a probability measure, then it cannot be continuous 
from below on the cylinder sets. Thus, in particular, an upper/lower probability 
model must satisfy these necessary constraints. We have, however, demonstrat- 
ed several reasonable stationary lower probability models which do support 
divergence. In particular we have constructed such a finitely additive model on 
({0, 1}~176 2 {~ 1}~). 

The question of estimability for these classes of models reveals some anom- 
alous behavior in them, anomalous because such behavior is not displayed by 
the classical models based on countably additive probability measures. The 
models are not estimable in terms of the obvious counterparts of some classical 
notions of estimability. Models which satisfy a "strong law" type result fail to 
satisfy the corresponding "weak law". Models which are asymptotically dis- 
tinguishable in terms of an hypothesis testing procedure are indistinguishable 
in terms of observable events (i.e., cylinder sets). 
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All models considered involve dominating measures and hence, owing to 
the result stated above, cannot be continuous from below. The classical notions 
of estimability depend on continuity from below and no restricted notion of 
continuity seems suitable. Thus it appears that interesting, estimable classes of 
models should be sought outside the class of dominated lower probabilities. 
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