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Central Limit Theorems and Statistical Inference 
for Finite Markov Chains 

Thomas H/Sglund 

1. Introduction 

In this paper we will deal with four topics in connexion with Markov 
chains: saddle point approximation (Section 3), equivalence of ensembles (Section 4), 
central limit theorems (Section 5), and statistical inference (Section 6). The saddle 
point approximation is a common key to the other topics, but Sections 4, 5, and 6 
can be read independently of each other except that 4 has to precede 6. The key 
words above will be explained in some more detail when we have introduced the 
necessary notations. 

We consider a finite set X, a sequence {q~y}~x. y)~x • of nonnegative numbers 
with support 

Y= {(x, y )EX x X]q~y>0} (1.1) 

and a statistic Y~(x, y ) ~  t(x, y ) e Z  p. Y is supposed to be an irreducible subset of 
X x X: For each (x, y ) e X  x X there is a sequence z o, z l , . . . ,  z k (k> 1) such that 
Zo = X, zk = y, and (zi_ 1 , zi)e Y for i=  1 . . . .  , k. 

Let C x (where C is the set of complex numbers) denote the set of complex 
valued sequences g =  {g(x)}~ x and define the linear operators (or matrices) 

CX~g ~ F(t) ge C x ( t~Z  p) (1.2) 

by F(t) g(x)= ~, fxy(t) gO;), where 
y~X 

f~,( t)={~x , if (x,y)~ Y and t(x, (1.3) 

In analogy with the terminology of Hin~in [9] the function ZP~ t ~ F ( t )  will be 
called the structure function. Using matrix notation we will sometimes write 
F(t)-=(fxy(t)). 

We further define 
Fn*(t) = ~, F(q)...F(tn) (1.4) 

tl-l-., ,d-tn~t 

where the product to the right is matrix product. Then we have F "* (t)= (f~(~)(t)), 

~") ~ ( 1 . 5 )  f~ox,(t) = • qxox~ qx, x2""q . . . . .  

where the summation is extended over all x~ . . . .  , x,_~ such that (Xi_l, xi)6 Y for 

i-= 1, . . . ,  n and ~ t (x i_ 1, xi) = t. 
i 
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The saddle point approximation (which concerns F"*(t)) will be obtained via 
the transform of F 

�9 (a+ia)= ~ e~+i~)tF(t) (a~R ~, ~ R ~ ) ;  (1.6) 
t ~ Z P  

then ~(z) = (q)xy(Z)) (ze C )  where 

{; z'''x'y) q ~ ' i f ( x ' y ) ~ Y  (1.7) 
q~y(z) = otherwise. 

The sum to right in (1.6) converges for all ze C p since F(t) has finite support. It is 
easy to verify the following identities: 

~ ( a + i a ) " =  ~ e (a+ia)'t F"*(t) (1.8) 
and t~ zp 

1 
F"*(t)= t2r0 p S ~ e-~a+i~)'tcb(a+ia)"da (1.9) 

t I ( -  ~, rq 

where the integration is to be interpreted as componentwise integration. The 
latter identity, which will be our main tool, gives us reason to examine �9 closer. 
This will be done in Section 2. 

In order to give a summary of our results we impose certain simplifying 
conditions (not to be specified here). Under these conditions the following holds. 

(a) has a unique positive eigenvalue 2 (a) which exceeds the modulus of any other 
eigenvalue of ~(a). ~(a) and ~(a)* (the adjoint of ~(a)) have strictly positive 
eigenfuntions e, and e* corresponding to the eigenvalue 2 (a). Furthermore, 2 (a) 
is analytic and the function a ~ grad log 2 (a) is one to one. Write ~ for its inverse. 
(fi has an interpretation as a statistical estimator of a certain parameter. See 
Section 6.) 

The saddle point approximation states that 

(2rcn)P/Z(det V~(t/.)) �89 e -"n~"/-' F"*(t)=E(~(t/n))+O(1/n), (1.10) 

uniformly in t when fi (t/n) stays within any fixed compact subset of R p. Here 

~e,(x) e*(y) 
E(a)=t- i 

is the eigenprojection corresponding to 2(a), Va is the matrix log 2(a) 

and H, = log 2 (a) - a- grad log 2 (a) is the specific entropy. (The connexion between 
H, and entropy is explained in Section 4.) 

Equivalence of ensembles. In statistical mechanics one considers several kinds 
of "ensembles" two of which are the microcanonical and the canonical ensemble. 
It is believed that they are equivalent in a certain sense. We apply a variant of 
our saddle point approximation and show, more precisely, that if 

M,N 
P T x _  M x t c ( X o  , . . . , X n )  



Limit Theorems and Statistical Inference 125 

denotes the density of the distribution for Xo, ..., x, induced by the uniform (the 
microcanonical) distribution on the surface 

{X-M+I' '" 'XO' '" 'Xn," ' ,XN-1[  2 t (x i - l ,x i )=T} , 
- - M < i < N  

then 
eft '  tn 

pMT;ff(X o . . . . .  X,)= (e~'. e~) -~ e*(xo) 2 ~  e~(x,) [1 + O ( 1 / ( M +  N))], (1.1 l) 

uniformly in T when a = ~ ( T / ( M + N ) )  stays within any fixed compact subset of 
R p, provided M / ( M  + N) remains bounded away from zero and one. Here 

n 

t. = Z t (x ,_ l ,  x,), 
1 

and Ca, e*, 2 (a) and fi are determined by the structure function for which qxy = 1 
for all x and y. The densities to the right in (1.11) determine a stationary measure 
on XZ: the canonical Markov chain. 

Central Limit  Theorems. We let {qxr} be transition probabilities ( ~  qxr= 1 
yeX 

for all x e X ) ,  and consider the stationary Markov chain which has {q,y} as transi- 
tion probabilities. The asymptotic expression for the structure function gives 

n 

various approximations of the density and distribution function of ~ t(x~_l,  xl), 
1 

some of which hold far out in the tails. For example, when p = 1 we obtain an 

approximation for P r o b ( ~ t ( x ~ _ l , x ~ ) > t ) w h i c h i s n o n - t r i v i a l n o t o n l y w h e n t / n  

is close to the mean value but also when t/n belongs to compact subsets of the 
preimage of ft. 

Statistical Inference. Martin-LSf [12, 13] gave a statistical theory which can 
be divided into two parts: exact and asymptotic (or microcanonical and canonical). 
The saddle point approximation provides us with a tool to derive the asymptotic 
part from the exact one in the Markov case. 

Consider now the following more general situation (we will refer to this 
situation as "the m-dependence case "): Let X be finite, {q~l...x,,}x, ...... m~x,. (m > 1) 
a non-negative sequence with support 

Y =  {(xl, ..., Xm)CXm[qx, ..... > 0} (1.12) 

and let Y~(Xl . . . . .  x,,) ~ t (x l  . . . . .  Xm)eZ p be a statistic (i. e. a function). Suppose 
that Y is an irreducible subset of Xm: For each (x~ . . . . .  x, ,)eX" there is a sequence 
zl . . . .  , Zk (k > m) such that 

zj = x I . . . . .  Zm_ ~ = x,,_ a , Zk = X,, and (z i, z~ + a . . . .  , Z~ +m_ ~)e Y 

for i=1  . . . . . .  k - m + l .  

We identify C x~ with C and define the operators 

c X m - ~ g ~  F ( t ) g ~ C  x " - '  ( t ~ Z  p) (1.13) 
9 Z. Wahrscheinlichkeitstheorie verw. Gebiete, Bd. 29 
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by F(t) g (x t , . . . ,  x , , _ 0 =  ~ f~  ..... ~m(t) g(x2, ..., x~) where 
xmEX 

(t)=Sqx~...~,, if (x l , . . . ,xm)e  Y and t(Xl . . . .  ,Xm)=t 
L, (1.14) 

otherwise. 

~(a+i~) is defined as in (1.6) and F"*(t) as in (1.4). Then the identities (1.8) and 
(1.9) holds and 

F " * ( t ) g ( x l , . . . , x ~ - l ) =  ~ f:~ . . . . . .  ,r~...y~,_jt)g(Yl,...,Ym-1) 
Y l  " ' "  Y m  - 1 

where for n > m 

f~,~...~_xr,...ym_jt)=~q~...~,,qx2...~+f"q . . . . . . . . . .  x (1.15) 

the summation being extended over all Xm, X,,+I, ..., X, such that 

(xi,x~+l,. . . ,x~+,,_O~Y for i = l , . . . , n  and ~ t ( x z ,  xi+l, . . . ,Xi+m_O=t. 
~=l 

The case m = 1 -  the independence c a s e - i s  trivial in the present context and 
the case m > 2 may be reduced to the case m = 2 in the following well-known way: 
Define X* = X m- 1, 

Y* ={(x*, y*)eX* x X ' I x *  =(Xl . . . . .  Xm-1), Y* =(Yl  . . . . .  Ym-1), 
y l=x2 , . . . , ym_2=x , , _ i  and ( x l , . . . , x ,~_ l , ym_l )eY} .  

Also 

t*(x*,y*)=t(xl  . . . , x , ,_ l  Ym-1) and * -- , , qx*r*-q~x ... . .  -ir , ,-I  for (x*,y*)~Y*, 

x *=  (xl . . . . .  Xm-1), Y* = (Yl, "",  Ym-1)" It is a straightforward matter to verify that 
Y* is irreducible, and hence the 2-dependence case contains the m-dependence 
case. 

It will be convenient to consider only the case m = 2. It follows, however, from 
the argument above that our results are valid for all m > 1. 

