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Time-Revealed Convergence Properties 
of Normalized Maxima 

in Stationary Gaussian Processes* 

Y a s h  M i t t a l  

Let {X(s), s>0} denote a real-valued, separable, stationary Gaussian Process with mean zero 
and variance one. Let {r(s), s>=0} be the covariance function, Mr={supX(s): O<=s< T} and Cr= 
(2 In T) �89 Suppose 

(1) 1 -r(s)~ CIs[ ~ as s ~ 0  for some constant C>0 and 0 < ~ < 2  and 

(2) r(s)lns--*O as s~oo.  Then 
1 1 

lim infcr(M r-cr) / lnln  T . . . .  a.s. and 
r ~  ~ 2 

1 1 
(3) lim sup c r (M r - Cr)/lnln T = - -  + ~- a.s. 

Suppose (1) holds and 

(4) r(s)(lns) 1 +~ ~ 0 as s ~ oo for some ~ > 0. Then 

(5) l im E(exp(t UT))= E(exp(t X)) 

for t>0  sufficiently small where X is a random variable with distribution function exp(-exp(-x)) ;  
- oo < x < ~ and U r is defined as 

/ \ 1 1 
Ur=cT(Mr-ar) and ar=cr + t ~ - ~ )  ln(V, ln T)/c r 

V~ being a positive constant. The condition r(s)(lns) ~ -~--* 0 as s ~ ~ is not sufficient for these results. 
Result (3) improves that of Pickands (Trans. Amer. Math. Soc. 145, 75-86 (1969)) and Quails and 
Watanabe (Ann. Math. Stat. 42, 2029-2035 (1971)). 

1. I n t r o d u c t i o n  

Le t  {X(s), s > 0 }  d e n o t e  a r ea l -va lued ,  s e p a r a b l e  s t a t i o n a r y  G a u s s i a n  p roce s s  

wi th  E X ( s ) = O  a n d  E X 2 ( s ) = I .  Le t  {r ( s ) , s~O}  be the  c o v a r i a n c e  f u n c t i o n  

r ( s ) = E ( X ( s ) X ( O ) )  a n d  let M r =  {sup X(s ) :  0 <  s_< T } . W e  c o n s i d e r  p rocesses  for  
wh ich  

1 - r ( s ) , , , C l s [  ~ as s ~ 0 ,  (1.1) 

for s o m e  c o n s t a n t  C > 0  and  0 < ~ < 2 .  C o n d i t i o n  (1.1) ensures  the  c o n t i n u i t y  o f  
s a m p l e  p a t h s  for  X(s)  a n d  h e n c e  M r is f ini te  a l m o s t  surely.  

Convergence  in d i s t r i b u t i o n  o f  su i t ab ly  n o r m a l i z e d  M r  was c o n s i d e r e d  by  

C r a m 6 r  [3],  B e l y a e v  [1],  Qua l l s  E l l ]  a n d  P i c k a n d s  [10].  P i c k a n d s  p r o v e d  tha t  

r ( s ) l n s ~ O  as s ~ o %  a l o n g  wi th  (1.1), is suff ic ient  for C r ( M r - a r )  to c o n v e r g e  

in d i s t r i b u t i o n  to a r a n d o m  va r i ab l e  X w h e r e  X has  d i s t r i b u t i o n  f u n c t i o n  

* This work has been partially supported by Air Force Grant AF-AFOSR-69-1781. 
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e x p ( - e x p ( - x ) ) ,  - c ~  < x < ~ .  Here CT and a T are constants defined as follows: 

CT = max {(2 In T)�89 0}; 

(_~ 1)  
a r = e r +  ---~ ln(V~lnr)/cr if r > e  (1.2) 

= 0  if T<e ,  

V~ being a positive constant given explicitly in [10]. 

Mr is said to be respectively "stable" or "relatively stable" if M r - - C r ~  0 
or MT/Cr--' 1 as T~  oo. The modes of convergence considered are convergence in 
probability and almost sure convergence. Progressively weaker conditions on 
the covariance function were used by several authors for results in this area. (Ref. 
~ur [13], Cram~r [3], Pickands [8], Nisio [6], Marcus [4] and Watanabe [15].) 
Analogous results for the discrete parameter case are referred to in [5]. For the 
continuous parameter case one has MT--CT--'O a.s. as T ~ o o  if (1.1) holds and 
r(s)lns ~ 0 as s ~ .  Also Mr/cr-+l a.s. as T ~ o e  under a very weak local condi- 
tion and r (s) ---, 0 as s --* oe. 

