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Introduction

The limit theory for supercritical, positively regular Markov branching processes
with a finite set of types has long been known in its sharpest form. See [18] and [2]
for the discrete and continuous time case, respectively. For processes with a
general set of types the situation is less satisfactory. The theory is comparatively
incomplete, and the techniques used to prove the fundamental convergence
results depend on second moment assumptions. See [12, 13, 14] for the general
case and [9, 10, 21, 22] for diffusion examples.

In this paper we develop the general theory with conditions as weak as those
for a finite set of types. In particular, we obtain almost sure convergence without
assumptions beyond positive regularity, and we solve the problem of finding the
proper generalization of the x log x condition which is necessary and sufficient
for the non-degeneracy of the limit variable. Some results are extensions or sharp-
ened versions of known results, others are completely new. Also, many of our
proofs, when specialized, are simpler than those in the literature for a finite set of
types, which often do not admit a generalization to the infinite case.

The formal basis of our theory is an asymptotic representation of the first
moment semigroup, which we adopt as definition of positive regularity in case of
a general set of types. The concept of positive regularity is not unambigous in the
infinite case, and the motivation for our specific assumptions derives from branch-
ing diffusions. For a large class of such processes the representation can be derived
by exploiting asymptotic spectral properties of the generator. The idea first
occurred in connection with the limit theory for critical processes ([15]).

Branching diffusions not only are of heuristic value for the development of a
general theory, they also serve as models for various biological and physical
phenomena, thus providing a testing ground for any general theory. We considered
it to be crucial that, when applying the theory to a branching diffusion, all our
conditions could be expressed in terms of the quantities from which the process
is actually constructed.
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In Section1 we give the preliminaries and state the results in the general
setting. Section 2 contains the corresponding proofs. Sections 3 and 4 deal with a
class of branching diffusions: We define the model, derive the first moment
representation, and reformulate our limit theory in terms of natural model
parameters.

§ 1. General Model: Preliminaries and Statement of Results.

Let (X, A) be a measurable space, # the Banach algebra of all bounded, A-
measurable functions ¢ on X with norm |&| —sup |&(x)|, and denote by %, the
nonnegative cone in 4.

Write X for the symmetrized n-fold direct product of X, let 6 be some extra
point, X‘¥={0}, and

X= x=.
n=0

Define N as the o-algebra induced on X by . Every element XeX defines a
counting measure

0; X=0,

*Al= .21 Lyx);  £=<xp, 0%, n>0,

on X, where 1, is the indicator function of 4 = X, and we write
2[&)= [ &G x[dx].
X

Take T=N={0,1,2, ";} or T=IN, =[0, o[, and suppose to be given a Markov
process {%,, P*} in (X, 2A) with parameter set T and stationary transition proba-
bilities satisfying the branching condition

P2, [X]=0)=1,
P(%,[A]=n;i=1,...,m)

= Z IIfI P<xj>(£t[Ai]=nij7i=1’ 7m) (11)

By +Yl:k ny j=1
i=1,

forallteT, X=<{x;, ..., X, eX,k>0,n,eN, and every decomposition {4,,...,A4,}
of X with 4;e¥, i=1,...,m, m>0. Such a process is called a Markov branching
process. For questions of existence and construction see [16, 20].

If for some %eX and teT, E*%,[1]< o, where 1(+)=1, then E*%,[-] is a
bounded linear functional on £. If furthermore

sup E™ X [1]< o0 (1.2)

xeX

then E< £,[ - ]: # — 4 is a bounded linear operator, and if (1.2) holds for s, teT,
then
E@R, =E@LEC R[] (neB)

is an immediate consequence of (1.1) and the Markov property.



Strong Limit Theorems for General Supercriticél Branching Processes 197

We now define our general model by the following additional structure:

(M) The first moment semigroup {E<> X[+ 1}, exists and can be represented in
the form

E@ % =0"0* ] 9()+07[n], xeX, teT, ned
with pel0, wol, pe®B, and ¢* a non-negative bounded linear functional on & such
that

P*lel=1,

e*[0F°[+11=0, Qf’[p]=0,

0[S0 0*(m o(x), xeX, ned,, >0,
Jor some o,: T — [0, oof satisfying

P, —0, t—oo0.

Notice that (M) implies that ¢* is a measure. For convenience we take e*[1]=1.
Also, ¢* and ¢ are the left and right eigenvectors, respectively, of E<? %[+ ]
corresponding to the eigenvalues p. In particular, ¢* is the invariant distribution
of the types and W,=p~'%,[¢], teT, is a martingale with respect to

F=0(X; 0<sZ0).