2. The Transform 

The period of Y is defined to be the largest integer r for which there is a partiti- 
on {Xi}~= 1 of X such that 

r 

Y c  U Xi_l  x X  i. (2.1) 
i = 1  

Here we used the convention Xo =Xr.  Throughout  this paper we will denote the 
period of Y by r and let {Xi}~.= 1 stand for the unique partition which satisfies (2.1). 
We will give meaning to X i for all i e Z via the formula X k +, r = Xk, n e Z, 1 < k <= r, 
and let r(x) ( xeX)  stand for the unique integer which satisfies 

xeX,(x), l<_r(x)<=r. (2.2) 

~(a) is (considered as a matrix) a matrix with non-negative elements. Perron 
and Frobenius examined such matrices and their results are collected in Wielandt 
[19]. Wielandt says that a matrix A = (a 0 is irreducible (unzerlegbar) if one cannot 
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bring it into a form (All A12] 

A22] 

by a consistent relabeling of the rows and columns, where AII and A22 are quad- 
ratic submatrices. For irreducible matrices we have [19], p. 642 and p. 645: 

I. Die charakteristische Gleichung 

det (A - xI) =0 (2.3) 

besitzt eine einfache positive Wurzel 2, die dem Betrage nach von keiner anderen 
Wurzel iibertroffen wird. Die zu dieser ,,Maximalwurzel" 2 gehiSrige Eigenl/Ssung 
kann positiv gew~ihlt werden; 2 ist der einzige Eigenwert, zu dem eine nicht 
negative Eigenl6sung existiert. 

II. Besitzt (2.3) insgesamt r Wurzeln vom Betrage 2, so sind diese einfach und 
haben die Werte 2 e x p ( i 2 n j / r ) ,  ( j = l , 2  .... , r). Die Gesamtheit der n Wurzeln 
von (2.3) gestattet die Drehung um den Nullpunkt mit dem Winkel 2 n/r, aber 
nicht mit einem kleineren Winkel. A hat die Gestalt 

/ 0  A12 0 ...0 \ 

1 0  0 A23. . .0 \ 

~ ~ / 

\ 0  ..... ; ...... 0 ..... LI / 
\ A r ~  0 0 ... 0 

(mit quadratischen Teilmatrizen in der Diagonale) oder kann durch Umstellung 
der Zeilen und gleichlautende Umstellung der Spalten auf diese Form gebracht 
werden. 

III. Es sei A = (ajk) eine unzerlegbare Matrix mit nicht negativen Elementen, 
B = (bjk) eine Matrix mit komplexen Elementen (j, k = 1, 2 . . . . .  n). Es sei [bjk ] ~ ajk 
for alle j, k. Ist 2 die Maximalwurzel von A und fl ein beliebiger Eigenwert von B, 
so ist [ill_< 2. Gilt das Gleichheitszeichen, ist also fl = 2 exp (i r so hat die Gestalt 
B = e x p ( i c p ) D A D  -~ mit einer Diagonalmatrix D, deren Diagonalelemente 
s~imtlich den absoluten Betrag 1 haben; insbesondere ist dann stets Ibikl=a~k. 

For any function u~(Rp)X: X~x - -*  u ( x ) e R  p and any ~eR p we define the set 
T.=R p, the diagonal operator CX~g---,Au(oOgeC x, and the additive group 
G, = R p by 

= {t (x, y) - (u (x) - u Cv)) [ (x, r }  

A, (~) g (x) = e i'' ,~x) g (x) (2.4) 

G = { t ~ R P [ e i " t = l } .  

With this notation we have the following consequences of I, II and III (Lemmas 2.1 
and 2.2). 

Lemma 2.1. For each a ~ R  p there is a positive number 2(a), and a strictly positive 
sequence {e,(x)}~,~x such that the numbers 2(a)e  i2~j/', j = 0  . . . .  , r - 1  are simple 
eigenvalues of  r (a) corresponding to the eigenfunctions e~ (x) e i 2 7tjr(x)/r, j = 0 . . . . .  r -  1 

9* 
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respectively. The absolute value of  any other eigenvalue of  dp (a) is strictly less than 
2(a). 

Lemma2.2. Let 2(a) denote the maximal positive eigenvalue of  ~(a). The 
spectrum of  q~ (a + i ~) is contained in the disc { z ~ C IIz I < 2(a)}, and the following 
three statements are equivalent: 

(a) ei"~ ),(a) (s~R p) is an eigenvalue of  q~(a+i~). 

(b) q~ (z + i ~ ) =  e i~'~ A. (~)~b (z)A,(or for some u~ (RP) x and al l  z e C p. 

(c) T, c s + G ,  for some u~(RP) x. 

The proper definition of T, in the m-dependence case is 

T,= {t(xl . . . .  , x m ) -  [u(x l , . . . ,  X m _ l ) -  U(Xz . . . . .  Xm)]l(Xl . . . . .  Xm)~ Y}, ue(RP) xm-l. 

In particular when m = 1, T, = T = {t (x)] qx > 0} for all u ~ R p = (RP) x~ Compare 
Lemma 3, p. 475 of [5]. 

Proof  of  Lemma 2.1. It is clear that if Y is irreducible in our sense, then �9 (a) 
is irreducible in the sense of Wielandt. A glance at I and II shows that it remains 
to verify that @ (a) eL (x) = 2j (a) ~ (x) (2.5) 

where e~(x)=ea(x)e i2~j'(x)/" and 2j(a)=e iz~j/'. Since cpxr(a)=0 unless YeX,(x)+i 
we have ~(a)eT(x)=ei2~j('(~)+l)/'( Z p~y(a)e.(y)) 

y G X r ( x )  + l 

= e i 2 ~j(,(~)+ 1)/, 2 (a) e, (x) = 2j (a) ~ (x). 

Proof  of  Lemma 2.2. If T, c s + G~, then t (x, y) = s + u (x ) -  u (y) + t* (x, y), 
where t* satisfies e ~' ,*(x, y) = 1. Hence e (z + ~ )  t(x, r) = e z. .x,  r) e~,. ~ e~,..(x) e -  ~ "(y) 
(x,y)e Y That is q~(z+ie )=e i"~A , (e )~ ( z )A , (oO -1. Hence (c) implies (b). If 
(b) holds, then �9 (a + i 0~)(Au (e) ea (x)) = e ~'~ A. (0r (a) e, (x)) = e ~'s 2 (a) a,(~) e,(x). 
So that e~"~2 (a) is an eigenvalue of �9 (a + i  e). Hence (b) implies (a). 

It remains to show that (a) implies (c). Suppose 0r + 0, for otherwise there is 
nothing to prove. It follows from III that there is a diagonal matrix A and a s e R "  
such that �9 (a + i ~) = e i~'~ A �9 (a) A -  1 which is equivalent to 

eiC~ �9 t ( x ,  y) = ei~. s ei ,~(x) e -  Io(Y) 

for some function 6 6 R  x. Choose ue(RP) x such that ~-u(x)=h(x) .  Lemma2.2 
is proved. 

We count the N=lXl=(card ina l i ty  of X) eigenvalues of ~(z) repeatedly 
according to their (algebraic) multiplicities and let A (~ (z)) denote the unordered 
N-tuple consisting of the N repeated eigenvalues of �9 (z). If A = (21 . . . .  ,2N) and 
A '=  (2~, ..., 2~) we define 

d ( A , A ' ) = m i n  max 12j-2,(~)[ 
~r~r~ j = l  . . . . .  N 

where rc is the set of all permutations of the numbers 1, ..., N. Then d is a distance 
function. Lemma 2.3 contains the perturbation theory we will need. 

Lemma 2.3. (i) For each matrix M(z)  which is analytic in D c  C p, and for each 

z o ~ D d ( A ( m ( z ) ) , A ( M ( z o ) ) ) ~ O  as z ~ z  o . 
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(ii) There is an open neighbourhood U of R p (considered as a subset of CP), and 
analytic functions U ~ z ~ 2 ( z ) ~ C  and U ~ z ~ U ( z ) ,  where E j is operator valued, 
j = 0  . . . .  , r - 1  such that 2(z)exp(i2zcj/r) is a simple eigenvalue of  qV(z) and EJ(z) 
is the corresponding eigenprojection for each z~ U and j=  0, ..., r - 1 .  Furthermore, 
2(a) coincides with the maximal positive eigenvalue of �9 (a) for each a e R  p. 

Proof. (i) follows directly from Theorem 5.14, p. 118 of Kato [8]. 

To show (ii) we note that the analytic function C•  CP~(w,z )~p(w;z )= 
det(~ ( z ) -w  I) is a polynomial in w and that the eigenvalues of ~(z) are the 
roots of this polynomial. Since the maximal positive eigenvalue 2(a) is a simple 

] /  

eigenvalue of �9 (a) i.e. a simple root of p (w; z) we have a P (w, a) 4: 0, and it 
a w  ]w = Z(a) 

follows from the implicit function theorem (see [2], p. 138) that there is an 
eigenvalue 2a(z) of ~(z) which is analytic in a neighbourhood of a and which 
satisfies 2a(a)=2(a). If we recall (i) we therefore see that to each a~R p there is an 
open neighbourhood Ua of a and a function 2a(Z ) with the following properties: 

(c0 4o (z) is analytic in U~. 
(fl) 2a(z) is a simple eigenvalue of ~b(z) for each z~ U~, and 2a(a)=2(a). 
(7) Re 2~ (z) is larger than the real part of any other eigenvalue of �9 (z) (z ~ U~). 