Our interest lies in the rate at which MT--CT~O as T ~ o o .  In this direction 
we prove 

Theorem 1. I f  (1.1) holds and 

r(s) lns~O as s ~ ,  (1.3) 

then 1 1 
lira inf c T (M T - CT)/lnln T -  a.s., (1.4) 

T~ oo 0~ 2 

1 1 
limr~SUp~o r (MT -- CT)/lnln T= ~ +-~ a.s. (1.5) 

Theorem 1 extends results of Pickands [10] and Qualls and Watanabe [12]. 
The extension lies in the weakening of the mixing condition previously used, 
viz., r(s)sr~ 0 as s ~ for some 0 < ? < 1. It is made possible by the following 
two lemmas giving information about the tails of the distribution of Mr. 

Lemma 1. Let (1.1) hold and suppose 

r(s)( lns)l+~O as s~oo  for some e>O. (1.6) 
Then 

exp(tA2)p(MT~aT--A/CT)-~O as A ~  (1.7) 

uniformly in T for all sufficiently small values of t. 

Lemma 2. I f  (1.1) and (1.3) hold, then 

( [1  + 1 ~  lnlnT V T > z o ) = 0 .  (1.8) 
P 3z~ ~-~ 2I  e T 

Lemma 2 is a particular case of Theorem A of Pathak and Qualls [7]. Our 
result was obtained independently using different techniques. 

In support of the sharpness of the Condition (1.3) we give the following theorem. 
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Theorem 2. Let the covariance function r(s) be non-increasing, satisfying (1.1) 
and 

r(s)-~O but (r(s)lns)/lnlns-~oo as s--,oo. (1.9) 
Then 

lim infc r (M r - CT)/lnln T= - oo a.s. (1.10) 
T ~ o o  

We also establish the convergence of the moment generating function of 
suitably normalized M r. Since this depends heavily on Lemma 1 we require the 
stronger mixing Condition (1.6) instead of (1.3). Corollaries 1 and 2 then estimate 
asymptotically the variance and the moments of Mr.  

Theorem 3. Under the Conditions (1.1) and (1.6) we have 

l i m e  (exp (t YT)) = E (exp (t X)) (1.11) 
T--* oo 

for all sufficiently small t where X is a random variable with distribution function 
e x p ( - e x p ( - x ) ) ,  - o o < x < o o  and Y r = c r ( M r - a r ) .  

Corollary 1. For any random variable Z let a 2 (Z) denote EZ 2 -  (EZ) 2. Then 

l ima  2 (Mr) = ( g 2  _ 6)/12. 
T--* oo 

Corollary 2. For all k > 1 

a ~ k E ( M ~ ) = l + O  ~ as r ~ o v .  

The results here are extentions to the continuous parameter case of those 
obtained in [5] for discrete parameter processes. The proofs are similar to those 
in [5] but require further refinement because of the local condition on the 
covariance function. 

Section 2 contains the proofs of Theorems 1, 2, 3 and Lemma 1. The proof 
of Lemma 2 is omitted in view of Theorem A of [7] and since it uses similar 
techniques to those in Lemma 1. 

2. Proofs 

Proof of Lemma 1. For ease of notation below we set 

2T=aT--A/CT; E(A, T)=exp(tA2)p(Mr<=2r) (2.1) 
and 

- - i  2 (p(u)=(2~) ~ e x p ( - u  ); ~ (u )=  J cp(x)dx. 
- - o o  

Our aim is to prove E (A, T) ~ 0 as A --, oo uniformly in T for all sufficiently small 
values of t assuming that (1.1) and (1.6) hold. We observe from (1.1) that there 
exists a positive 0 such that 

