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Some Invariance Principles for Rank Statistics 
for Testing Independence 

Pranab Kumar Sen* and Malay Ghosh 

1. Introduction 

In the context of testing the hypothesis of stochastic independence, along with 
a martingale property of a class of rank order statistics, a functional central limit 
theorem, an almost sure (a.s.) invariance principle and a law of iterated logarithm 
for such statistics are established. Almost sure convergence of these statistics to 
appropriate centering constants is also proved under weaker regularity condi- 
tions. These results are then incorporated in the study of the asymptotic theory of 
some sequential rank tests for independence. 

Let {Zi-= (Xi, Y~), i > 1} be a sequence of independent and identically distributed 
random vectors (iidrv) with each Z~ having a continuous (bivariate) distribution 
function (dO H(x,y),-oo<x,y<oe. We denote the two marginal dfs  by 
F(x)=H(x, oo) and G(y)=H(~, y). The corresponding empirical dfs based on a 
sample of size n (>  1) are denoted by 

n n 

H,(x,y)=n -a ~,u(x-Xi)u(y- Yi), F,(x)=H,(x, oe)=n -1 ~u(x-Xi)  
i=1 i=1 

and 
n 

G,(y)=H,(o% y)=n -1 ~, u(y- Yi), 
i=1 

where u(t) is equal to 1 when t > 0  and is 0, otherwise. Let R,,i= ~ u(Xi-X 1) 

( andS. , /=  u(Yi-  be the rank ofXi(and Y~) among X1 , ) ( , (and Y1 Y~), 
j = l  

for i = 1 . . . .  , n. By virtue of the assumed continuity of F and G, ties among the X~ 
(or the Y~) can be neglected in probability, so that the ranks are the natural integers 
1, ..., n, permuted in certain order. For testing the hypothesis of stochastic 
independence, viz., 

Ho: H(x,y)=F(x)G(y) for all -oe<x,y<oe, (1.1) 

a general class of nonparametric tests are based on the following type of rank order 
statistics: 

n 

T, = ~ J, (R.,,) L, (S,, 0, n > 1, (1.2) 
i= i  

* Part of this work was done while the first author was visiting the Indian Statistical Institute, Calcutta. 
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where Jn(i)=EJ(U.i), Ln(i)=EL(U.i), i=1,  ...,n, U,I<'"<U.n are the ordered 
random variables of a sample of size n from the rectangular (0, 1) df, and J(u), 
L(u), 0 < u < l ,  are non-decreasing score functions such that for some r(>2),  to 
be specified later on, 

1 1 

~[J(u)['du<~ and ~lL(u)rdu<m. (1.3) 
0 0 

Without any loss of generality, we may standardize the score functions by letting 
1 1 1 1 

~J(u)du=~L(u)du=O and ~j2(u)du=~L2(u)du=l. (1.4) 
0 0 0 0 

Well-known particular cases of (1.1) are the Spearman rank covariance and the 
normal scores statistics which correspond to J(u)= L(u)= ] f i 2 ( u -  1/2) and ~ -  1 (u), 
respectively, where �9 (x) is the standard normal df. 

Under (1.1), when (1.3) holds for r = 2, n-1/2 T, has asymptotically the standard 
normal distribution [cf. Hfijek and Sidhk (1967, p. 168)]. Under no extra regularity 
conditions, in our Theorem 1, we strengthen this result to a Donsker type in- 
variance principle (or a functional central limit theorem) for the process {n-1/2 Tk, 
1 _<k< n}. Strassen (1967) has considered an elegant a.s. invariance principle for 
sums of independent random variables and martingales. In our Theorem 2, a 
similar result is proved for the tail sequence {Tk, k>__n} when (1.3) holds for some 
r>  2 and an appropriate growth condition is imposed on the first derivative of 
the score functions J(u) and L(u). A basis for the proofs of the two theorem is a 
fundamental martingale property of {Tk, k>__ 1}, which is proved in Lemma 3.1. 
Let us now define 

#= ~ ~ J(F(x))L(G(y))dH(x,y). (1.5) 
- o o  - o 0  

Note that by (1.4), when H o in (1.1) holds, #=0 .  When (1.1) does not hold, # appears 
as a centering constant in the asymptotic normality of the standardized form of 
T, [viz., Chapter 8 of Puri and Sen (1971)]. The a.s. convergence of n -1 T, to # 
is established in Theorem 3 under milder regularity conditions. 

The last section of the paper deals with some sequential procedures for testing 
the null hypothesis in (1.1). First, along the lines of Darling and Robbins (1968), 
a class of sequential rank tests for (1.1) is proposed for which the power is equal 
to 1 and the type I error can be made arbitrarily close to 0. In this context, 
Theorems 2 and 3 are of great help. Secondly, along the lines of Sen (1973) and Sen 
and Ghosh (1974), a class of sequential rank tests for (1.1) is proposed which 
asymptotically attains a prescribed strength and behaves like the sequential prob- 
ability ratio test. In' this context, Theorems 1 and 2 play a fundamental role. 
Finally, Theorems 1 and 2 are also of considerable value in studying the asymptotic 
behavior of T, when the sample size n is itself a random variable. 