We restrict ourselves to the investigation of the supercritical case p>1. We
first state the main results for T=N and then give the extension to T= R .- In
discrete time the a.s. existence of W= lim W, is immediate without further assump-

h— o0

tions, appealing to the martingale theorem.
Theorem 1. Given (M) with p>1,

P %, IN] 5 0 (M1 W, n—oo,

for all ye Z.,.

The limit variable W may be degenerate at 0. The question of how properly
to generalize the x log x condition known to be necessary and sufficient for non-
degeneracy in the finite case presents a problem. The answer is provided by the
next theorem. Let

I,=*[EC’%,[¢]log £,[e]], ' (1.3)

so that [, is the x log x moment of £,[¢] given that the type of the original particle
is distributed according to @*.

Theorem 2. Either I,< oo for all n>0, or I,=+ao for all n>0. If I, <0, then
E® W=p(x)VxeX. If I, = + o0, then W=0 a.s. [PV xeX.
Let us now turn to T=1IR _ . In order to ensure the a.s. existence of W= lim W,

t— o0

we have to assume separability of {%,[¢], P*}. The continuous time version of
Theorem 2 follows immediately from the discrete time version. As regards The-
rem 1, the proof for discrete time is easily adapted to show that

PRI @* MW, t—oc0, neLL,. (1.4)
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Also,
P R [n] 5 @*[M] W,  Nan—oo, >0, nefh (1.5)

is immediate without further assumptions. But the passage from this a.s. conver-
gence of skeletons to a.s. convergence as t—oo continuously is a non-trivial
problem, which has been considered before in various settings ([2, 141, 17]). A
simple and natural situation is the following:

Theorem 1'. Let X be a separable metric space, U the topological Borel algebra,
and {X,,P*} right-continuous, satisfying (M) with p>1. If 3e B, is lower semi-
continuous a.e. [@*] and

P R [9] 2 @* 91 W, t—o0, (1.6)
then
p~ X, [9n] > o*[Sn] W, o0, (1.7)

for every ne # which is continuous a.e. [¢*].
The role of the various assumpﬁons will become transparent from the proofs
in § 2. We always have (1.6) for 3 =g, of course, but if inf p(x)=0, as is the case

for branching diffusions with absorbing barriers, this is unsatisfactory since one
would like to describe also, for example, the asymptotic behaviour of X,[1], the
size of the population at time ¢. To deal with this case we need additional structure
and we return to the problem in connection with our branching diffusion model
in § 4.

We conclude with a theorem on the existence of moments of W and rates of
convergence. Theorem 2 suggests that corresponding results from the finite case
([5,7, 1]) can be generalized to the present context by carrying conditions on the
offspring distribution into conditions on

F(y)=*[PR,[@]<y)],  0eT~{0}. (1.8)
Theorem 3. Let 6>0. If

[ yPdF(y)< o

o

for some p with 1 <p<2, then
E*WP<w and W—-W,=o0(p~ ") [P*]
where 1/p+1/g=1. Also, if

[ y(log™ yy+! dF°(y)< oo
0

for some o.>0, then
E*W(log* Wy<ow and W—-W,=o(n™% [P*].

! In Theorem 2 and Corollary 2.1 of [14] it should read ¢ =3 and £ =¢ {, respectively, where (e #
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We shall omit the proof. The convergence rates are obtained by combining
methods of the present paper and of [1]. For the existence of moments our method
is different from the approach in the literature ([5, 7]) and will appear elsewhere.

§ 2. General Model: Proofs

The branching property (1.1) implies that for every €T~ {0} there exists a
process {§,, P} in (X, ) which is equivalent to {%,, P*} and has the following
property: There exists an increasing family {®,},. of c-algebras such that for
every U-measurable # and all n, melN

Ynelll

y(n+m)6|:17]_ Z A’(1n5+lr|1)5[’7] [P}]

wherethe 757 s;i=1,..., §,;[1],are ®,,  -measurable, independent conditioned

upon ®,, and satisfy
Pi(n2i  ed|®)=PPe> (5, .ed), Aed,

(n+m)d

with §,;={..., ¥5, ...>. Hence it does not lead to a loss in generality if for any
fixed o such a representation is used for {%,, P*} itself.