(Here we made use of (i).) 

Ifz~ U ~  Ub, then 2. (z)= 2b(z ) (for otherwise Re 2.(z)> Re 2b(z) and Re 2b(z) > 
Re 2.(z)), and we may therefore unambiguously define the function U U.~z ~ l(z) 

a~RP 

by l(z)= h a ( z )  if z~ U~. Then l(z) is an eigenvalue of ~b (z) which is analytic in the 
open set U = U U~. If we note that l(a)= 2, (a)= 2 (a), and remember the verifica- 

a~RP 
tion of (2.5) we therefore see that l(z) may serve as the function 2(z) of the lemma. 

Concerning the analyticity of the eigenprojections we refer to Kato [8], 
p. 67. Kato treats just the case p = 1 but the proof applies to a general p > 1. This 
completes the proof of Lemma 2.3. 

From now on we let 2(z) stand for the function 2 of Lemma 2.3. This lemma 
permits us to introduce the notations 

ma = grad log 2 (a) 
0 2 (2.6) 

Va= ( ~  l~ 2(a)) " 

The reader may think of mo and V~ as asymptotic expectation and covariance 
matrix respectively. 

Lemma 2.4. V~ is a positive semidefinite matrix for each a6R e, and the following 
two statements are equivalent: 

(a) There is an u~(Re) x such that T,, is contained in some cofactor of the additive 
G~ - {t~RPro~. t=O}. group o_  

(b) ~. V ~ = O  for all a e R  p. 

It would be preferable to add a third equivalence to the lemma: 

(c) ~- Va ~ = 0 for some a ~ R p. 
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However, I am not  able to prove it. Instead we have to impose an additional 
assumption in Section 3. 

Proof of Lemma 2.4. For fixed a and e we choose a disc W c  C with center 
at the origin so small that W~ w ~ 2 (a + w c~) is analytic in W,, Re 2 (a + w e) > 0, 
and 2 (a + w e) is a simple eigenvalue for w ~ W. Put f(w) = log 2 (a + w ~), then f is 
analytic in W and f"(w)=c~. V,+w~e. 

It follows from Lemma2.2 that R e ( f ( i T ) - f ( O ) ) < O ( 7 e R n W ) ,  and the 
Taylor expansion shows that Re( f ( iT ) - f (O) )=-72o~  �9 v~0~+O(1713). Hence 
c~. V,e>0.  a and ~ being arbitrary we conclude V, is positive semidefinite for 
each a e R p. 

G~ = 0 G,~, and hence Tu c s + G o if and only if Tu c s + G,~ for all 7 e R n W. 
r l e R n W  

According to Lemma 2.2 the latter is the case if and only if 2 (a) exp (i 7 ~" s) is an 
eigenvalue of r (a + i 7 ~) for all 76 R n W. This eigenvalue coincides with 2 (a + i 7 ~) 
at 7 = 0. Since 2(a + i  7 ~) is a simple eigenvalue as 76 W we therefore must have 
2 (a + i 7 ~) = 2 (a) exp (i 7 ~" s) when 7 belongs to some real neighbourhood of the 
origin, and hence b r  all i 76 W (because both sides are analytic in 7). 

We have thus shown that part (a) of the 1emma is equivalent to: f " ( w) = 0  for 
all we W,, i.e. f " (~ )=0  for all ~6R n ~ The lemma is proved since a was arbitrary. 

Let r (a) stand for the transpose of 45 (a) 

45* (a) g (x) = ~ cprx (a) g (y). (2.7) 
y e X  

Then 45* (a) has properties similar to those of 45(a): 45* (a) is non-negative and 
irreducible with period r, and the eigenvalues of 45* (a) coincide with those of 45 (a). 
It follows from the preceding theory that there is a strictly positive sequence 
e* = {e* (x)}x~x such that 

45* (a) e*,j= 2 (a) e -i2~j/r e*,,j, j = 0 ,  ..., r - 1  (2.8) 
where 

e*,i (x) = e* (x) exp ( -  i 2 ~z j r (x)/r), j = 0, ..., r -  1. (2.9) 

For any two sequences f =  { f ( x ) }~x  and g =  {g(x)}~x we define 

f .  g = ~ f (x)  g (x). (2.10) 
x E X  

It is well known that the eigenprojections Ei(a) are given by 

e * .  
EJ(a) "'J "g e,,i(x ) (2.11) g (x) = e*, i" %.i 

where ea, i (x) = e. (x) exp (i 2 nj r (x)/r), and also that 

E j (a) E k (a) = CSjk E k (a). (2.12) 

__ :g If we use (2.11) and (2.12) and note that e,*i.e,, i -  e a .e a we conclude 

r - - 1  

exp(i2~zhk/r) ~ e*(x)e"(x)=f(h),  h=0,  . . . , r - l ,  (2.13) 
k = O  x ~ X k  e~a " ea  
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where 6(h)--1 if h--0, --0 otherwise. But (2.13) cannot hold unless 

e*(x) e,(x) 1 
E - k = l  . . . .  , r .  (2.14) 

x~Xk e *  a �9 e a r 

3. The Saddle Point Approximation 

Except when it is apparent from the context, we will in this and the following 
sections suppose that the regularity condition below is satisfied. 

Condition. We require that it is not the case that there is an ct ~e 0 in (-7r, 7~] p 
and an uE(RP) x such that T~ is contained in some coset of G~. 

Since G ~ c G~ we conclude (Lemma 2.4): 

V,= ( ~  log 2(a)) 

is a positive semidefinite matrix for each a E R  p, and for each O~ec~R p there is an 
a~ R p such that ~- V, c~ > 0. It is believed but not proved that the condition above 
also implies: 

Additional Assumption. V a is a positive definite matrix for each a ~ R  p. 

This assumption implies that the mapping a ---, m a = grad log 2 (a) is one to one. 
Thus we may write 

~ = m  -1. (3.1) 

That is ma(x)=X for all x~m(RP)={maERPIaaRP} .  
k 

The tensor product F I | 1 7 4  of mappings F j = ( f ] y ) j = l , . . . , k  
j = l  

from C x into C x is defined to be the mapping from C x~ into C x~ which satisfies 
k 

@ F j  g(x l ,  . . . ,  Xk) = ~. f~ly," . . . .  f f ~  g(Y* . . . .  , Yk)" (3.2) 
j= 1 (Yl . . . . .  Yk)eX k 

This multiplication induces another convolution operation (denoted | on 
structure functions F1 (t), ..., Fk(t) 

~e&|174 E fi(t,)|174 (3.3) 
t l + ' " + t k = t  

The convolution (3.3) is thus a mapping from C x~ into C x~. If Fj(t)=(f]y(t)) 
j = 1, ..., k and g ~ C x~, then 

F I e ' " t ~ F k ( t ) g ( x , , . . . , X k ) =  ~ fx, r ,* '"*fk~r~( t )g(y l , . . . , yk)  (3.4) 
(yl, ..., yk)~X k 

where we this time have ordinary convolution to the right in (3.4). 
r--1 

We further define En(a)= ~ exp(i2zcjn/r)EJ(a), then 
j = o  

E n ( a ) g ( x ) = r ( e * ' e a ) - l (  2 e*(y)g(y))e.(x). 
y~Xv(x) +n 
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Also 
g,+kr(a)=g.(a),  k ~ Z .  (3.6) 

I z[ (z ~ C p) stands for the euclidian norm (Izl[ 2 + 2 x �9 -. + Iz~l )~, and II" I[ for the norms 

II(fxY)ll--  ~ I fxYl ,  k_>_l. 
X e X  k 
Y e X  k 

Then 
[IFx | 1 7 4  = [IF~ II . . . . .  LIFkll 

IIF1 . . . . .  Fkll ~ IIFlll  " IIFk[I. (3.8) 

Theorem 3.1. For each integer k > 1 and each compact K ~ R p 

(2 n n) p/2 (det e"" ' - -  F"~ * ( ~ . . . ~  F'~*(t) 
V~)= 2(a)" (3.9) 

k k ] =O(1/n), [ ~ - e  -+lt*l~ (1 + n  -~ P~(t*))@E,,(a)+t*" (nV,)-- grad@E,j(a)  
j = l  j = l  .1 

uniformly in t and in a when a ~ K  and nffn, j =  1 . . . . .  k remain bounded away from 
zero and one. Here n=nl  + ... +nk, t*=(nV~)-�89 and P~ is a polynomial of  
third degree with coefficients which are analytic functions of a. Furthermore P,(O)= O. 

Remark 1. The rightmost operator of the second line in (3.9) is defined via the 
formula 

t*" (nV,) g r ad@ E,j(a g ( x l , . . . ,  Xk) 
1 

�9 (n V~)- grad E,j(a) g (xt . . . . .  Xk) �9 

Remark 2. P~ is given by 

e-~l~l 2 P.(x) =~(2 ~) -p/2 ~ e -i~'x e -~l~12 Qa(V~-~e)da ( x e R  p) (3.11) 
RP 

/ P .  8 \3 
where Q,(x)= t ~  'xJff~a~) log2(a). In particular 

P ~ ( x ) = l ( x a - 3 x )  V~-~J-d V~ 

when p = 1. 
Theorem 3.1 is the Markov version of a result of [12] (which is the inde- 

pendence version of the present result, but without the extra assumption that X is 
finite). The starting point of the considerations presented here was a question of 
Per Martin-L/Sf concerning an extension of his result to the Markov case. 