2. Statement of the Results 

Consider the space C [0, 1] of real valued continuous functions on I = [0, 1] 
and associate with it the uniform topology with the metric 

p(x,y)=suplx(t)-y(t)l, x, y6C[O, 1]. (2.1) 
t e I  
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Let To = 0  and for every n >  1, define a process W,= {VC,(t), teI} by letting 

W,(k/n)=n-1/2Tk, k=0,  1, ..., n; (2.2) 

W,(t)= W,(k/n)+(nt-k) [W,((k+ 1)/n)- W,(k/n)], te[k/n, (k+ 1)/n], (2.3) 

for k=0 ,  1 . . . .  , n - L  Note that by (1.2) and (1.4), T1 =JI(1)L~(1)=0,  and hence, 
Wt(t)=0 for t~l.  Also, let W =  {W(t), taI} be a standard Brownian motion on I. 
Then, we have the following functional central limit theorem. 

Theorem 1. Under (1.1) and (1.4), as n--.oo, VV, e~ W in the uniform topology 
on C F0, 1]. 

The weak convergence of W, to Win Theorem 1 demands nothing more than 
the square integrability and non-degeneracy of J(u) and L(u), and is a natural 
extension of a theorem in Hfijek and gid~tk (1967, p. 168). Under comparatively 
stringent regularity conditions and in the same spirit as in Theorem 4.4 of Strassen 
(1967), we have the following a.s. invariance principle for {Tk, k>n} as n ~  ~ .  

For every n > 1, we define 

V,= ~ E [(T~- T~_t)2 [ T~ . . . . .  T~_ 1], Tv, = T,, (2.4) 
i = 1  

and complete the definition of ~ for every te[V, ,  V,+I ] by linear interpolation. 
Note that T~=0 implies that VI---0. Assume further that J(u) and L(u) admit 
continuous first derivatives J(*~(u) and /3  *} (u), such that on writing J (u)= a{~ 
and L(u)=IJ~ we have for r=O, 1, 

IJ(')(u)l<K[u(1-u)] -I/2+o-r, ]IY~(u)l<K[u(1-u)] -t/2+~-,, (2.5) 

where K and 6 (0 < 6-_ 1/2) are positive constants. Then, we have the following. 

Theorem 2. Under (1.1) and (2.5), there exists a standard Brownian motion 
W =  {W(t): 0 = t < o o }  on [0, oe) such that 

Tt=W(t)+o(t 1/2) a.s., as t--.oo. (2.6) 

By virtue of (2.4) [viz., ~r. = T, for n > 1], (2.6) and a further result that n-  1 V, --* 1 
a.s., as n ~  oo [see Lemma 3.2], the celebrated law of iterated logarithm for the 
standard Brownian motion process leads us to a similar result for the rank 
statistics {T,} which is stated below. 

Corollary. Under (1.1) and (2.5), 

P {lim sup [2n log log n] -1/2 T,= 1} = i ,  (2.7) 
tl 

P {lim inf[2 n log log n] -1/2 T, = - 1} = 1. (2.8) 
t l  

Finally, we consider the a.s. convergence of n -~ T, when (1.1) may not hold. 

Theorem 3. I f  both J(u) and L(u) are continuous and square integrable, then 

n-lT.--.iza.s., as n--~oo, (2.9) 
where Iz is defined by (1.5). 

7* 
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The proofs of the theorems are deferred to the following section. The sequential 
procedures are considered in the last section. 

3. Proofs of the Theorems 

Let ~(1) be the a-field generated by (R.,1 . . . . .  R.,.), ~ z )  be the a-field generated 
by (S.,1 . . . . .  S.,.), and ~ be the a-field generated by (R..1, .. . ,  R.. . ;  S.,1 . . . . .  S...) 
when (1.1) holds i.e., when (R.,1, . . . ,R. , . )  and (S.,i . . . .  ,S.,.) are stochastically 
independent, for n > 1. Then ~.  is non-decreasing in n. 

Lemma 3.1. Under (1.1), {T. ,~. ;  n > l }  is a martingale. 

Proof By (1.2), for every n >  1, 
tl 

E ( T . + i I ~ ) =  ~ E{J.+l(R.+i,i) Ln+i(S.+i,i)l~} 
r ~ =  x (3.1) 

+ E  {J.+l (R.+ a..+l) L.+I (S.+l , .+l)[~}-  
Now, under (1.1), 

E (J.+ l (R.+ l,.+ l) L.+ l (Sn+ i,n+ i ) l~}  

= E  { J n + l  (Rn+l,n+l)[~n (1)} E {Ln+ 1 (Sn+l,n+l)[~n (2)} 
n + l  1 l- n + l  1 

-- (n+ 1) -1 ~ J.+i(i)J [ (n+ 1) -1 ~ Ln+l(i)J (3.2) 
i = 1  i = 1  

1 1 

where the last line follows from the definition of J., L. and from (1.4). Also, given 
~ ,  R. + 1,i can assume the two values R.,i and (R.,i+ 1) with respective conditional 
probabilities 1 - ( n +  1) - lR.a  and (n+ 1)-lR.,i;  S.+l,i can assume the two values 
S.,~ and (S..~ + 1) with respective conditional probabilities t - (n + 1)- 1S.,~ and 
(n+t)-lSn, i, and R.+ m,  S.+~,~ are stochastically independent, for i = l , . . . , n .  
Hence, 