Where it is unambiguous, we shall write P, E instead of P*, E*.

Our plan for the proofs is motivated by the fact that if the x log x condition
fails to hold, we need W=0 a.s. in our proof of Theorem 1. Hence Theorem 2 will
be proved first.

Here and in § 4 it will be convenient to work with the function

X/e, 0=x<e,
log* x=
logx, e<x<oo.

We summarize some of the properties of log*:
Lemma 1. The function xlog* x is non-negative, non-decreasing, and convex. If

S=X,+ -+ Xy is the sum of N independent non-negative random variables,

N
E Slog* SSE Slog* ES+ Y E X, log* X,. 2.1)

i=1

Proof. The first part of the lemma is immediate from log*(a+b)<log* a+log*b,
a,b=0, and Jensen’s inequality

ESlog* S=E Z X, log* Z X,

=1 j=1

lIA
T M z

{EX log* > X;+E X, log* X;}

Jj=¥i

_21 {E X,log* 3" E X, +E X, log* X,}

j¥i

A

N
<ESlog*ES+ Y EX;log*X;,. [J

i=1
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We shall use (M) in the form
Cn P O*[M] () SEX £, [n] <y ™ @* ] 0 (%),
m=1,2,..., 0=ney, c,—1, c¢f—>1 (m—oow) (2.2)

with c,., ¢ independent of x, #. This is immediate for # bounded, and the extension
to Z,. follows by monotone convergence.

Proof of the first assertion of Theorem 2. Let

1 ()=E* %,[@]log* X,[@],  L}=¢*[1]. (2.3)
We may replace I, by I}. By convexity and the martingale property I* is non-
decreasing in n, so that it suffices to prove that I}} < co, n>0, implies that I}, < co.
Letting N=%,[1], X;=%%![¢], S=X,.[¢] it follows from (2.1), (2.2) that

1§,()=E® E%,,[¢] log* X,,[0]IT,) |

SE® {p"%,[p]log* p" X, [@]+ X, 0151} Sy +ey 1 (x) +es I

for suitable constants ¢, c,,c5. Integration with respect to ¢* completes the
proof. [ '

The next lemma presents a key step in the proofs of Theorem 1 and Theorem 2
as well as in the transition from discrete to continuous time here and in § 4.

Lemma 2. Let 6eT~{0}, and let Y2, Z; n=0,1,...,i=1,...,%,,[1] be
random variables such that 0L Y2, <Z2 .. Suppose that the Y. /s are independent
conditioned upon §,;, that the same is true for the random variables

1= Y0l ey i= 1,0, %5010,

and that the distribution G2, of Z3 ; depends only on the type x; of the i th particle
alive at time n d. Define

Xnsll) Xnsll]

S=p Y R S=p Y T
i=1 i=1
Then the assumptions (M), p> 1, and ¢* [f ydG. >(y)] < o0 imply that
0

P(S;+3S7) < oo, 24)

18

n=0

Var {5~ E($]/3,.,)} < co. (2.5)

s

n=0

In particular

S5 —ES)F,5) >0, n—oo0. 2.6)

Proof. Let

pné

B ] GO0 E0= T P dGh,0.  GW=e*[6L, 0]
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By assumption the distribution G° has finite mean, and we get

@ @ Xn 6[1]

Y P(si+5)=) ( S P> 08,0 )= X B dulel]

=0

i=1

=0
<c Z So*[EN]=c Z p"° j dG°(y)=c [ ydG(y)+c’ < oo,
n= 0

Z Var {5~ E(5§, )} = Z E Var (5]/%,,)
@ xn,sm . @
Z ,rm(E ‘2 E(Y,,‘f,-zl&,a))é Z p P ER,[E1]

f pHE]=C Y p*”j ¥ dGP()

n=0

H/\

[I/\

|/\

SC{ydG(y)+C'<w.
0

By standard estimates (2.5) implies that §2—E(82|&, ;) 20, so that (2.6) follows
by 24). [

Remark. If we drop the summation over n and replace neN with te[0, o], the
estlmates above show that at least P($!4:S5%)—0, Var(S?—E($|§,,)—0,
~E(§1§.5) 50,15 .