/ - n  

- r (s) > - 2  [s]~ V0_-< Is[ _-< 0. (2.2) 1 

If L (T)=  IT  ~] for some 0 < 7 <  1, [ - ]  denoting the integral part, and 

(~x=sup{lr(s)l: s>x}  
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then (1.6) implies 6L(T)(lnT)I+~--'O as T ~  (2.3) 

for some e > 0. 
A major portion of the proof, consists in showing that given q > 0, there exists 

A* and To (both depending on q alone) so that for all A > A* and T > To 

E (A, T) < q. (2.4) 

Assuming (2.4) together with (2.14) and (2.17), we complete the proof as follows. 
Let 0 < T _< To and A > 2 a% Cro (aT and CT defined in (1.2)). Set 

dT= 23 cTA ) (1-- (2s) 
Observe that A > 2 aT CT V 0 <-T <_ To, so (2.14) and (2.17) imply that 

E (A, T) __< exp (t A z) �9 ( - A/(4 CT 6[(r))) + exp (t A 2) ~m (dT) 

= exp (t A 2) (1 -- ~ (A/(4 CT 6[(T)))) + exp (t A 2) { 1 - q~ ( - dT)}" 

4 c T (~L (T) 
< A(2~r) ~ exp tA  2 -  
= 32 c~-~ r.(T)- 

+ (2 (1 -- 6r~(T)) ~ aT 1),. (272)- ~ exp {t A 2 - m 2~-/(2 (1 - 6L(T))) } . 

Note that sup{c26L(T):T>O}<00 SO tA2--A2/(32C26L(T))--*--oe as A ~ o c  for 
all sufficiently small t. Also A > 2 aT CT implies 

tA2-m2~./(2(1-C3Z(T))<tAZ-mA2/(8c2.)--*-oo as A ~ o e .  

Thus for all 0 < T_< To, we can find A** (>2aTo cT o) such that A > A** implies 

E(A, T)<q .  

This together with (2.4) clearly establishes the result. We turn our attention now 
to the verification of (2.4). As intermediate stages we will have (2.14) and (2.17). 

We use two types of blocking and partitioning. The first results in a function 
which bounds E (A, T) for 0 < A < (lnln T) ~. The second, similar to that done in 
the discrete case (5; (2.19)) produces suitable dominating functions on different 
sections of the remaining values of A (cf. (2.17)). 

First divide the interval [0, T] into IT]  intervals of unit length each. Cut off 
a small portion 09, 0 < o9 < 1, from the right hand side of each interval. Let /1 

IT] 
denote the union of these smaller intervals, viz., ~ [ ( i -  1), ( i -  co)). Define the set 
G~ as ~= 1 

G1 = {j c~ Z/'lj=O, 1 . . . .  [Tc2/~]} . 
Clearly 

E(A, T )<P(  max X(s)<2T). (2.6) 
seGl cx I1 

Now consider a process {Y(s), 0 <  s <  I-T]} made up of FT] independent pieces of 
unit duration, each having the same structure as X on 0 < s < 1. We will use this Y 
process and the following version of a result of Berman (cf. 10, Lemma 3.7) to 
bound the right hand side of (2.6). 
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Lemma (Berman 1964). Let {Z,, n > l }  and {~,, n > l }  be Gaussian sequences 
satisfying E Z, = E ~n = 0; 2 2 EZ, = E ( ,  = 1; Exizj=ri j  and E(i( j=si j .  Then for every 
real number a 

IP{ max )~i<a} - P {  max (i < a}l 
l = i = n  - -  l _ i _ n  - -  

(2.7) 
< ~ / l r i j - s~ j l (1  2 _ !  - wo) ~ e x p ( -  a2/(1 + wo) ) 

i=1 j = l  

where w o = m a x  (rij , sij ). 

(2.7) implies that the right hand side of (2.6) is at most 

exp(tA2)P( max Y(s)<2r) 
s ~ G l n l l  

tr4/~J (2.8) 
+ exp(tAZ)[Tc 2/~] Y, (1-r=(jcr2/=))-~lr(jcr2/~)[ 

j = [~ czr/~l 
. exp { -22/(1 + r(]c2/=))}. 