II 

E {J.+l (R. + i,i) L.+I(S.+ 1,i)I~.} 
i=1  

= ~ {[(1-(n+l)-lR., ,)J.+i(R., ')+(n+l)-~R., 'J.+l(R.,  '+1)] (3.3) 
i = 1  

�9 [(1 - ( n +  1) -1S.,,) L.+I(S.,,)+(n+ 1) -1S. , ,L .+i (S . , ,+  1)]} 
n 

= Z J.(R.,i)L.(S.,'), 
i = 1  

as by the recurrance relation among the expected order statistics [cf. David (1970, 
p. 36)], for every i (= 1 . . . . .  n -  1); n>2 ,  

( 1 -  i/n)J.(i)+(i/n)J,(i+ 1)=J._l( i)  when J,,(i)=Ed(U,i), 1< i<n, (3.4) 

and a similar relation holds for the L. (i). Hence the lemma follows from (3.1), (3.2) 
and (3.3). 
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Let us now consider the proof of Theorem 1. By virtue of Theorem 8.1 of 
Billingsley (1968, p. 54), it suffices to show that (/) the finite dimensional distribu- 
tions (f.d.d.) of { IV,} converge weakly to those of the standard Brownian motion 
l/V,, and (ii) {IV,} is tight. To prove (i), let us define 

n 

T ~  Z J.(R.,,)L(G(Y~)), n> l .  (3.5) 
i=1 

Then, by Theorem 3.1 of H~jek (1961), under (1.1) and (1.4), 

Let us also introduce 

n - i E ( T , , - T ~  as n ~ o o .  (3.6) 

n 

T* = Z J(F(X,)) L(G(Y~)), n > 1. (3.7) 
i=1 

Since, under (1.1) and given Y~ . . . .  , Y,, all possible n! permutations of(R,, i . . . . .  R,,,) 
[over (1 . . . .  , n)] are conditionally equally likely, and 

i 1 n - 1  a s  n - - , o o  
i=1 0 

[by the Kintchine strong law of large numbers], first on working with the condi- 
tional distribution of (T ~  T*) [given (Y1 . . . .  , Y~)] with Theorem 3.1 of Hfijek 
(1961), and then taking expectation over (Yi . . . . .  Y~), it follows that under (1.1), 

n-  1E (T ~ - T*) z ~ 0 as n ~ or. (3.8) 

Consequently, by (3.6) and (3.8), under (1.1), n - l E ( T .  - T,*)2-~ 0 as n ~ o o .  As a 
result, for every fixed m ( > l )  and arbitrary q,  . . . ,  t,,(e I), the two vectors 
n-i /2(  Tt,t,j . . . . .  Tt,t,.j ) and n-1/Z(Tt*m, . . . ,  Tt*t,,~ ) have the same limiting distribu- 
tion, if they have any at all. Since, Tk* involves a sum over iidrv's with mean 0 
and variance 1, for every k > 1, -1/2 . T,* n (Tt.~,l . . . . .  t.~,,J) converges in law to a multi- 
normal distribution (as n ~  oo) whose covariance matrix has the form min(ti, t j) 
for i , j=  1, . . . ,  m. Hence, the convergence of the f.d.d, follows readily. 

To prove (ii), we note that by (2.2) and Lemma 3.1, for every 2 < q < k < n ,  

E [W, (k/n) - W, (q/n)] 2 = E W  2 (k/n) - EW. z (q/n) 
(3.9) 

= [ k / ( k -  1)3 (k/n)A 2 B~ -- [q/(q-- 1)3 (q/n)A 2 B 2, 
where k k 

A ~ = k  -1 ~ J ~ ( i )  and B ~ = k  -1 ~L~(i ) ,  k > l .  (3.10) 
i=1 i = l  

Note that by the definition of the Jk (i), 

k k 
A 2 = k --1 Z [ E J  ( U k i)]  2 ~ k -- 1 2 g I-J2 ( Uk i)-] 

i=1 i=1 

= k  -1 k S j 2 ( u ) u i - l ( l - u ) k - i d u  
i=1 0 t 

= S j 2 ( u )  d u = l ,  
o 

(3.11) 
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2 and by the results of Hoeffding (1953), as n ~ 0% A,--~ 1. Similarly, 

2 B ~ < I  forevery k > l  and as n - - ~ ,  B , ~ I .  (3.12) 

Consequently, on noting that EW~ 2 (i /n)= EW,, 2 (O/n)= 0 for every n > 1, we obtain 
on letting [n6] < k - q  < [n6] + 1, 6 > 0, that (3.9) converges to 6 as n ~ or. The 
proof of (ii) then follows from Lemma 4, (25) and (26) of Brown (1971) along with 
our Lemma 3.1 and (3.9). Since the steps are identical, the details are omitted. 

Consider now the proof of Theorem 2 where we mainly use Theorem 4.4 of 
Strassen (1967). Here, we require to show that V~, defined by (2.3), goes to oo a.s. 
as n ~ ~ .  We prove the following stronger result to be used later on proving 
(2.7)-(2.8)." 