We are now prepared to complete the proof of Theorem 2. The idea is to
exploit systematlcally the martingale property of {W,},.y or rather of {W, 6 nens
where § is a large integer to be determined later. Our method is different from
that used for a finite set of types in [18, 4]. We shall use the set- -up of Lemma 2
with

_ 76 __andi
K«,i"—Zn,i—*anJrlna[@]-

Then
Xnes[1]

Sﬁ Z x(n+1)a[§0] 4 VV(nH),s,
and we let

N s % 1 et

VV(n+1)5:p‘ Sn:p(m—l)é Z Y;l,il()'v‘?,ép”é)’

i—1

fn, s (x)=E X5 L] 1(:6,; [o]> p7}> 2.7)

Sn,a=wﬁna[5na,5]
so that

EWii61d) = Was = EW 15— Win s 101 Fo)

1 Ensl1]
:VVna”me Zl E(eril{Yy‘.i,i>p"é}|8n5):VVrlé_gn,é‘ (2.3)

From Lemma 2 we immediately get
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Lemma 3. (M), p> 1, implies that

o0

ZOP(VV(n+1)H: Wi 15) < 0 2.9)
and that

> AWr1ys— Was+ &, 5} converges as. and in L. (2.10)

n=0

In fact, (2.9) is clear from (2.4), and (2.10) follows from (2.5) and the convergence
theorem for #2-bounded martingales, if we observe that the terms of the series
in (2.10) are martingale increments by (2.8).

Lemma 4. Let &, ; be defined by (2.7). Then for any m,5>0, I;<co if and only if
Z (P* [6nm,6]<oo'
n=0

Proof. Note that (cf. (1.8))

O Eomsl= | yAF(), L= [ylogydF’(y). O

lem
Lemma 5. For an appropriate choice of & there are constants c, c,>0 such that
&, s(¥)Z¢; @* [€,, 1] @(x) and thus
8y 62 Cy W5 0™ [C5,4] (2.11)
Proof. Let A={X;[¢]>p"}, 4;={%3"V'[@]>p"}. Since A,S A4,
& s(X)=E® E(Xs [0] 141F5-1) '
KXo -1[1] X -1[1]
—EWE( Y el ) 2BV E( Y S el
i=1 i=1
=E® %, [& 020" e 0* [y d o(x)  (cf (22),
and we need only to take & with ¢;_,;>0. The estimate (2.11) is now immediate
from the definitions. [
Proof of Theorem 2, completed. Suppose first I; <oco. From (2.2), Lemma 4, and
the definition of g, ; we get

B

Z Egn,léc z ¢*[£n,l]<oo'
n=0 n=0

Therefore we have #-convergence of ). ¢, , by positivity and of S AW, — W,
by (2.10) with 6=1. Since W, ;< W, ,, we get for any N

B W=E® (Wo+ Y (W= Wi}
n=0

N ©
S R UAUATED MR UL A

n=0 n=N+1

=p()+0+E (¥ (W)

n=N+1
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As N — o0, the last term tends to 0, so that E®? W2 ¢ (x). The converse inequality
is immediate from Fatou’s lemma, since E W, =g (x).

Next suppose that I, = +co. By (2.9), the Borel-Cantelli lemma, and (2.10)
we have a.s. convergence of ). {Wars— Was+e, 55 and therefore, since W exists,
of Y e, ;. Let W~ =inf W,

Then by Lemmata 4 and 5

0> Y g, 2e, W Z(p (s J="+o0 as. on {W~ >0}
n=0
which is only possible if P (W >0)=P (W~ >0)=0. []

We now proceed to the proof of Theorem 1. The idea is quite simple and be-
comes transparent if we set 7, =# in the next two lemmata. However, this identifica-
tion would lead us to Theorem 1 for || < c ¢ only. The added generality of Lemma 6
is needed in order to deal with ne Z...

Lemma 6. Let {n,} be a sequence of averaging functions such that 0< HaSn for
some ne£,.. Define for any m

Yn1 z-:m[nn+m] Z}:,i A::qtm[n]
Then (M), p> 1, and the assumption

N 1 xn[1]
a" n Z E Y l{an>p"}|g)“_’0 n—o0, Vm
imply
Xu[mad/p" —~@*[n,] W-2250, n-—>o0. (2.13)

Proof. In the notation of Lemma 2 with §=1,
R em a0 =SY/p™, 8, = p" E(S—§1I3,).
Also, by (2.2)
Cn PP W] WS ESIZ )=l p" 0% [, ] W
Using (2.6) and (2.12) we get
lim sup {£,[n,1/p"—o*[n,] W}
=Um sup {X,, [, /0" " = 0* [y, ] W}
= limnsup {S3/0" = 0* Myl W}
= limnsup {ESH) 0™ = 0* Nyl W}
<lim sup O* [Nyl L W, =W} =<0*[n] {c; -1} W.