We first look at the second term in (2.8). The sum involved is a nondecreasing 
function in [rl. We split this sum into two parts, [coc~/=]<j<[L(T)c 2/~] and 
[-L(T) c 2/~] < j<  [Tc2/~]. 6o~ is an approximate upper bound for values of [r I over 
the first part and 6L(r) is such a bound for the second part. Hence the second term 
in (2.8) is no bigger than 

exp (t A2) ( 1 - ~'o~,~2 ~--}[T.,Z/ot l } . v  T , [L(T) c 2/=] e x p ( -  22/0 + c5~,)) 
(2.9) 

+exp( tA 2) 2 -~ 2/~ / e x p ( _ 2 2 ( l +  6L(r)(1--aL(r)) [Tcr ] aL(r))-l). 

But by definition of a r, 

e x p ( -  22(1 + a~)-*) = e x p ( -  ago  + a~)-* +2Aar/(Cr(1 + 6~,))-A2/(4(1 + ao,))) 
- 2  

< {(Tcr)(2/=)- * }, + a~, exp (2 ar A/cr). 

Thus an upper bound for the first term in (2.9) is 

const.  TO+~-l+~)c4/~exp ( tA2+ ear A)  (2.10) 
\ c T 

and an upper bound for the second term in (2.9) is 

const . fLmCZexp{tA2+fL(r)C2T(I+6Lm)-I+2arCT1A}.  (2.11) 

Consider the values of A for which 0 < A_< A 1 (T) = (lnln T) +. By choosing 
0 < 7 < 1  so that 1+7-2(1+6o~) - 1 < 0  we see that the maximum of (2.10) over 
the values of A under consideration tends to zero as T ~  m. Also such a maximum 
of (2.11) tends to zero as T ~  oo in view of (2.3). Thus for 0 < A < A1 (T), the second 
term of (2.8) is bounded above by a function, say h(T), where h ( T ) ~  0 as T ~ m .  

Now consider the first term of (2.8). By definition of 7, it is equal to 

exp (t A 2) p[T] (//1 ~ 2 T )  = exp {t A 2 + IT] In P (//1 < ~.r)} 

where//1 = max {X(s): s ~ G 1 ~ [-0, 1 - co)}. 
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I fO<A<AI(T ), 2T'-~O0 as T~oo;  hence P(#x < 2 r ) ~  1 and 

- In P ( # I  < 2T) = --  In { 1 --  P ( p l  > 2T)}  (2.12)  

"~ P(#a > 2r) "~ n~ (1 - e)) 2~/~)- 1 q~ (2T)" 

The last statement follows by Pickands (9, Lemma 2.9) with H~ some positive 
constant. Substituting in (2.12) we see that for T sufficiently large and 0_< A < A1 (T), 
the first term of (2.8) is asymptotically equal to 

exp {tA 2 -const �9 [T]  c~/~)- 1 e x p ( -  '~/2)} < exp {t A 2 - F  1 eA/2}, 

F1 being some positive constant. (Notice that for 0 < A < A1 (T), 2T/CT ~ 1, aT/CT ~ 1 
and [T]C(T 2/~)-1 e-~/2--* const as T~oe.)  Thus there exists TI such that for all 
T >  TI and O<A<AI(T),  

E(A, T)<_h(T)+exp(tA 2-FleA/2). (2.13) 

For the remaining values of A we will now consider a different blocking and 
partitioning. Divide the interval [0, T] into [T/L(T)] consecutive blocks of length 
L(T) each. Exclude every other interval. We then have m=[�89 1)] 
intervals left. Divide each such interval into [L(T)/8] intervals of length 8. Exclude 
every other so that there are ml = [�89 + 1)] intervals inside every interval 
of length L(T) chosen above. Let the union of these intervals be denoted by 12, i.e., 

12--- ~J ~ [2iL(T)+2jS, 2iL(T)+(2j+I)O). 
i = O j = 0  

Define 
G2 = {jSo(A, T)I j=0,  1, ..., [T80(A, T)]} 

where 8o (A, T)=rain(0, e a/2 Cr z/~). Then 

P (Mr < 2T) < P( max X (s) < 2r). 
SEG2c',I2 

Consider the variable 

Zij~ = (1 - boo) ~ Y~jk + (3o0 - 6o) ~ W~j + (30 - 3L(T)) �89 Ui + @r)  V 

where Y~jk'S, Wffs, Ui's and V are all mutually independent normal variables with 
mean zero variance one, l<i<_m; l < j < m i ;  l<k<m2=max{1,[Oc~/~e-a/2]} 
and 3o0 = 30o(A. T)" The covariance matrix of {X(s): s~ G 2 n 12} is bounded above 
by that of the Zijk's. (See the discussion leading to (2.1), (2.2) and (2.3) in [5].) 
Using Slepian's Lemma [14, Lemma 1], we have 