Corollary 3.1. For each integer k >= 1 and each compact K e R p 

I e ~'t F . I , ( ~ . . . ~ F . ~ , ( t ) _  e ~lt,12~ (2 n n)p/2 (det V,)~ ~ - ~ E,~(a) (3.12) 

= O(n-~), 
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uniformly in t and in a when aEK and nj/n, j =  1 . . . . .  k remain bounded away from 
zero and one. 

Proof The properties of P~ mentioned in the formulation of Theorem 3.1 give 
max [Pa(x)[ < Const Ix[ (1 + Ix I z). Here and below Const stands for a number that 
a~K 

k 

may depend on k and K but not on a, t or nl . . . . .  nk. Since (~ E,j(a) is dominated 

; by the continuous function [lEt(a)[ [ for all nj we also have 

max + E.~(a) ____ Const. 

Therefore 

e -~lt*V P~(t*) + E.j(a) <__ Const max e -~1~1~ [xl (1 + Ixl2)=< Const. m a x  
tEZP, aeK  1 x~RP 

We treat the term containing the gradient in a similar way, and the corollary 
follows. 

For reasons explained in Section 4 

Ha=log  2 ( a ) - a -  m a (3.13) 

will be called the specific entropy. If we let a=~(t/n) in Theorem 3.1 and note 
that t -  n m~(,/,) = 0 we obtain: 

Corollary 3.2. For each integer k >  1 and each compact K c R p 

(2 rc n) p/2 (det j_-@l V~(t/,)) ~ e -"ua`t/"' F "1 .~- . .~ )  F"~*(t) - E,j(fi(t/n)) =O(1/n), (3.14) 

uniformly in t when ~(t /n)eK and n/n, j =  1 . . . .  , k remain bounded away from zero 
and one. 

In the independence case it is possible to replace the approximation above by 
an approximation which holds uniformly for all t6Z .  See [7]. 

Proof of Theorem 3.1. Given the compact K, choose ~5>0 and r/>0 so small 
that 

(i) Ka = {a + i~[aE K, 1~]< 6} is contained in the set U of Lemma 2.3. 

(ii) log 2 (a + i c0 has no branching point for a + i ~  K~. 

(iii) 
[log 2(a + i ~ ) -  log 2 ( a ) -  i~. ma+�89 �9 V~] <�88 V~ (3.15) 

when a~K,  [~[<6. 

(iv) 
tr(~(a+i~))--  ~) {2(a+ict) exp(i2zrj/r)} ~ {w6 C[ [w[ <(I - r / ) [  2(a+i~)[} (3.16) 

j=l 
and [2 (a + i~)[ > q as a ~ K, [~1 < 6. Here and below a (~ (z)) denotes the spectrum 
of ~(z). 

(v) ~ ( ~ ( a +  i~))= {we C[ Iw] <(1 - q )  2(a)} when aeK,  ]~[ >6  and ~ ( -  ~, 7r] p. 
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It is seen in the following way that such a choise is possible. 

(i) Every open set which K contains Kn for all ~ sufficiently small. 

(ii) Put ~/=�89 mirn 2(a), then q>0 .  l o g 2 ( a + i s )  has no branching point in the 

open set {a+is IRe2(a+ic t )>q}  which contains K and hence also Ko for all 6 
sufficiently small. 

(iii) The expression to the left in (3.15) equals (according to Taylors formula) 
O(lal 3) as s ~ 0, uniformly when a~K. V~ is a strictly positive definite matrix for 
each a~R p, and it follows from part (a) of Lemma 2.3 (applied to V~) that the small- 
est eigenvalue of V~ is a continuous function of a. The smallest eigenvalue of V, is 
therefore bounded away from zero when a~K. Hence s .  V~s > c  Is[ 2 for all aEK, 
s ~ R  p and some c >  0. We conclude that the inequality (3.15) is valid for all a e K  
and I~l < 6, provided 6 is sufficiently small. 

(iv) Write ~ ( a +  is) for the set to the left in (3.16), and D(c) for the open disc 
{we CVl Iwl < c}. Our first aim is to show 

(a + i e) c O (2 (a)) (a eR p, e e RP). (3.17) 

When e + 0  (3.17) follows from Lemma2.2 and the regularity condition (p. 14). 
When s =0,  (3.17) is a consequence of Lemma 2.1. 

It now follows from the continuity of the spectrum (part (a) of Lemma 2.1) 
that to each b e R  ~' there is an open neighbourhood Ubc C p of b and a number 
qb>0 such that }" (a+is )cD((1- t lb )12(a+is ) l )  for all aq - i s~U b. Choose 6 so 
small that K~ ~ U Ub, and let Ubl . . . .  , Ub,, be a finite covering of K~, then 

b~RP 

(a + is )= D((1-r/)lA(a + icOI) 

for all aeK ,  Is l~6  and r/< min(t/b I , ..., r/b~,) 
(V) It follows from Lemma 2.2 and the regularity condition that 

a (~ (a + is)) = D (2 (a)) 

when a~K, I~l~ and a s [ - r c ,  rc] p. The set {a+i(xta~K, ]a[>fi, a~ [ -zc ,  ~]v} is 
however compact and it follows in a similar way as in the proof of (iv) that 

a(q~(a+ia))cD((1-r l )2(a))  forall  a~K,  ]a[>cS, a ~ [ - r c ,  zd p 

and all r/sufficiently small. 

Let n= n 1 +.. .  + nk and 
k 

~11 (S) : (2 ~)- p e-i~t't ~ (a)-  n @ ~ (a -~- i ~)nj 
j=l 

{ 2 ( a + i s )  ]" k 
@E, j (a+  is) (3.18) 

k k i- "I 

e - i ' ' "  . . . .  ) e -~n~'v." 1(1 + �89 Q,(cQ)@ E,,(a)+ is .  grad@ E.,(a)/ 
L j = l  j = l  ._1 
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where Q,(e) is defined just  below (3.11). Then 

and 

e a �9 t 

) , (a)~F"~*(~'"(~F"~*(t)  = ~ t//l(e)de 
( -  ~, ~]p 

k 
(27z n)- p/2 (det V,)- ~ e -  ~1'*12 (1 + n-  } P, (t*)) @ E,, (a) 

j = l  

(3.19) 

Hence  

k ] + t *  . ( V a )  g r a d  E, /a )  = ~ 0 3 ( e ) d e .  
Rp 

Hence the no rm in (3.9) equals 

(2nn)p/2( det Va) ~ [I ~ O l ( e ) d e -  ~ O3(a)de[[, (3.21) 
( -  ~, ~]p Rv 

which is domina ted  by 

(2~n)p/2(detVa)~[ ~ [[~l(e)[[de+ ~ [l~3(e)[[de 

I~r>a (3.22) 
+ j" N~' , (e)-~2(e)l lde+ j" 11~2 (e) - 03 (e) ll de] 

1~1<~ [~l<~ 

=11 + "'" +14.  

We choose a number  0 < e < �89 and have to show that Ij = O(1/n) for j = 1, 2, 3, 4, 
uniformly in t and in a when a e K  and e<=njn<= 1 - e  for j =  1 . . . . .  k. The symbol  
" C o n s t "  will be used for numbers  that may depend on k, K, e, ~ and t / b u t  not 
on t, e, a or nl, . . . ,  n k when a ~ K and e =< n j n  <= 1 - e,j = 1, .. . ,  k. We will begin with 14. 

14. No te  that 14 may  be writ ten 

(2~ n)p/2(det V,) ~ ~ [[e i='{' . . . .  )(02(e)-Oa(e))[[  de.  (3.23) 
I~1 < 

Write r(a, e) for the expression within the absolute value signs in (3.15). Then we 
have 

e},, .  vo= e-i=.,mo (2 (a + i a)/2 (a))" = e "'~"''). (3.24) 

But ] e=- l -w lN le=- l - z l+ l z -w l<=�89  If we 

apply this inequali ty with z - -n  r(a, e), w = 6  Q~ (e), remember  (iii) and note that 

Q~(e)=O([e[a), r(a, e ) - ~  Qa(e)=O(]e[ 4) uniformly when a e K ,  then we conclude 

6 Q" (e) < Const  e ~ =" vo, (n[e [4 + n 2 [e [6) (3.25) enr(a, ~) 1 

when a ~ K .  Also 
k k k jQF~.~(a+ie)--| J=~ __<Const lel ~ . (3.26) 

n k k k e)  
(1 + ~ -  Q. (e)) @ E,j (a) + i e-  grad @ E,j (a) - e "~ (a' ~)i@ 1E.~ (a + i 

i=1 ~=~ "= (3.27) 
< Const  e �88 vo= lel2 (1 + n 2 [el 4) 

(3.20) 
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when a e K  and ]el__<6. Therefore 
1 - -~0~  �9 V a at 

I4<=Constnp/2(detV~) ~ ~ e [a[2(l+n2lal4)da. (3.28) 

The substitution a --* (n V,)- ~ ~ together with the inequality I Va- ~ c~l < Const l al 
finally yields 14 < Const/n. 

13. We have 13 <Cons t  n p/2 I'a, where 

k k (X) 
I'3 = ~ )~(a)-" ( ~ ( a + i ~ ) " J - ( ~ 2 ( a + i ~ ) n J  E. j (a+i  de. (3.29) 

I~1<~ j = l  j = l  

Let Aj = q~ (a + i ~)": and Bj = 2 (a + i ~)"~ E.~ (a + i oO then 

k k k 

| 1 7 4  Y, A1 | | j_l |174 | | 
1 1 j = l  

and hence 

+ A j - + B j  <= k IIAlll . . .  IIAj_ll l  I I A j - B j l l  IIBj+lll  . . .  IIBkll. 
1 1 j = l  

We are going to show that [IAj-Bjll j = l ,  ..., k are small. 
Let F(a+i  ~) denote the circle with radius (1-r / /2)[2(a+ia) t  and center 0. 