Letting m — oo, it follows that the lim sup of the left-hand side of (2.13)is 0. The
inequality for lim inf is obtained similarly. []

Remark. 1f we replace nelN with t€[0, oof, then E 6, msj y dG*(y), where G*

is as in the proof of Lemma 2. This shows Gy m D0, 1 0. Takmg n,=# and using
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the remark following the proof of Lemma 2, we can repeat the argument with a.s.
convergence replaced by convergence in probability to get (1.4).

Lemma 7. If we can take n<ceq, c=0, in Lemma 6, then (2.13) holds, assuming
only (M), p>1.

Proof. We can assume ¢=1. Then by (2.7)
06, wSp "%, & ml SP" W,

Thus by Theorem 2, (2.12) holds if I, =+ oo, and otherwise Lemma 4 implies
i Eé, .Sc* i 0*[¢, wlJ<oo andthus(2.12). O
n=0

n=0

Proof of Theorem 1. We take y,=# in Lemma 6 and have to prove (2.12), that is
Opm=p "%, [#,] =0, where

fa(x)=E* %,,[] Li,imis o
But by (2.2) {#,} satisfies the assumption of Lemma 7 with c=c} p" ¢* ] so
that by (2.13)

lim sup J, ,=lim sup ¢* [7,] W=0,
where we have used the dominated convergence theorem for the last equality. [

We conclude this section by giving the transition from discrete to continuous
time, ie. the proof of Theorem 1'. Define for ¢,6>0, US X, 34,

Usx)={yeU: 8(y)z(1+&)~' §(x)},
EX(x) =P (£,e U(x)Vte[0, 8]).
Lemma 8. Suppose that for every ¢>0

&My as. [9*], 6]0. (2.14)
Then
lim inf p=* £,[9 1,1 = @* [$1,] W. (2.15)
t—

Proof. Consider the ith particle alive at time »n J with type x;, and let

Y;f,iz: (1+ 3)_1 S(xy) 1{:39 5,1 U= (x;)vie[nd, (n+1) 81}
Then all]
£ [31,12 Z Y,f’f Yte[nd,(n+1)d].
i=1

With Z%¢=9(x,), (2.6) and (1.5) give

nall]
liminfp "%, [$1y]=p liminfp="% ) Y}F
t— 0 t— 00 i=1

Lnoslll
=pCliminfp " Y E(Y2FE,)
n—w@ i=1
=p °liminfp= " %, ;[(L+&) 1 9E5 ) =p ? @*[(1+e)~* JELTW.

(2.15) follows from (2.14) by letting 6 — 0, ¢ >0 in that order. []
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Lemma 9. Suppose X is metric, U the Borel g-algebra, (%,, P*) right-continuous.
Also, let p~' X, [9] 225 @*[§] W for some 3B _, ls.c. a.e. [¢*]. Then for any
U < X whose boundary 8U has @*-measure 0,

PTG [91] 25 0*[91,]W, t— . (2.16)

Proof. If x is in the interior of U, our assumptions imply that £5%(x)11 as 6|0,
so that (2.15) holds. Since dU =9U", also

limsup p~" X, [81,]=*[F] W—lim inf p " X,[§ 1] < @* [91,],
t—co t— o0

completing the proof. [J

Proof of Theorem I'. The case ¢*[3]=0 is trivial, and (1.7) is also obvious on
{W=0}. On {W>0} the random probability measure y, [#]=X,[$#]1/%,[9] is
well-defined and for each continuity set U of u[n]=¢*[97]/0*[$], we have
#: [157] 22> u[1,] by (2.16). Taking an appropriate denumerable class of such
U’s, Theorem 2.2 of [6] shows that y, converges weakly to u for almost all realiza-
tions of the process, completing the proof ([6]). [

§ 3. Branching Diffusions: Preliminaries and Representation
of the First Moment Semi-Group

We now discuss our theory in terms of branching diffusions. The principal math-
ematical difficulties that arise in our context are present already with a one-
dimensional diffusion. For greater clarity we therefore restrict ourselves to this
case. However, all results and proofs of this and the following section can be
formulated with n-dimensional diffusions, and we shall do this in the more com-
prehensive framework of a future publication.