Lemma 3.2. Under (1.1) and (2.5), n -1 V . ~  1 a.s., as n ~ o o .  
. - - 1  

Proof Let Q,=  T ,+ I -  Tn, n > l ,  so that V,= ~ E(Q~[~), Qo= T~=0, and for 
n>_l, i=1 

Qn= J"+ l (R"+ l'"+ x) L"+ l (S"+ x'n+ l) (3.13) 
n 

+ 2 [J, + ~ (R, + I, ,) L.+~ (S,+I,~)-J,(R,,~) L,(S.,~)] = Q,~ + Q,2, say. 
i=1 

Now, by the same arguments as in the proof of Lemma 3.1, 

r ,+1 ] r n+l -] 

- A . + I B . + I  (3.14) E(Q211~)=[(n+1)-12 j :+~(i) ]  [ i n + l ) - ,  2 L2n+a(i)j_ 2 2 . 
i=1 i=1 

Hence, by (3.11)-(3.12) and (3.14), 

. - - 1  

n -~ Y~ E ( Q f i I ~ ) - ,  1 
i=1 

as n--~ oo. (3.15) 

Also, on making use of (3.3), (3.15) and the fact that 

[{E(Q~II.~)} 1/2 - {E(Q2n2[,~)}I/e]2< E[(Q,I + Q,2) 12 ~ n ]  

<: [{~  (Q~ I~ ) }  ~/2 + {E (QL I ~)}~/~] ~ , 
(3.16) 

the proof of the lemma follows provided it is shown that 

e ( Q L I ~ ) ~  0 as n-~  ~ ,  (3.17) 

and for this, it suffices to show that as n ~ ~ ,  

n 

2E{[J,,+I(R,+I,i)L,,+I(S,,+I,i)-J,(R,,,i)L,,(S,,,I)]2]~,}---~O a.s., (3.18) 
i = 1  

E {[L+I(R,,+I,,) L,,+ I(S,,+I,,)- L(R,,,)L,,(S,,,)] [J,+ I(R,+ I,;) L,,+ I(S,+ I,i) 
i . j=l  (3.19) 

-.I~(R.,~)L.(S.,j)]I ~ . } - - , 0  a.s. 
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Now, on proceeding as in Lemma 3.1, we obtain that 

V[J.+I(Rn+!,I)I~] = ( n +  1)- 1 (n+ 1 -R. , i )[J.+,(R. , i )-J.(R. ,~)] 2 

+ ( n +  1) -1 R., i [J.+l (R.,i+ 1)-J.(R.,i)-] 2 

= ( n +  1) - z  R.,i(n+ 1 -R . , i )  [J.+l(R.,i+ 1)--Jn+l (l~n, i)]2, 
by (3.4). Similarly, 

V[ L.+ a (S.+ I,i) [ ~ ] = ( n +  1) -2 S.d(n + 1 - Sn, i) [L.+ I (S.+I,i)- L.+ I (Sn, I)] 2 . 

Hence, making use of the fact that for independent U~, U2, E (U11-}2) 2 - (EU1EU2) 2 

=(EUO e V(Uz)+(EU2) 2 V(UI)+ V(UO V(U2), we have the left hand side of (3.18) 
equal to 

n 
2 Z ISn+l(gn+l,i)(n§ 1) -2 R.,i( n+ 1 -R. , i )[J.+~(R., i+ 1)-J.+x(R.,i)] 2 

i = l  

n 

+ ~J2+l(R.+l, i)(n+ 1) - 2  Sn, i(n§ 1 -S . , i ) [L .+l(S . , i+ 1)-L.+I(S., i)] 2 

i=1 (3.20) 

§ ~ (n§ 1) -4 R.,i(n+ 1-R . , i )  Sn, i(n§ 1 -S . , i )  [J.+l (R.,i+ 1)-J.+l(R., i)]  
i = 1  

" [L .+I(S . , i§  Q.z'§ * say, 

Note that under (1.1), 

] E(Onl)-Bn+ 1 ~ _ , ( n + l ) - 2 j ( n + l - j ) { J . + , ( j + l ) - J . + l ( j ) }  2 =O(n-2~), (3.21) 
t . j = l  

where 7>0, and the last step follows from Sen and Ghosh (1972, p. 342, lines 4 
and 5). In the same manner, it follows by the same technique as in Section 2 
(namely, (2.35) through (2.40)) of Sen and Ghosh (1972) that under (2.5), for every 
positive integer k, E IQ*I [k = 0 (n- 2kr); so that if we select k such that k 7 = 1 + Vo, 
?o > 0, we have 

P {suplQ*,[>Cn-~} < ~ P{IQ*II>Cn -~} 
n>--.no 

._->.o (3.22) 
< ~ C-knkrE[Q*llk----O(nor~ as n o ~ .  

n ~ ? l o  

Consequently, IQ*lJ=O(n-~) a.s., as n---~oo. Similarly, [Q*2[=O(n-e) a.s., as 
n ~ oe. Finally, the treatment of Qn*3 follows on the same line, but with added 
simplicity, because each term of Q~*3 is bounded by C n-1-27, for some positive 
C (< oo). Thus, (3.18) holds. To prove (3.19), we use of the fact that if UI, U2, U3, U4 
are such that U a, U z are independent and U3, U 4 are also so, then 

E(U1U2 U3 U4)- EU1EUz EU3 EU 4 

=EU1EU3 Cov(U2, U,,)+EU2EU a Coy(U1, U3)+ Cov(U 1, U3)Cov(U2, U4). 
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Thus, writing Ui=J,+I(R,+I,i)-J.(R,,i) and Vi=Ln+l(Sn+l,i)-Ln(Sn, i) , i=  1 . . . . .  n, 
and noting that E(U~[~)=0  and E(V~I~)=0 for i=  1 . . . . .  n, we obtain from the 
above identity that the left hand side of (3.19) is equal to 