Choose circles 7j (a + i a) with centers at 2 (a + i e) exp (i 2 gilt) j = 1 . . . . .  r and with 
so small radii that the sets F(a+i  ~), ~ ( a + i  ~), . . . ,  7, (a+i  e) are disjoint. 

The resolvent R (w, a + i a) = (r (a + i e ) -  w I)-  1 (w e C) is a meromorphic 
function of w the poles of which coincides with tr(r (a + i e)). 2 (a + i  e)exp (i 2 rG/r ) 
j =  1, . . . ,  r are simple poles since these eigenvalues are simple (remember (i) and 
Lemma 2.3). 

If we remember (2.11) and (2.9) we see that if z e R  p then 

E,, (z) = ~ exp (i 2 ~ j m/r) E j (z). (3.30) 
j = l  

The identity (3.30) defines E,, (z) in a neighbourhood of R p and we have (see [-6] 
1966, p. 39 and p. 44) 

EJ(z)=-(ZTt i )  -1 ~ R(w,z )dw 

~:(~) (3.31) 
( z )  n = - ( 2  rc i)-1 ~ w" R (w, z) dw. 

F(z) +,/1 (z) +-.- + ~,~(z) 

Hence 

~b(a+ia)m-2(a+i~)n 'Em(a+i~)=-(27r i )  -1 ~ wmR(w,a+ia)  dw 
F ( a + i a )  

(3.32) 
+ ~ - ( 2 x i )  -1 j" (wm-[2(a+i~z)exp(i2~zj/r)]m)g(w,a+i~)dw. 

j = l  y j ( a + i a )  

The integrand of the j-th integral in the sum to the right in (3.32) is in view of (iv) 
analytic on the disc whose boundary is 7 j ( a + i a ) j = l ,  . . . ,r .  The r rightmost 
integrals in (3.32) therefore equal zero. It follows from (iv) and the definition of F 
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that the distance between a(~(a+ie))(i .e ,  the poles of w- ,R(w ,a+ic t ) )and  
F(a + i ct) is at least �89 ~/12(a + i 7)l > q2/2. The norm of the remaining integral in 
(3.32) is therefore dominated  by 

Const  ( 1 -  r//2)" L~ (a + i ~)]m < Const  (1 - t//2)" i (a)". (3.33) 

Hence  [fAr - Bj II < Const  (1 - r//2)"J 2 (a) "j. Also 
r 

[I Bj[I = [2 a + i e)[nj 11 En i (a + i ct)11 < 2 (a)"J ~ II Ej(a + i ~)Jl -~ Const  2(a) "j 
1 

when a s K  and I~l <=,~. But [[Aj[I < [[Aj-  Bill + IInjll _-__ Const  2 (a)% and hence 

A j -  @ B i <= Const  ~ 2(a)" (1 - r//2)"J 
j = l  

_< Const  2 (a)" ( 1 -  t//2) '" when aeK,  [ctl<6. 

A glance at (3.29) finally yields I3 < Const  n p/2 (1 - t//2)~"< Const/n. 

12 . This integral tends to zero faster than any power  of n. The verification is 
left to the reader. 

I j .  W e  have k 
I~< y 2(a)-"  I" I [ [~(a+ i a)"Jl[ d~. (3.34) 

~ t e ( -  r~, r0P j = l  
I~1_->~ 

It follows from (v) that the poles of R (w, a + i e) lies inside the circle F(a) and that 
the distance between the poles and F(a) is at least �89 if a~K, ]e{>J 
and e s ( - r c ,  rc] p. The representat ion 

@(a+icQ"=-(2rci)  -1 ~ wmR(w,a+ioOdw 0.35) 
F(a) 

therefore yields (t ~ (a + i a)" {( < Const  (1 - 11/2) m 2 (a)" ira ~ K, l a[ > 6 and ct e ( - re, n] p. 
Hence also I1 < Const  (1 - v//2)". 

4. Equivalence of Ensembles 
In this section G r = l  on I, ~ and we will assume that Y is aperiodic ( r= l ) .  
The canonical  M a r k o v  chain is defined by the transition probabili t ies 

e a't(x'y) e~(y) 
p ~ ( a ) =  2(a) G(x) '  (x ,y)EY (4.1) 

and the stat ionary initial distr ibution 

We define 
p. (x)= (Ca*" e.) -1 e*a(X) e~(x), x ~ X .  (4.2) 

then 
e a - t n  

p, (Xo, ... ,  x,) = (e*. e , ) - i  e* (Xo) ~-;-;7,_,.- e, (x,), (xi_l,  xi)E Y, i= l , . . . , n ,  (4.4) 

n 

p,, (x o . . . .  , x,) = p, (Xo) l-[ P . . . .  x, (a) (4.3) 
i = 1  



138 T. HSglund 

where t ,=  ~ t(xi_,,  xl). We will write H, for the probability measure on X z 
i = l  

determined by the densities (4.4). 
The reason why we consider the canonical Markov chain will now be explained. 

Consider a long chain X_M, ..., Xo . . . . .  X . . . . . .  XN. The uniform, or the micro- 
canonical, distribution on the surface 

{x-M+~ . . . . .  xN-1l E t (X ' - I 'X i )=T 'X-M=X'XN=Y}  (4.5) 
-M<i<=N 

is given by the density which equals ((~x" FtM + N), (T) fly)-1 if ~ t(x~_ 1, x~)= T, 
-M<i<=N 

and which is zero otherwise. Here 5~ (y) = 1 if y = x, = 0 otherwise. The distribution 
for Xo,.. . ,  x. induced by the microcanonical distribution on the surface (4.6) 
is then given by the density 

M, N (4.6) PTxy (Xo, "" Xn) = 5xx." FM* (~ F(N- n), ( T -  tn) tS~or 
' (~x" F(M+N)* (T) 5y ' 

where t ,=  ~ t(xi_l,  xi), and 5~lx2(y ~, y2)=l  if (Yl, Y2)=(xl, x2), = 0  otherwise. 
i = l  

Theorem 4.1 (Boltzmann's law). For each compact K c R p 

M,N Prxr (Xo . . . . .  Xn) = Pn (Xo, ..., X,) [1 + O(1/(M + N))], (4.7) 

uniformly when fi = ~t (T/(M + N)) ~ K, and M/ (M + N) remains bounded away from 
zero and one. 

There are many results that are related to Theorem 4.1. One approach to the 
problem can be found in [11]. Thompson at Cornell university has obtained a 
related result which is applicable also when the interaction is more complicated 
than the ordinary Markov interaction considered here. 

Proof In this proof we will write ~ instead of ~(T/(M + N)), and E(a) instead 
of E1 (a). Since r = 1 we have E, (a)= E (a) for all n. 

We apply Theorem 3.1 (with k = 2 and a--fi) to the operator in the numerator 
of (4.6). The result is 

F M, ~ F(N- n), ( T -  t) = (2 rc (M + N - n))- p/2 (det Va)- ~ 

e-a.(T-t)  
2(~)M+N_, {[e-1"l:/2(1 +(M+N-n) -~Pn(u) )E( f i ) |  

+ u .  ( (M + N - n) V~)- ~ grad E (a) | E (a) l, = a] 

+ O(1/(M + N))} , 

uniformly in T when fi~ K and M/(M + N) remains bounded away from zero and 
one. Here 

u = ((M + N -  n) Va)- ~ ( T -  t -  (M + N -  n) ma) (4.9) 

= -- ((M + N - n) Vn) -�89 ( t -  n ma) = O((M + N ) -  ~). 
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Therefore 
e-1"12=l+O((M+U) -1) 

1 1 (M + U-n )  -~ Pa(u)=O((M + N)- ) (4.10) 

u. ((M + N - n) Va) - ~ grad E (a) | E (a) l a = ~ = O ((M + N)-I  ). 

Hence the numerator of (4.6) equals 

e - - ~ . ( T - - t )  1 
(2n(M + N))-"/2(det Va) -~ 2(8)M+N_, [6xx," E(8)| E(8)6xor+O((M + N)-~], 

(4.11) 

uniformly when 8 e K  and M/(M+ N) remains bounded away from zero and one. 

Corollary 3.2 applied (with k = 1) ro the denominator of (4.6) yields 

e - a . T  
~x " F(U +N)*(T) 6r=(2~z(M + N))-P/2( det V~) -~ ).(8)M +N 

�9 [8x" E (8) 6r + 0 ((M + N ) -  ~)], (4.12) 

uniformly when 8e K and M/(M + N) remains bounded away from zero and one. 

From (4.11) and (4.12) we finally obtain 

e~'t 6xx"'E(8)|176 ~-O(1/(M+N)), (4.13) M , N  
PTxy (Xo ..... X,)= 2(8)" fix" E(8) 6y 

which is the desired result. 

Example. The one dimensional Ising Model. 

Here X =  { - 1 ,  1}, Y = X x X a n d t ( x , y ) =  x[..,.. I. Thus Yis irreducible and 
has period 1. 

Calculations show that 2 (a) = eb(cosh c + a(a)) and 
�9 

e,(x) = e* (x) = (1 + x (smh c)/a (a)) , 

where a= (bc) and a(a)=(e-4b +sinhZ c) ~. 