P( max X(S)<2T)<--P(Z,jk <2T Vi, j, k) 
s ~ G 2 n l 2  - -  - -  

< q~ ( -  A/(4 c T 3L~T))) (2.14) 

+ {P [(1 -- 30o)k Yjk + (6oo -- 3o) �89 W~ + 6o U < dT Vi, j] }m 

where Yjk'S, Wi's and U are again independent standard normal variables and dr 
is defined in (2.5). By the same arguments as in [-5] it is sufficient to show that 
exp(tA2)• {second term in 2.14} tends to zero uniformly in T as A ~  for t 
sufficiently small. We will bound this by f(A, T) for A~< A < 4 ( 1 -  p)aT.CT/3 and 
by g(A, T) for A>4(1- -p )aTcr /3  (cf. (2.17)). p is to be in (0, 1) and will be chosen 
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later, A1 = A1 ( T ) =  (lnln T) +. Using (2.7) we get the following upper  bound  for the 
second term of (2.14): 

{30 (1 - 62) (m, m2) 2 exp ( - d 2 (1 - 6L(T))(1 + 3o)- 1) (2.15) 

+ 6Oo (1 - 6o2o) ml m22 exp ( - d 2 (1 - 3L~T))/(1 + fi0o)) + r m2 (dr) } m. 

F r o m  now up to (2.17), we assume A1/2 _< A _< 4 (1 - p) a r or~3. Since a T -  3 A/(4 or) 
> par ,  the first term of (2.15) is bounded  above by 

~ 2  {T,~(2/oO - 1 ]2 y -  2 02/(1 + 6o) 
c o n s t  �9 " ' 2  ~, a ~T  / 

This last expression, call it $1 (T), is o(T -tl-~)) as T ~  since we choose p such 
that 2 p2/(1 + 6o) - 2 7 >  1 - %  

We show that  the second term in (2.15) is also o(T -~-~)) as T--+oo. First 
notice that if A > 2  ln(Oc 2/~) then the term in question is just $1 (T)/ml. Secondly 
for A < 2 In (0 c 2/~) it is no bigger than 

const .mlm2(eA/2CT2/~)-~/Zexp(--d2(1--6L~r))/(l+6oo)) (2.16) 

in view of (2.2). Notice  that  ml m 2 ~L(T)c~r/'e a and 

exp( - d 2 (1 - 6L~r))/(1 + 600)) 

~(Tc~/~)- ~) -1 exp {3 a r -  A / (4cr) - (1-6oo)a2  /2( l + 3oo)} 

as T--} ~ ,  for the values of A under  consideration. We also see that  

1 - 3Oo = 1 - r (e A/2 c T 2/~) > { C exp (~ A~/4)}/(2 c2). 

Thus (2.16) is at most  

const  �9 T -  ~ - ~) c~/') + 2 exp { - const �9 exp (~ A1/4)}. 

Call this bound  $2 (T). Recall A~ = (lnln T) + and note  that  $2 (T) is o(T-~1- ~)) as 
T ~ o v .  

Lastly, by similar arguments  as in (5) (see (2.9) and (2.10)), for all A < 4 ( 1 - p ) .  
ar Cr/3, and p2 > 7 

g~m~,,2 (dr) > ~ml "2 (p aT ) ~ 1 as T-~ ~ .  

Thus for T sufficiently large, (2.15) is no bigger than 
mL(r) 

~mm~,,2(dr){l+2Sl(T)+2S2(T)},,<__2{~(dr) } 2 c2/,e-a/2. 