Cov(U. u~l~) Cov(V~, Vjl~) 
i~j=l 

whose absolute value is bounded by 

[Var(Ui[~) Var(Ujl~.) Var(Vil~) Var(Vj[~.)] 1/2 
i , j = 1  

= ~, {(n+ 1) - s  R..i(n+ 1 -R.,i)R.,j(n+ 1 -R.,j)S.,~(n+ 1-S.,i)S.3(n+ 1 -S.,j) 
i , j=1 

�9 [Jn+l(Rn, i-t- 1 ) -Jn+l (Rn ,  i)] 2 [Jn+l(Rn, j-}- 1)-J.+I(R.,j)] 2 [L.+I(S..,+ 1) 

- L.+I(S.,i)] 2 [L.+, (S..j+ 1)-L,,+1(S,,.912} v2 (3.23) 

< { max (n+ 1) -2 i(n+ 1 -i)[L.+l(i+ 1) -  L.+I(i)] 2} 
l<i<=n 

" I i # j ~ l  [ ( n ' q - t .  = 1)-4 i(nq-1-i)j(n+ l - j )  
"x 

�9 [J~+l(i+ 1 ) -  J.+l (i)] 2 [ J .+ l (J+  1)-J.+~(J)]211/2 t �9 

Now, as in (3.21), the first factor on the right hand side of (3.23) is 0 (n- 2 r), for some 
? > 0, while the second factor is less than 

(n+ 1) -1 [ i (n+ 1 -  i)] 1/2 [J .+ l ( i+  1) - J~ +l (i)] = O  (1), 
i 

which follows along the lines of Section 2 of Sen and Ghosh (1972). Hence, (3.19) 
follows and the proof of the lemma is complete. 

Lemma 3.3. Under (1.1) and (2.5), for every 6 > O, there exist two numbers ~ and 
rl, such that 0 < e < q < 6/2 < 1/4, and 

n- !+e  E 2 2 [Q.I(Q.>4nl-~)[~,]<~ a.s., 
n_>l 

where I (A) stands for the indicator function of a set A. 

Proof By virtue of (3.13), (3.14), (3.16), the inequality Q Z < 2  [-Q,21+ Q.Z2] and 
the fact that 2 E(Q,21~.) exists for every n >  1, it suffices to show that as no ~ ,  

n - l + e  2 2 > E[Q,,jI(Q,,i=nl-~)[~]---~O a.s., for j = l , 2 .  (3.24) 
tl>_no 

Note that as in (3.14), Qol = 0  and for n>2,  

n 
E (Q2_1 [o~,_ 1) = n-  2 ~ ~ Z, (i, j) J~ (i) L 2 (j), (3.25) 

i=1 j = l  
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where )~,(i,j) is 1 or 0 according as j2(i)L2,(j) is > n  1-~ or not. It is well known 
[viz., Puri and Sen (1971, pp. 408-413)] that under (2.5), for every 6>0 ,  there 
exists a 7 > 0, such that max [J, (i) - J(i/(n + 1) 1 = O (n- 1/2- 7), which, along with 

l < j < n  

the C2-inequality, leads us to 

j2 (i)= [J(i/(n+ 1))+ {J,(i)-J(i/(n+ 1))}] 2 

<=2JZ(i/(n+l))+O(n-l-2~), for i-=l,.. . ,n. 

(3.26) 

Now, for n 1/z <_ i<_ n -  n 1/2, by (2.5), jz  (i/(n+ 1))<K [ i (n+ 1 - i)/(n+ 1)23-1+2~< 
C n v2- ~, 0 < C < 0% so that by (3.26), j2 (i) < 2 C n 1/2- a + 0 (n- 1- 27), and a similar 
bound holds for the L2, (i). Further, 1 - 2 6 < 1 - 6/2 < 1 - e < 1, so that there 
exists an no, such that for n > no, )~, (i, j) = 0 for every n 1/z < i, j < n -  n 1/2, and hence, 
(3.25) is bounded by 

i=1 j<=nl/z j>=n--nl/z 

= A Z { n - l [  Z Lz(J) + 2 L2(j)]} (3.27) 
] <-_ n~l ~ j >-_ n -  n~/2 

+ B 2 { n - l [  Z J~(J)q- Z j2(j)]}.  
j < nV2 j >. n-- nV2 

But, by (2.5) and (3.26), n -~ ~ JZ(j)<2n-~ ~ j2(j/(n+l))+O(n-3/2-2~) = 
j < nl/2 j < nl/Z 

O(n-~ and the same bound applies to the other three 
terms on the right hand side of (3.27). Thus, by (3.11), (3.12) and (3.27), (3.25) is 
bounded, for n > n o , by C* n-  ~, where C* < oe. Therefore, by noting that 

0<e<6/2<6,  

and hence, ~ n - l + ~ - o < o e ,  we conclude that (3.24) holds for j = l .  For  j = 2 ,  
n>l 

we note that (3.24) is bounded by ~ n -1+~ E(QZ,2 I~).  Now, in course of the proof 
n~no 

of Lemma 3.2, we have observed that as n ~oo, E(Q2,z [~,)= O(n -~) a.s., where 
y (>0)  depends on 6 in (2.5). Thus, for no adequately large, 

~, n-l+~E(QZ2[~,)<C ~ n -1+~-~ a.s.; 
n>=no n ~ n o  

C < ~ ,  (3.28) 

and as 0 < e < 7, the right hand side of (3.28) converges to 0 as n o ~ oe. Q.E.D. 