However, we have to do a modification to be able to apply Theorem 4.1. If we 

let s = , e = 2 ~ and choose u such that u ( - 1) - u (1) = , then T, c s + G~ 

and hence our regularity condition is not satisfied�9 But if we define t by 

t(x, y)= s+u(x)-u(y)+ A[(x, y) (4.14) 

where A-- (~ 02), then [is a statistic which takes its values in Z2 and it is straight - 

forward to verify that t satisfies the regularity condition. 
Using the relations between the structure functions, eigenfunctions and eigen- 

values corresponding to t and t induced by (4.14) we conclude that Theorem 4.1 
holds not only for t but also for the original t. 
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m, and V, may be expressed in terms of the moments of the canonical Markov 
chain 

m,=E~t(Xo, xO 
(4.15) 

vo= Eo(t(Xo,Xl)-mo)(t(xk, xk+,)-mo)' 
k = - - o o  

Here the prime denotes the transpose of a column vector and the multiplication 
is matrix multiplication. The series converges. 

The first of these identities follows from 

0 = grad ~ p,(Xn) = E. grad log p~(X.) where ]K. = (x 0 . . . . .  x.). 
Xn 

To see that the second holds we note that 

0 2 0 2 ~ 3 
O= ~aiOaj x.~ Pa(YC~n)=Ea c3ai~3aj I~ p"(Xn) + Ea ~a~ l~ p"(Xn) ff~jaj l~ p"(X") 

and that as h -  k ~ o0. 

pa(XO ... . .  Xn)= pa(XO. .. Xk) pa(Xh .... , Xn) + O(O h-k) 
X k  + 1 . . . X h  -- 1 

for some 0 < 0 < 1. The latter because 2 (a)- n ~(a)n = E(a) + 0(0 ~) for some 0 < 0 < 1. 
Hence n-1 n-1  )~ 

where sj--t(xj, xj+ l)-m..  But E.sisj= Easosj_i=O(O Ij-~l) and hence 

V,=lim EaS2+2 1-k/n) EaSoSk = E a s 2 + 2  EaSOSk= E, SoSk, 
\ k=l  / k=l --oo 

which was to be shown. 

We will consider three kinds of entropy. The microcanonical entropy 

the canonical entropy 

and the specific entropy 

H~r(t) = log fi"y(t), 

Ha"- - E a  log p,,(Xo,., x.) 

(4.16) 

(4.17) 

(4.18) Ha=log  2 ( a ) -  a �9 ma. 

They are related in the following way 

Hn=nH.+H ~ 

H~,r(t) = nHa(,/n) + O(log n), (4.19) 

uniformly in t when fi(t/n)eK. 
The first of these identities is a consequence of (4.15) and the stationarity of 

the canonical Markov chain. The second follows from Corollary 3.2. 
The canonical Markov chain H0t,, ) has the largest entropy among all strictly 

stationary processes {Xn},~z satisfying Et(x o, xl )=  m. See ['17-]. 
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The definitions of the canonical Markov chain and the entropies make sense 
also when Y is periodic, and (4.19) still holds if we add "provided r(y)= r(x)+ n 
(rood r)" to the sentence just below (4.19). (2.14) can now be written 

/7a(Xo e X 0  = 1 k =  1, . . . ,  r .  
r 

The same remark applies to the more general stationary Markov chain considered 
in the next section. In this case we lose, however, the interpretation of the micro- 
canonical entropy as the logaritm of the number of microstates wich realize a 
given macrostate t. 

5. Central Limit Theorems 

In this section we consider a general non-negative and irreducible sequence 
{qxy}, and let H a stand for the stationary probability measure on X z determined by 
the densities 

pa(Xo . . . . .  x , ) = ( e * . G )  -1 e*(Xo) 2(a) qx~_,x, G(x,),  
(5.1) 

n>=_O, ( x i _ l , x i ) E Y  f o r  i = l , . . . , n .  

We will investigate the asymptotic behavior of the distribution of 

n 

" t, = ~ t (x  i_1, xi) 
1 

induced by//a .  When we do not want to stress upon uniformity in a, we will formu- 
late our results fo r /7  o . In this case we suppose that {Gy} is normed in such a way 
that 2 (0)= 1 (this is always the case in case (b) below), and we will omit the zero, 
thus /7  =/7o, e = e o, m = m o and so on. 

We point out two cases 

(a) The canonical Markov chain: qxy = 1 on Y. 

(b) {qxy} is transition probabilities, ~ G y = l  for all x e X .  Then /7o is the 
y 

stationary measure on X z induced by the Markov chain with transition proba- 
bilities {qxy}. The modifications which are necessary when the initial distribution 
is not the stationary one will be left to the reader. 

The results in this section are closely related to the results of Saulis and Statul- 
javieus [16] and Statuljavieus [18]. 

Let p~(t) stand for the density of t, 

Then 
p~,(t) =/7~(t. = t). (5.2) 

(5.3) 
ea't G*" Fn*(t) ea 

p~( t )  = 
2(a)" e* . e o 

Theorem 3.1 and its two corollaries therefore induce three results for p~(t). If we 
note that e*. E, (a ) e ,=e* . ea  and (recall (2.14)) e*. (grad E,(a) )G=0,  we see that 
these results may be stated in the following way. 
10 Z.Wahrscheinliehkeitstheorie verw. Gebiete, Bd. 29 
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Theorem 5.1. For each compact K ~ R e 

(2 n n) p/2 (det V,) ~ p~(t) (5.4) 

= e-~tt-,m~), v; ~(t . . . .  )/" [1 + n -~ P~((n V,)- a-(t - nm,))] + O(1/n), 

uniformly in t and in a when a e K .  

Theorem 5.2. (Local central limit theorem.) For each compact K c R p 

(2 n n) p/2 (det Va) ~ p~ (t) = e-  ~(t . . . .  ) v,-1 (t . . . .  )/" + O (n- ~), (5.5) 

uniformly in t and in a when a~K.  

Theorem 5.3. (Local central limit theorem for large deviations.) For each 
compact K ~ R p 

(2 n n) p/z (det V~(t/,)) ~ p~(t) 
(5.6) 

e, _ _ _ _  (1 + O(1/n)) =e_(a(,/,)_,).t [ ),(~(t/n)) ]" *.  E,(8(t/n))e,  
2 (a) e*. e~ 

uniformly in a and t when a e K  and ~(t /n)eK.  

Theorem 5.2 implies convergence in distribution. For  results of that kind we 
refer to the already cited paper of Statuljavi~us and to part I w 16 of [3] and 
the references given in the notes at the end of that paragraph. Another local limit 
theorem was given by Kolmogorov [10]. 

If we specialize (5.6) to the independence case and put a = 0 we obtain 

p"* (t) = (2 n n)- v/2 (det Va(t/,) )-  ~ e "Ha("") (1 + O(1/n)), (5.7) 

uniformly when gl(t/n)~K. Compare [15]. 

Theorem 5.4 and 5.5 below supplements Theorem 5.3 by providing informa- 
tion concerning the tails. We use the word tail for halfplanes of form c- t, > e. t, 
where c ~ Z" and c. t > e.  m,. Since c.  t, is a one-dimensional statistic it suffices to 
consider the case p = 1. The proofs of our statements concerning the tails will be 
given at the end of this section. 

Theorem 5.4. (Central limit theorem for large deviations.) For each compact 
K ~ R  

e -  (d( t /n) -  a) t 

2(a) 1 - -  e -O(t/n)-a) 

uniformly in a and t when K ~ a < gl (t/n)s K. 

If we put a = 0  in the theorem above and restrict ourselves to values of t for 
which O < t / n - m = o ( 1 ) ,  we obtain a corollary which should be compared to 
Theorem 2 p. 520 of [5]. 

Corollary 5.1. Let x t = (n V)-  ~(t - nm). I f  o (n ~) = x t ~  oo, then 

H(t,>t)=(1-9l(xt))eX~Z(~r +O(xtn-~)+O(x;-2)) .  (5.9) 

% 
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Here  ~R(x) stands for the normal distribution with zero expectation and unit 
variance, and 

l(xl= d' v,_lx= m v"+2' 2 - - -  # .  ( 5 . 1 0 )  
j=l dxJ a ( x )  ( j+2) !  

Theorem 5.5 presents an upper bound for the tails. 

Theorem 5.5. I f  t > n me, then 

Ha (t, > t) < e -  (a (,/,)- a) t e* . �9 (~l (t/n))" e, (5.11) 
2(a)" e* . e, 

In the independence case Theorem 5.5 takes the form 

Theorem 5.5 a. I f  t > n ma, then 

17,, t (x i )> t <e_(a(t/,)_a) t 2(a(t/n))" (5.12) 
= ~(a)"  

Note that by Taylor's formula 
1 

log 2 (a) = log 2 (4) + (a - 4) m e + (a - 4) 2 5 (1 - 0 Va + r (,- a) d{. 
0 

The expression to the right in (5.12) may therefore equally well be written 

e-,a(,, e(t/,)), (5.13) 

where 
1 

6 (a, 4) = (a - 4) 2 5 (1 - {) Va + ~(,_ a) d{. (5.14) 
0 

Since V~ is strictly positive for each a and since ~ (t/n) = a only if t/n = m, we conclude 
that 3(a, a(t/n)) is positive and bounded away from zero when t/n is bounded 
away from ma and a ~ K ,  ~( t /n)~K.  Thus, when applicable, Theorem 5.5 a gives a 
sharpening of Cebygev's inequality. 

We also have the following corollary to Theorem 5.5a �9 

C o r o l l a r y  5.2. I f  t > n m , ,  then 

n a / \ 

- -  . 