This is our  first bound  for the second term in (2.14). Next,  note that we arrived at 
this second term in (2.14) by selecting mlm 2 variables in each block of length 
L(T). For  the second bound  we select only one variable in each block of length 
L(T). Thus there exists T2 such that  

exp( tA 2) x {second term of (2.14)} < ~f (A ,  T) V(T, A ) ~  (2.17) 
= [g(A,  T) VA and T 

where 
mL(T) 

f (A ,T)=2exp( tAZ){@(dT)}  2 C~/~e-a/2, (2.18) 

g(A, T ) =  exp(t  A 2) ~m (dr) (2.19) 



188 Y. Mittal 

and (T,A)eN if T>T2 and AI<A<_ 4(1--P)aTCr 
2 - -  3 

We study the functionf(A, T) first. 

df(A, T) 
dA - f (A ,  W){2tA-�88 

(2.20) 
- �89 e -  A/2 m L ( T )  c 2/~ ~ - 1  (dr) q~ (dr)(3/ (4  c T (1 - -  6L (T)) �89 " 

Since a t -  3 A/(4 CT) -~ ~ as T ~  oe for all A _< 4 (1 - p) a T CT/3, -- In c~ (dT) ~ q) (dr)/dr 
and for T large enough the term multiplyingf(A, T) In (2.20) is at most 

2tA- �89  1 {--�89 3dT~-~(dT)/(4Cr(1--fiLm)�89 (2.21) 

NOw as T--,oo dT q~-I(dT)/(CT(1 --6L(T))*)~ 1 and 

q~(dT)~(Tc~/~)-l)-x exp (  4 CT A 8 c-~r ) - - 2  fiLeT)aT 

>(Tc~/~)-I) -1 exp 3(1_ p) aT A const 
CT 

for the values of A under consideration. Choosing p > �89 and substituting we see 
that (2.21) is at most 

2 T A -  const �9 exp {A/16} (2.22) 

where the constant is positive. We assume that 0 < p < l ,  0<;0<1 are chosen so 
that p2> 7, P>�89 and (2p2/(i + 60) ) -27>  1 -  7. We will also require later that 
1--7--(p2/(l+~Ltr)))>O. Such a choice is possible if e.g. l>p2>(l+fio)/2 and 

0 < 7 < r a i n  2p2 1; 1 . By choosing t sufficiently small we see 
1 + 50 1 - ~5 L (r) 

that (2.22) is at most - e o  VA>_0 and some small eo>0. Thus for all A<4(1  - p ) .  

aTcT/aandTlarge {d~f(A,T)}/f(A,T)<=_eo" 

Integrating both sides between AJ2 and A we have 

f(A, T)<= f (A~/2, T)exp ( - %  ( A - @ - )  ) (2.23) 

for all AJ2_< A < 4 (1 - p) a r CT/3 and T large. Now 

mL{T) 

f(A~/2, r)=2exp(tA~){e~(dr)} 2 C2r/~e-a,n 

=2exp{tA~-~ mL(T)2 C2T/~e-A'/2 ln~(dr)} 

_<__ 2 exp {t A~ - const �9 m L( T) c~/~ e- A~/2 q~ (dT) dr 1 }. 

Expanding cp (dr) for A = A1 we see that f(AJ2, T) ~ 0 as T ~  oo. Thus there exists 
T3 such that V T > T3, 

max {f(A, T)IA~ <-_A~4(l-p)arcr/3}Nexp(-(eoAt)/2). (2.24) 
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By similar arguments as in [5], (see discussion after (2.16)) we have for suf- 
d 

ficiently small values of t and A > 4 at  Cr, ~ -  g (A, T) < 0. Also 

f# (T)--, 0 as T~oo  (2.25) 
where 

f~ (T) = max {g (A, T)[4 (1 - p) a T CT/3 <<- A <-- 4 a t cr}.  

Combining (2.13), (2.14), (2.24) and (2.25) it follows that there exists T4 such that 

V T >  T4 h(T)+exp( tAZ-F11  eA/2) if O<_A<_A 1 

2 • exp (t A ) cb ( - A/(4 c r 6 L(T))) + exp ( - (% A 1)/2) 

E(A,  T ) <  if A1 < A < 4 ( 1 - - p ) a r C r / 3  (2.26) 

exp (t A 2) q~ ( -- A/(4 c T CSL(T))) + ff (T) 

if A > 4 ( 1 - p ) C r a r / 3 .  