Returning now to the proof of Theorem 2, we note that by Lemma 3.1, {T,, 

~"' n> l} is a martingale' and by Lemma3"2' { ~=lE[(Ti- T~-OZl~-~]} /n~ l 

a.s., as n-~ 0% and hence, (2.6) follows directly from our Lemma 3.3 and Theo- 
rem 4.4 of Strassen (1967). To prove (2.7)-(2.8), we note that by (2.4) and (2.6), as 

sup IT  k -  W(Vk)]/[2 V k log log Vk] 1/2 ~ 0 with probability 1. (3.29) 
k > n  
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Also, by definition and (3.14)-(3.17), we obtain that as n ~ ~ ,  

Vn+I-Vn=E(QZnI~)---~A2B2=I a.s., i.e., (Vn+I-Vn)/Vn+I=O(n -1) a.s. 

Consequently, by Lemma 4.2 of Strassen (1967), as n ~ oo, 

sup [W(t)-  W(V.)]/[2 V. log log V,] 1/2 ~ 0 a.s. 
v .  <-t<- V,,+ l 

Hence, by the law of iterated logarithm for the standard Brownian motion process, 
a s  n ----~ o0, 

sup[2VkloglogVk]-l /ZTk=l a.s., inf[2VkloglogVk]-a/2Tk=--I  a.s. (3.30) 
k>n k>-n 

Then, (2.7)-(2.8) follow directly from (3.30) and Lemma 3.2. 

Finally, to prove Theorem 3, we rewrite n-1 T, as 

oo 

n -1 7",= ~ ~ J,(nF.(x))L,(nG,(y))dH,(x,y). (3.31) 
- - o o  - - o o  

We define n-1 T.** = ~ ~ J (n F. (x)/(n + 1)) L(n G. (y)/(n + 1)) dH. (x, y). We shall 
show that - ~ - co 

n-I(T,-T**)---~O a.s., and n -1T**--~#  a.s., as n---~oo. (3.32) 

We can write n-l(T. - T,**) = 1,1 +I ,2 ;  (3.33) 

In1 = ~ ~J,(nF,(x))[L.(nG,(y))-L(nG,(y)/(n+l))]dH.(x,y), (3.34) 
- - o o  - - i x 3  

1,2= ~ ~ r(nG.(y)/(n+ 1)) [S.(nF.(x)),J(nF.(xl/(n+ 1))] dH,(x,y). (3.351 
- o o  - - o o  

By the Schwarz inequality and the definitions of F,, G, and H,,  

[ i {L  (el L(i/( 1))} 1 (3 I~1= < n-1 i n -1 n - -  n +  2 . .36) 
i = 1  .J L i = 1  _1 

By (3.10), the first factor on the right hand side of (3.36) is bounded by 1, while 
by Proposition 1 of Hoeffding (1973), the second factor goes to 0 as n ~ oo. Thus 
lim 1.1 = 0. Also, since 

n---~ co  

L 2 G.(y) dG.(y)=n -1 LZ(i/(n+l))--~SL2(u)du=l, as n---~c~, 
- ~  i = 1  0 

by the same technique, it follows that !im 1.2 = 0. Thus, n-  1 ( T , -  T**) ~ 0 as n ~ oo. 

Now, by the Kintchine strong law of large numbers, 

n 

S J(F(x))L(G(y))dH.(x,y)=n-l• J(F(Xi))L(G(Yi))--~ # a.s., as n---~oo. 
- - o o  - - ~  i = 1  
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Hence, to prove (3.32), one needs to show only that  as n --, o% with probabil i ty  one, 

00 . . 

I.=_~ -00~ [J ( ~ F ' ( x ) )  L (~TG"(Y))-J(F(x))L(G(Y))] dH"(x'Y)-*O" 

But, l , = I , a  q-In4, where (3.37) 

1.3 = ~ ~ J(nF.(x)/(n+ 1)) [L(nG.(y)/(n+ 1 ) ) - L ( G ( y ) ) ]  dH.(x, y), 
- 0 0  --00 

00 

I~4= ~ ~ L(G(y)) [J(nF,(x)/(n+ 1) ) -d(F(x) ) ]  dH,(x, y). 
- 0 0  -or)  

Again, on using the Schwarz inequality and (1.4), we have 

(3.38) 

(3.39) 

123 __< ~ [L(n G. (y)/(n + 1 ) ) -  L(G (y))]2 dG. (y). (3.40) 
--ct) 

Now, (1.4) insures that  for every ~>0,  there exists a 61 (0<61 < 1/2), such that  
61 1 

+ ~ L2(u)du<~. Let a and b such that G(a )=  1-G(b)=�89 Then, 
0 1 - -51  

b 

[L(n G. (y)/(n + 1) ) -  L(G (y))]2 dG. (y) 
" 1-al/2 (3.41) 