\ J .  / 

where M =  max V b. 
a<-_b<-_a(t/n) 

Example.  Bernoulli Trials. 

x l , . . . ,  x ,  are independent and takes the values 0 and 1 with probabilities 1 -  0 
and 0 respectively. Here t . =  x, + . . -  + x, and Pa(Xo, ..., x , )=  0 ' " (1-  0)"- ' -=  
e " " ( l + e " )  -", where 0=ea/( l+e") .  We also have m~=O and V~=0(1-0). It is 
easily verified that Vb < 1/4 for all b, and that V b < V~ for all b >_ a > 0. Corollary 5.2 
therefore yields the inequalities 

n --0 
OS(1--o)n-~<exp i f - - > 0 > ~  (5.16) 

s=t~ n 

lO* 
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and 
~>_t ( : ) & ( 1 - 0 ) " - ~ < e x p  ( - 2 n  (~--0) 2) if t>_0>_0.  (5.17) 

An inequality similar to those above was given by Bernstein. See [14], p. 387. 

Proof of Theorem 5.4. In this proof we will use the following abbreviations: 

3=fi ( t ) ,  0 = e x p ( a - 3 )  and 

R~'* (t) = e at 2 (a)-" F"* (t). (5.18) 
We have 

Ila(t .>t)= ~.p~,(S)=(e*. e.) -1 e*- R'.*(s) e.. (5.19) 

However 

and hence 
R~* (s)= 0 s ).(4)" )` (a)-" R~* (s) (5.20) 

(5.21) H a (t, > t) = )` (4)")` (a)-" 0 t (1 - 0)- 1 (e~*. e,)- 1 e~*. 5f e,, 
where 

S f = ( 1 - 0 )  ~ 0 u R~a*(t+u)=R~*(t)+ ~ O"(R~*(t+u)-R~*(t+u-1)) .  (5.22) 
n=O u=l 

Theorem 3.1 yields 

R]* (t + u) - (2 rc n Va)- r [g, (u (n Va)- ~) E, (4) 

+ h. (u (n l/a)- I) ~ _  E. (4) + O (i/n)], 
(5.23) 

uniformly in u and t when 3(t/n)~K. 
Here 

g. (x) = e-  12/2 (1 + n - ~ Pe (x)), 
(5.24) 

h. (x)-- e- 12/2 x (n Va)- ~. 
Therefore 

5e=(2nnVa) -~ E,(3)+O O"51(u) llg,(3)ll 
'~u=l (5.25) 

o9 

+ 0  Q~O"ge(U) d--~E,(3) )+0(n -1 (1 -0 ) -1 ) ] ,  

uniformly in t when 3(t/n)eK. Here 

61(u)= I g.(u(n g.((u- 1)(n 
(5.26) 

5z(U) = ]h,(u(n Va) -�89 - h.((u - 1)(n Va)- �89 

Let I, (u) = [(u - 1) (n Va)- i, U (n V~)- i]. Then 

5, (u) < (n V~)- =* max)l g', (x) l. (5.27) 

But 
[g', (x)[ = l -  x g,(x)+ e - ~/z Pa' (x) n-~l < u(n Va) -~ Ig, (x)l 

(5.28) 
§ n-~ e -~2/2 Ie~'(x)l =< Const (u + 1) n -~ 

when xeI,(u). Hence 61(u)=O((u+l)/n), uniformly in u and t when 3(t/n)eK. 
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In a similar way we obtain 62 (u)= O(1/n), uniformly in u and t when ~(t/n)~ K. 
oo 0o 

The facts ~ 0 " = 0 ( 1 -  0) -~, ~ u  0 " = 0 ( 1 -  0) -2, and n-l(1 - 0) -1 < n - l ( 1 -  0) -2 
1 1 

applied to (5.25) now yields 

5" = (2 rc n Va)- } [E, (~) + O (n -~ (1 - 0)- 2)], (5.29) 

uniformly in t when ~(t/n)eK. The desired result follows if we substitute the 
expression to the right in (5.29) for 5 p in (5.21). 

Proof  of  Corollary5.1. Let ~ ( x ) = ~ ( m +  x V -~) and define l(x) and h,(x) by 

x 2 l ( x ) -  x2/2 = Hn(~) 

e* . E,(fi(x)) e (5.30) 
h . ( x ) = x ( 1 -  e-a(x)) -1 V~(x) e*. e 

It follows from Theorem 5.4 that 

H ( t , > t ) = ( 2 n ) - ~ x i  -1 e -x2t/2 edl(x'n-~)h,(xt n-~)( l+O(x;-2)) ,  (5.31) 

uniformly in t when 0 < a (t/n) ~ K. Calculations show that hn (x) = 1 + O(x) uniformly 
d d 2 

in n. Also ~-~xHa(x)=-8(x) ,  ~ x z H a ( x ) =  - Va~-~ and hence l(x) is of the form 

(5.10). The estimate ( 2 ~ ) - } x - l e - x 2 / Z = ( 1 - 9 1 ( x ) ) ( l + O ( x - 2 ) ) ( s e e  [4], p. 166) 
finally yields the desired result. (Note that o (n �89 = xt ~ c~ implies 0 < fi (t/n)E K.) 

Proof  o f  Theorem 5.4. For any c > 0. 

H~( t .>t )< ~, er176 . . . . .  x,) 
t.>=t (5.32) 

<= ~ er -o  p~ (x ~ . . . . .  x,) = e-r 2 (a)-" (e* . G)-  1 e* . q~ (a + c)" e a . 

The theorem follows if we let c = fi ( t /n ) -  a. (Note that t_>_ n m a implies fi (t/n) > a.) 
The reason for this choise is that for large n the expression to the right in (5.32) 
approximately equals 

(e_Ct/, 2 (a+c) )"  e * . E , ( a + c ) G  (5.33) 
2 (a) e*. G 

and that c =  f i ( t /n ) -a  minimizes e -ct/" 2 (a+  e)/2(a). 

Proof  of  Corollary53. The left hand side of (5.15) is by Theorem 5.5 a 
dominated by (5.13). We make the substitution tl=ma+~a_a) in the expression 
to the right in (5.14). The result is 

t/n 

6(a, a)= S (t/(t/)-a) dr/. (5.34) 
d "" 

But ~ tiff/) = 1/V~,) and hence 

f i ( t l )_a> - q - r e ,  if m ~ < q < t / n  (5.35) 
- m 
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So that 

6(a, ^ > " ""~ a)= S ~ d t / -  
r n  a 

which proves the corollary. 

t 2 tool 
2M 

(5.36) 

6. Statistical Inference 

We will in this section apply our results to the statistical theory presented in 
[12] and [13]. Another treatment of the subject treated here can be found in 
Billingsley [1]. 

Imagine an experiment the outcome of which may be listed Xo . . . . .  x.. Suppose 
n 

we feel that, given the endpoints Xo and x,, a statistic t, = ~ t (xi_ 1, x0 is sufficient 
1 

for the experiment. Given Xo, x. and t, = t we may consider xl . . . . .  x,_ 1 as being 
uniformly distributed on the surface 

X"~ox.(t)={Xl, . . . ,x ,_l  ~ t ( x ~ _ ~ , x 3 = t , ( x i _ , , x ~ ) ~ Y , i = l , . . . , n  } (6.1) 

(the microcanonical point of view). Alternatively, using Boltzmann's law, we may 
think of Xo . . . . .  x, as being distributed according to the canonical Markov 
chain which the function t(x, y) determines (the macrocanonical point of view). 

We will here deal with the problems of testing statistical hypotheses and 
estimating parameters. We will begin with the former. 

Let the statistic u be the image of t under a linear transformation, and suppose 
that u is of lower dimension than t. After a suitable coordinate transformation 
we may then write 

where dim u =  q < p = d i m  t. We want to test the hypothesis: The statistic may be 
replaced by the simpler statistic u. 

Let H~,xy stand for the uniform (the microcanonical) distribution on the 
n 

surface X~r(u), and let P~,xox. (v) denote the density of v, = ~  v(xi_l, xi) induced by 
H."~o~. Then 1 

p, ,v ~ f"r(u, v) .xrt )= ~ �9 (6.2) 

Here and in the sequel the structure function is defined relative to the sequence 
{q~y} which equals one on Y 

The exact test of the hypothesis rejects at risk level e if 

P,"~ox, (v) < 2 7 (u; Xo, x,), (6.3) 

where 2~"(u; x, y) is the largest number for which the probability to reject is at 
most e, 

2~' (u; x, y) = max {2 ] H~,~y (p."~r (v) < 2) < e}. (6.4) 
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Introduce the projection matrices P and Q defined by 

and let go(x)eR q be the solution of the equation 

P mr, o, o = x (x~ Rq). (6.6) 

In order to get an asymptotic test we prove 

Theorem 6.1. For each eorpact K ~ R q 

p~,~y(v) = (2 n n) -(p-q)/2 (det Q~o)O Q)+ 
(6�9 

�9 (e-~Cv-,Qmr,o, o)" QVg~o, oQCv-,Qmr,o, o)/,+ O(n-~)) 

uniformly in v, and in u when go = go(u/u) eK, provided r(y)= r(x)+ n (mod r). 