Given t/>0, choose A* so large that for all A > A *  

exp (t A 2 - F~ e A/2) < tl/2 and exp (t A 2) ~ ( -  A/(4 c r 6L(T))) < tl/2. 

The functions fq(T), h(T)  and e x p ( - ( % A O / 2 )  depend only on T. Thus we can 
choose To so large that for all T > To each one of these functions is no bigger than 
q/2. Substituting in (2.26) we get (2.4) and the lemma is proved. 

1 lnln T 
Proof  of  Theorem 1. Let UT = 2 (M r - br) CT/lnln T where b T = c r-+ 

(CT is defined in (1.2)). We will establish that ~ CT 

lim sup U r = 1 a.s. (2.27) 
T ~  oo 

and lira inf U r = - 1 a.s. (2.28) 
T ~  oo 

We assume (1.1) and (1.3) hold. 

Our first consideration is the lira sup. Lira sup Ur > 1 a.s. is a consequence of 
Lemma 2 and lim sup Ur< 1 a.s. follows from Theorem 3.1 of [-10]. 

Next we show that lira inf U r > - 1 a.s. By Lemma 3.6 of [10] it is sufficient 
T ~  oo 

to show that for every e > 0, there exists A > 1 so that 

( (,21 c~l 5) lnlnT l c r / = 0  lira (ln T) ~ P M w <= c T + 

or that 
lim exp (A lnln T) P ( M  T <= a T ~ a T - (5 lnln T)/CT) = 0 .  (2.29) 

T~co  

Lemma 1 will obviously imply (2.29) under the Conditions (1.1) and (1.6). We 
show here that for the weaker conclusion (2.29), we can replace (1.6) by (1.3). 
If one inspects the proof of Lemma 1, all the arguments leading to (2.14), (2.17) 
and (2.24) use only the fact that r(s)lns--~ 0 as s 400. Hence there exists S o fixed 
so that for all T > S o and for all A such that (lnln T) ~ =< A < 4 (1 - p) a T C T / 3  , 

exp (t A 2) p (M T ~ a T  _ A/CT ) < exp (t A 2) q~ ( -- A/(4 C r (~2 (T))) 
(2.30) 

+ exp ( -  t o (lnln T)~/2). 
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Furthermore, given e>0,  there exists $1 such that for all T>SI, (lnln T)+< 
e (lnln T) < 4 (1 - p) aT cr/3. Substituting A = e lnln T in (2.30) we get 

(M elnln T)<__v(T) 
exp (t/32 (lnln T) 2) V r < aT CT 

for all T >_ max(S 0, S0 where v (T)-~ 0 as T ~  ~ .  This implies (2.29). 

Lastly, lim inf UT < -- 1 a.s. if lim P(Ur > - (1 - e)) = 0. Given positive constants 
T ~ o o  T o o o  

t /and e, let z* be so large that for all T >= z* 

8 , 

The limit distribution of the normalized Mr (cf. Theorem 2.1 of [10]) enables us 
to find z~ (depending on e and q) such that for all T > z *  

P(Mr>ar+(elnlnz*)/(2cr))<={1-exp(-exp(-21nlnz*))}+tl/2. 

Thus for r > m a x ( z * ,  z~) 

P(Ur > - (1 - ~)) = P (Mr  > ar + (~ lnln T)/cr) 

=< P (M r > a r + (e lnln zl)/(2 Cr))_<__ t/. 

This completes the proof of Theorem 1. 

Proof of Theorem 2. Our aim is to show that lim inf Ur=  - o o  a.s. if (1.1) and 
T"-* ~ 

(1.9) hold. Given K, let Ar be the event (Mr-cr )cr>-Kln lnT .  We will show 
that for any K, and every fixed To, 

e ( A r ,  V r _>_ To) _-__ lira F(Ar) = 0. 

We approximate Mr by the maximum over a dense enough subset of [0, T]. 
Let z = [Tc~/~], lr = K lnln T/cr and me = max {X(i cr 5/~): 1 =< i<  z}. Then 

P(Ar) = P(Mr > Cr- lr) <= P(rn~ > Cr- 2 lr) + De 
where 

De=P{Mr>CT - lr ; me-2 lr}. 