= ~ [L(nG,(G-I(u))/( n+ 1))-L(u)]2dG,(G-l(u)). 
51/2 

Note  that  L(u) is cont inuous in the open interval (0, 1), and hence, it is uniformly 
cont inuous  in u in any closed interval It/, 1 - t/I, 0 < 11 < 1/2. Also, by the Glivenko-  
Cantelli Theorem,  sup ]n O, (G- 1 (u))/(n + 1 ) -  ul ~ 0 a.s., as n ~ oo. Consequently,  

u e [ O , 1 l  

(3.41) converges to 0 a.s., as n - *  ~ .  Again, 

o0 

I [L(n G (Y)/(. + 1))- L(G (y))] 2 dO. (y) 
b 

<2 L2(nO.(y)/(n+ l))dO.(y)+ S L2(GO,))dO.(y). 
b 

(3.42) 

Note  that  n G, (b)/(n + 1) -~ G (b) = 1 - 61/2 a.s., as n --* oo. Thus, G, (b) > 1 - 61 a.s. 
00 

as n ~ oo. Hence,  on writing n * =  In G, (b)] + 1, we obtain that  ~ L z (n G, (y)/(n + 1)) 

dG,(y)=n -1 ~, LZ(i/(n+l))is a.s. bounded  by n -1 ~ bL2(i/(n+l)) which 
i = n *  i = [ n ( 1  - - 0 1 ) ] + 1  

1 

converges to ~ U (u) du < e/8, as n ~ oo. Also, by the strong law of large numbers,  
00 1 - -61  1 

5LZ(G(y))dG,(y) a.s. converges to ~ L2(u)du(<e/S) as n--~oo. Consequently,  
b 1 - - 6 1 / 2  

(3.42) can be made  smaller than e/2 with probabil i ty  1, as n ~ oo. A similar treat- 
ment  follows for 1,4. Hence  the proof  is complete.  
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4. Some Sequential Nonparametric Tests for Independence 

For the one sample univariate goodness of fit problem, Darling and Robbins 
(1968) have considered a sequential test based on the classical Kolmogorov- 
Smirnov statistic. Their test has power 1 and an arbitrarily small type I error. 
For this purpose, they used the law of iterated logarithm for the Kolmogorov- 
Smirnov statistics. In view of our Theorems 2 and 3, a parallel class of nonpara- 
metric sequential tests for independence may be posed as follows. 

Integrating by parts (1.5) and using (1.4), we have 

# = ~ ~ [H(x, y)- F(x) G (y)] dJ(F(x)) dL(G (y)). (4.1) 
- - o0  - - o0  

Thus, under (1.1), # = 0, while by the assumed monotonicity of J(u) and L(u) (in u), 
for positively (or negatively) quadrant dependence [cf. Lehmann (1966)], viz., 
H(x,y)-F(x)G(y)>__O (or __<0), for all x, y, with the strict inequality for at least 
a set of points with measure non-zero, p will be positive (or negative). Suppose 
that we want to test Ho: # = 0 vs.//1: p > 0. In the same spirit as in Darling and 
Robbins (1968), we consider a sequential procedure which consists in starting 
with an initial sample of size no (moderately large) taking observations until for 
the first time T~ >__ c,, where {c,} is an appropriate sequence of positive numbers; 
the null hypothesis is rejected when T~>__c, for some n>no. It follows from 
Theorem 3 that if n-  a c. ~ 0 with n ~ 0% then for # > 0, T~ eventually exceeds c, 
with probability 1, so that the test has power 1, for every #>0.  Also, if we let 
c, 2 > 2 n log log n, it follows from (2.7) that P { T, > c, for some m > no [ # = 0} -~ 0 as 
no ~ 0% so that if no is chosen adequately large, the type I error can also be made 
arbitrarily small. A similar procedure follows for Ho vs. Hz: # < 0  or Ho vs. H*: 
# 4 0 .  

Our theorems are also useful for the study of the asymptotic properties of an 
alternative class of sequential tests for independence, which may be posed as 
follows. Suppose, we want to test H o: # = 0 against//1 : # = A > 0, where A is small. 
Corresponding to preassigned (e, fl) (where 0 < e, fl < 1/2), we let a = log [(1 -f l ) /e]  
and b = log [fl/(1- a)]. Then, starting with an initial sample of size no (A) (moder- 
ately large) we continue drawing observations one by one as long as 

b < A [T,, - m A/2] < a (m > no (A)), (4.2) 

where Tm is defined by (1.2). If, for the first time, (4.2) is violated for m= n and 
A [7",- n A/2] is < b (or > a), accept H 0 (or Ha); the corresponding stopping variable 
is denoted by N(A). By virtue of our Theorem 3, it follows precisely on the same 
line as in the proof of Theorem 3.1 of Sen (1973) that for every (fixed) A (>0), 
under (1.4), the sequential procedure terminates with probability 1, i.e., 

P{N(A)>n[A}-*O as n--~oo. 

As in Sen (1973) and Sen and Ghosh (1974), we consider now the asymptotic 
properties of the procedure where we let A -* 0. We assume that as A --~ O, no(A ) -* oe 
but A2no(A)--~O, and further, on writing #=~bA, we frame our Ho: ~b=0 and 
Ha: ~b=l, and we allow ~b to lie in I*={ t :  ]tl<K} where K ( > I )  is a positive 
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number. Then, by virtue of the Brownian motion approximations studied in 
Theorems 1 and 2, we can show on preceeding along the lines of the proof of 
Theorem 3.2 of Sen and Ghosh (1974) that as A ~ 0, the OC function of the above 
test approaches the asymptotic limit 

~(ea-24~)-l)/(e~l-2r176 q~=~ 1/2, (4.3) 
P(~) = ~.a/(a- b), q~ = 1/2. 