Proof We apply Corollary 3.2 (with k = 1) to the structure function of u. The 
result is 

(n~ that ( ~2 l~ 2 (b' O)0bi0b~ ) =PVb, oP' ) .  

f2y(u) = 6 x �9 F"* (u) by = (2 rc n)- q/2 (det P V~o, o P ')-  ~ 

�9 2(g o, O)" e -r,~ [fix" E,(go, O) 6x+ O(1/n)], (6�9 

uniformly when go = go (u/n)e K. If we put a = (go, O) in Corollary 3.1 we obtain 

f~"y(u, v)=(2~n)-~/Z(det l~o,O) -}  2(bo, O)" e -r,~ 

�9 [ e  - ~ (t - ,  mr,o, o). v~o ~, o (t - "mr,o, O)/" 6~" E, (bo, O) 37 + 0 (n- ~)], (6.9) 

uniformly in t =  (u)when (go(u/n), O)eKx{O}P-q  i.e. when go(u/n)~K. If we note 
that 

n- 1 ( t -  n mr,o, o)" Vbo:o (t-- n mr,o, o) (6.10) 

= n-!(  v -- nQrnr,o, o)" QVr,o,ao Q'(v-  nQmr,o, o), 

then we see that it remains only to verify the identity det P Vb, o P ' =  det Q Vb_o ~ Q' 
det Vb, o" The latter is done in e.g. [10-], p. 55. This completes the proof of Theorem 
6.1. 

We will reject our hypothesis when P],~ox,(V) is too small. If we accept to 
approximate P~,xox,(v) with the normal density to the right in (6�9 this will occur 
when the quadratic form (6.10) is too large�9 It follows from Theorem 6.1 (by 
approximating the resulting Riemann sum with an integral) that the distribu- 
tion of v induced by H~xr is asymptotically normal with expectation n Q mr,o(,/,) ' o 
and covariance matrix -1 1 n(QV~o(,/,),oQ' )- and hence, in particular, that the 
quadratic form (6�9 is asymptotically chi-square distributed with p - q  degrees 
of freedom. Therefore: 
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The asymptotic test of the hypothesis rejects at risk level e if 

n-l(v-nQm~o~u/,),o) . QV~o~lu/.),o Q'(v-nQm~,o~./.),o)> Kv~q(1-e),  (6.11) 

where Kpl~(1 -e )  is the (1-e)-percentile of a chi-square distribution with p - q  
degrees of  freedom. 

It is frequently convenient to calculate the quadratic form to the left in (6.11) 
via the modified likelihood quotient 

n 

max iF[ Px,_l x,(b, O) 
A -  b~Rq i=1, (6.12) 

max l-[ P~,-I x, (a) 
a ~ R P  i =  1 

n 

where p~ . . . .  ,(a) are the transition probabilities defined in (4.1). If I~ P~, ~1 x,(a) and 

p~,_l~,(b, O) have maximum for ~ and/~ respectively, then gl-~(t/n)=O(1/n) 
1 

and b - go(u/n)= O(1/n). Hence 

log A = n (H~ - Hi, o, o) + log e~o, o(X,) ea(xo) + O(1/n). (6.13) 
eSo, o(Xo) ea(x,) 

Taylor expansion (in powers of t/n-mSo,O) of the function to the right in (6.13) 
shows that the difference between - 2 log A and the quadratic form to the left in 
(6.11) equals O(lv-nQmbo, o]/n), and hence they are asymptotically equivalent. 

We now turn to the problem of parameter estimation. Xo, ..., x, are considered 
as being distributed according to the canonical Markov chain and we want to 
estimate the unknown value of the parameter a. 

tl 

The statistic t , - - ~  t(xi_ 1, xi) is, given the endpoints Xo and x,, sufficient for a, 
1 

and the conditional distribution of t, has the density 

e a .  t 

n n t p"~(tlXo, x.)= ~p~ox,(a ) J~ox.(), (6.14) 

where q~y(a)= 6~. ~(a)" by. 

The exact confidence region for a at risk level e, A~ (tl Xo, x.), is given by 

a"~(tl Xo, x,)= {a~RP[p"~(tl Xo, x,)> 2~" (al Xo, x.)}, (6.15) 
where 

2~(alxo,X.)=max{2lII~(p"~(tlxo,X,)<2lxo,X,)~e } . (6.16) 

In order to obtain an asymptotic confidence region we prove 

Theorem 6.2. For each compact K ~ R p 

p~(tlx, y)= (2 ~z n)-p/2 (det V~) -~ [e -�89 . . . .  ). v~ltt-,m~)/. + O(n-~)], (6.17) 

uniformly in t, and in a as aeK,  provided r(y)=r(x)+n (mod r). 

Proof It follows from the argument centering around (3.33) that for each 
compact K ~ R p there is a 0 < 0 < 1 such that 

q~,y (a) = 2 (a)" (6~. E, (a) 6y + O (0")), (6.18) 
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uniformly when a E K, provided r (y) = r (x) + n (mod r). The remainder of the proof 
is just another application of Theorem 3.1, and is left to the reader. 

It follows from Theorem 6.2 that the inequality p~,(t[ x, y)>2~"(al x, y) is ap- 
proximately equivalent to that the quadratic form 

n - l ( t - n  m,).  V ~ - l ( t - n  ma) (6.19) 

is smaller than a certain constant. Since this quadratic form is asymptotically 
chi-square distributed with p degrees of freedom, this constant approximately 
equals Kv- i ( 1 -  e). Therefore 

A2(t lx ,  y ) ~ { a ~ R V l n - l ( t - n m a )  �9 V ~ - l ( t - n m a ) < g ; l ( 1 - e ) } .  (6.20) 

A further simplification is however possible. Calculations show that (6.19) equals 

n (a - ~ (t/n)). V a (,/,)(a - gt (t/n)) + 0 (I a - ?t (t/n)[3). (6.21) 

The asymptotic confidence region for a at risk level e is given by the ellipsoid 

{aeRP[n(a- f i ( t /n ) )  �9 Va( , / , ) (a-a( t ln) )<Kp~( l  -e)} .  (6.22) 

The most precise statement we are in any right to make about the unknown 
value of a is to say that it belongs to the set of  exact estimates 

/1, (t[ Xo, x,) = (~ A~ (tl Xo, x,). (6.23) 
e < l  

It is straightforward to verify that 

4 ,  (t[ x, y) = {a e R p I P~ (tl x, y) = max p," (s[ x, y)}, (6.24) 
s 

and hence (recall that H~r(t)=logf2y(t))  

A , ( t l x ,  y ) = { a e R P l H ~ y ( s ) - H ~ y ( t ) < - a . ( s - t ) f o r a l l s ~ Z P } ,  (6.25) 

provided f2y (t)> 0. It is an immediate consequence of the latter representation 
that A,(tl x, y) is always a closed, convex set. 

Theorem 6.3. For each compact K ~ R p there is an integer n (K) such that for  
any t, x and y: i f  n > n ( K )  and ~(t /n)~K,  then A , ( t l x ,  y) is a non-empty, compact 
and convex set satisfying 

max J a -  gt (t/n) l = O(1/n) (6.26) 
a~-,in(tlx, y) 

uniformly in t when t t ( t /n)eK.  
The counterpart to this result in the independence case was given in [-6]. 

The proof of the present result is omited because the detailed proof is long and 
almost identical to the one in the independence case, provided we are acquainted 
with Sections 2 and 3 of the present paper. 

In view of Theorem6.3 it is natural to call ~(t/n) the asymptotic estimate. 
Comparing (6.25) with the identity 

grad Ha(x) = - ~ (x) (6.27) 

we see that' the exact and the asymptotic estimate have the common interpretation: 
minus the local change of entropy. 
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T h e o r e m  6.4. The distribution of tt(t,fn) induced by II a is asymptotically normal 
with expectation a and covariance matrix (n Va) -~. 

Proof. A Taylor expansion yields t t ( t /n)=a+VCl(t /n-ma)+O(l t /n-m~] 2) 
uniformly in t when 3(t/n)~K. Hence (nV~)-~(tt(t/n)-a)=(nV~)-~(t-nm,)+ 
O(n -~ [ ( t -n  m,)[2), uniformly in t when ?t(t/n)~K. It follows from Theorem 5.2 
that the second term to the right tends to zero in probability and that the first 
term to the right is asymptotically normal with zero expectation and covariance 
matrix L This completes the proof of Theorem 6.4. 

We conclude this section with an example which I received from Per Martin- 
L/Sf. For further examples we refer to 1-1]. 

Example. Bird Navigation. A bird is caught in a circular cage in which there are s 
perches in s directions, the distances between adjacent perches being equal. 
We observe the successive positions Xo, ..., x, of the bird, and we want to find 
out whether the bird navigates or not. 

The sample space X may be identified with the group {0, ..., s -  1} with addition 
modulo s. The frequencies n~j, i~X, j ~ X  are sufficient for the experiment, and the 
hypothesis "no navigation" corresponds to a reduction in sufficiency from the 
frequencies t o  n j, j ~ X ,  where n J= ~ nhk. However, 6i(Xo)+ ~ n j i = ~ i ( X n ) q -  

k--h=j jEX 
nij i = 0 . . . .  , s -  1, and ~ n j = n, and hence the proper dimension of t is p = s 2 - s, 

j~X jeX 
and that of u is q = s - 1 .  To calculate the likelihoodquotient is equivalent to 
calculate the quotient between 

max 1-107 j Oj=l and max l~07J J E 0 , j = l , i = l , ' " , s  . 
[ , j= l  [ i , j  [ j = l  

Hence 
lq(n;/n)" 

A -  J 
H (nij/ni. ) n' j 
i,j 

where n~. = ~ n w A Taylor expansion of - 2 log A finally shows that the criterion 
.i=1 

(6.11) takes the form 

(n,;- (n,. nJ-'/n)) 2 
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