For a fixed T, let Zi, i=  1, 2 . . .  z be independent standard normal variables and 
let M* = max{Z/: i < i <  ~}. Let U be a standard normal variable independent of 
al! Z~'s. me is the maximum of �9 joint normal variables with correlations at least 
r(T), and so by Slepian's Lemma, as in the proof of Theorem 2 of [5], we have 

P(me > c r -  2/r) < P {(1 - ~r)) ~ M* + r ~ ( r )  U > c r -  2 lr} 

< { 1 - �9 (cr r ~ (T)/4)} + P {(M* - cO c, > F~ r (T) In T -  F2 lnln T} 

for some positive constants F~ and F2. Both the terms in right hand side above tend 
to zero and Theorem 2 will be proved if we show that D e ~ 0 asT--* oo. By station- 
arity of X, De~zP{X(O)<CT--21T; X(CTS/'~)<CT--21T; 

(2.31) 
max(X(s): O<s<crZ/')>cr-lr}.  
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Following Berman [4], Lemma 3.5, the event described in (2.31) implies that for 
some n > 1, some j, 1 < j  < 2" and every A, 0 < A < 1, 

X(j2-"c~ 5/~)-X((j - 1)2-nc~ 5/~)> /r A"-I (1 -A) .  

For, if the alternative inequality held for every n and j and for some A, 0<A < 1, 
we would have 

sup X q 2 - "  c~ 5/,) < c r -  lT. 
j,n 

The continuity of X then would imply a contradiction, viz., 

max {X(s): 0 < s < c~ 5/,} < eT,- 1T. 

Thus the right hand side of (2.31) is at most 

,=1 t • (2(1-r(2-"c~5/')))~ ] j '  (2.32) 

We can choose T so large that for all n 

(1 - r (2-" c~ 5/,))~ < (2 C) ~ (2-" c~ 5/,),/2. 

Then (2.32) is at most 

co 
22 C~ A ~ (2(1_~/2)A_1). 

(1 - A) I r c~r I" ,=1 exp { - const �9 (lnln T)  2 (A 22")" c~}, 

the constant above being positive. 

By the Cauchy-Schwarz inequality, (2.32) is at most 

T ~ (2(x-(~/2))A-1)"exp{-(AZ2~)"} exp(-(A22~)"c~.) 
[ . n = l  n 

for large T. Each of the series above converges if we choose A so that A22"> 1. 
The last expression then tends to zero as T ~  since z=exp{�89 
Hence the result. 

Proof of Theorem 3. We show that 

lim E (exp (t Yr)) = E (exp (t X)) 
T ~  oo 

for all t sufficiently small if (1.1) and (1.6) hold. Y=cT(Mr--aT) and ar is defined 
in (1.2). 

Following the arguments of Theorem 3 [5], Lemma 1 and (2.33) will be suf- 
ficient for the desired conclusion. 

exp(tA)P(Mr>aT+A/cr)--+O as A ~  (2.33) 

for all t > 0  sufficiently small, the convergence being uniform in T. By stationary, 

exp(tA)P(mT>ar+A/CT)<([T]+l)exp(tA)P(Ma>ar+A/cr), (2.34) 
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M1 =m a x  {X(s): 0 < s <  1}. According to Lemma 2.9 of (9) there exists a positive 
constant and To fixed such that for all T > To*, 

P ( M  1 > a r + A/cr) <<_ const �9 (a r + A/cr) ~2/~)- 1 exp ( -  (a T + A/cr)a/2) 

< const �9 (Tc(r 2/~)- 1)- 1 (a r + A/er)(2m- 1 exp ( -  A/2). 

Thus given q > 0 there exists a* such that 

(Left Hand Side of (2.34))< r/ (2.35) 

for t < �89 A > a* and T > To*. For  T < To* notice that 

P ( M  T :> a T + A/CT) <= P(MT~ "> A/CTj ) . (2.36) 
Again using Lemma (2.9) of [9], we can choose A large enough that the right hand 
side of (2.36) is no bigger than t/, and the result follows. 

Corollaries 1 and 2 can be proved in the same manner as Corollaries 1 and 2 
of [5]. 
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