Thus, asymptotically (as A ~ 0), the proposed test is distribution-free [-for all J 
and L satisfying (2.5)], and P(0)=  1 -  e, P(1)=  ft. Hence, the asymptotic strength 
of the test is (~, fl). 

It remains to study the ASN function of the procedure, namely, to show 
that for O~F*, A2E[N(A)[/t=q~A] tends (as A ~ 0 )  to 

[P (q~) b + { 1 - P (~b)} a]/((a - 1/2), ~b # 1/2, 
(4.4) 

- P '  ( 1 / 2 ) / ( a -  b), q~ = 1/2 ,  

where P'(1/2) stands for the derivative of P(q~) at ~b= I/2. For ~b=0, i.e., under the 
null hypothesis, (4.4) can be proved by using the elegant result of Chow, Robbins 
and Teicher (1965), our martingale result (Lemma 3.1) and some standard steps. 
But, for ~b=~0, (1.1) does not hold, and our Lemma 3.2 does not apply. This in- 
validates the application of the martingale stopping time theorems of Chow et 
al. (1965).However, (4.4) can be proved along the lines of the proof of Theorem 3.3 
of Sen and Ghosh (1974), provided (2.5) is replaced by the more stringent con- 
dition that 

[J(r)(u)l~K[u(1-u)]-~-r+~, r = 0 , 1 ,  f o r s o m e 6 > 0  and 0 < 7 < 1 / 4 ,  (4.5) 

and a similar condition on L(u). Since the proof is based on certain moment 
inequalities on T, when (1.1) is not necessarily true, and these are quite space 
consuming, for intended brevity, the details are not included here. 

Theorem 1 also provides another sequential test for independence. Suppose, 
we want to test H o in (1.1) vs.//1 : p > 0. Instead of basing our test on a fixed sample 
size n, we may consider the following scheme which allows for a termination at an 
early stage depending on the accumulated evidence upto that stage. Continue 
sampling so long as T,, lies below some C,,~, where C,,~ is some positive number, 
and e is the size of the test. If N is the smallest positive integer (_< n) for which 
TN>C ....  we reject H o and accept Ha; if N > n ,  we make the terminal decision 
based on T,, rejecting//1 and accepting/40. By virtue of our Theorem 1, under 
Ho, n-  1/2 [ max Tk] converges in distribution to M = sup W(t), where the distri- 

l<_k<_n O_<_t_<l 
bution of M is wellknown [cf. Billingsley (1968, p. 79)]. Thus, if M~ be the upper 
100 ~ point of the distribution of M, we may approximate n - m  C,,~ by M, when 
n is large. The case of two-sided alternatives follows on parallel lines. The overall 
level of significance of the test remains asymptotically equal to ~. 

We conclude this paper by some additional remarks. First, we have defined 
the scores in (1.2) by J,(i)=EJ(U,i), i= 1 . . . . .  n. In practice, accasionally, we take 
J, (i)= J (i/(n + 1)), i=  1 . . . . .  n, and similarly for the L, (/). In that case, the martingale 
result in Lemma 3.2 may not hold generally, as (3.4) may not hold. However, if 
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in add i t i on  to (1.4), we assume tha t  n -1 ~ IJn(i)-J(i/(n+l))l=o(n-1/2), then 
i=1 

T h e o r e m  1 holds.  Since this a s sumpt ion  holds  under  (2.5) [viz., Pur i  and  Sen 
(1971, pp.  408-413)],  for T h e o r e m  2, we need no add i t i ona l  a ssumpt ion .  TheOrem 3 
has been shown (see T**) to be t rue for such scores. Second,  the class of  r ank  
order  stat ist ics cons idered  in this pape r  does  not  include some o the r  n o n p a r a -  
metr ic  test s tat ist ics for independence .  K e n d a l r s  (1938) tau  s tat is t ic  and  Hoeff- 
ding 's  (1948) stat is t ic  are not  member s  of this class, bu t  are  bo th  U-statist ics.  F o r  
U-statist ics,  the weak  convergence  to Wiene r  processes  is s tudied  by  Loynes  
(1970) and  Mil le r  and  Sen (1972), while the a.s. convergence  by Berk (1966); a.s. 
invar iance  pr inciples  are  s tudied by  Sen (1974). As  such, s imilar  results  for these 
stat ist ics hold.  Blum, Kiefer  and  Rosenb la t t  (1961) cons idered  d is t r ibut ion- f ree  
tests for independence  based  on the empir ica l  dt's. F o r  mu l t i -d imens iona l  empir ica l  
processes,  weak  convergence  has  been s tudied by a hos t  of workers ;  we m a y  
refer to a recent  pape r  of  N e u h a u s  (1971) where  o ther  references are  cited. Kiefer  
(1972), W i c h u r a  (1973) and  Sen (1973) have cons idered  a.s. invar iance  pr inciples  
for such processes,  and  these in tu rn  imply  s imilar  results  for the Blum-Kiefer -  
Rosenb la t t  statistic.  However ,  ins tead  of the Wiene r  process,  it will co r r e spond  to 
a funct ional  of a mu l t i -d imens iona l  G a u s s i a n  process.  The a.s. convergence  of  
the stat ist ic follows di rec t ly  f rom the Gl ivenko-Can te l l i  L e m m a .  
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