Let X<RR be a bounded interval with endpoints «, f. The interval may be
closed, half-open, or open. Denote by €” the set of real-valued functions on X
which are restrictions of n-times continuously differentiable functions on o, 81.
Let {%,, Px} be the Markov branching process determined ([16, 20]) by the follow-
ing data:

(a) The diffusion process (x,, P) on X defined by the differential generator of
its transition semigroup,

2

Au:aﬁiﬁ-bau, uegG(A),
where
ac¥?, be¥d, in£a(x)>0, (3.1)

and Z(A) is the set of all ue%” satisfying the separated endpoint conditions

Vathld+) =y w (@ +)=0,  yu(f—)+y;u(f—)=0,
Vu, )’;, yﬂa ’VQZE]Rﬁ» ’ (yaﬂ '});)4:(0, O)a (y[h V}?):F(Oﬁ O)
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Here y,#+0, y,=0 corresponds to complete absorption at o and y,=0, y,+0 to
complete reflection at & and correspondingly for §.

(b) The termination density

ke@*  k=0. (3.2)

(c) The local branching law

(%, A)=po(x) 1;0)+ ¥ 13¢5 50) palx)  (Aed)
nz2
pne‘%nu neIN~ {1}, Z pp=1
n+l
with
m= Y np,e%>. (3.3)
n¥l ' *

The process {%,, P*} is constructed according to the following intuitive picture:
All particles move independently, each according to (x,, P¥). Branching of a
particle which is at the point xe X at time ¢ occurs in [t, t + 4] with probability
k(x) A+ o(4). At the point x and time of branching a particle is replaced according
to z(x, « ) by a (possibly empty) population of new particles.

Condition (3.3) is more than enough to guarantee that (£,, P*) is conservative

([20)).

- Theorem 4. The process {%,, P*} constructed from (a), (b), (c) has the property (M)
with

B
0e2(4), ¢*Inl=[n(x) o) rx)dx, 0<c=r(x)e?>

Proof. The diffusion process is constructable as a conservative process either
on X, when X is compact and no absorption occurs, or on X'=X u {J} with ¢
serving as trap. If X is non-compact, we take X' as the one-point compactification
of X. Define %,=%" if X is compact and %,={¢c%°: £(x) >0 as x— 0}
otherwise. Then the transition semigroup {T;} of (x,, P*) satisfies T, %, =%,, { =0,
and is strongly continuous on %,. In conjunction with k, me%® this implies not
- only E€? %, [1]e#, V=0, but also that {E¢"? X, [+ ]}, , is a strongly continuous
semigroup on %, with differential generator -

Lv=Av+kim—-1)v, ved(L)=2(4),

cf. [16], slightly adapted.
Consider now the eigenvalue problem

Lv=4v, veP(A).

Since a, b, k, me%° and inf a(x)>0, multiplication by

p(x)=exp {f(_y }
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leads to the regular Sturm-Liouville problem
(poY+(@—Ar)v=0, veP(A),
q=k(m—1)p/a, r=p/a.

As is well-known, see e.g. [8] Chapters 7 and 8, there exists a sequence of real
eigenvalues

Ag>A, > A, > — o0 3.4)

and a complete system of eigenfunctions {v,}, v, corresponding to 4,, such that

f 0,(x) v,(x) () dx =d,,.

That is, for £€ D(A4)
E® 2 [E]=3 e of[Eo(x), >0, 3.5)
v=10
where

g
vE[E]={ &(x) v,(x) r{x) dx.

Moreover, v, has exactly v zeros in Ju, AL, i.e. we can choose

vo(x)>0,  xe]lu, B (3.6)
and know by unicity that
(Wo(a+), vo(a+))+(0,0),  (vp(B~), vo(f—))+(0,0). (3.7)

By (3.1)=(3.3) we have p, re%?, and we can use Liouville’s substitution

v(x)=(E) r()) " w(y),  y={(r(2)/p)?dze[0, y(B)]
to obtain the normal form

w'+(G—A)w=0,
where

dZ
c?=a/r+(pr)‘”4d—y§ ()",

with regular separated endpoint conditions, generally with changed coefficients.
The eigenvalues remain the same as before,

Now applying the theory of asymptotic spectral behavior of differential
operators ([19]),

zvz—(%)z [1+0(§)], V>0, (3.8)
wv(y)=(}%)msin /i y+e]+6,00,  v>0, (3.9)
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sup |v4,(y)l < oo, ' (3.10)
».v
sup [0,(y)| < 0. (3.11)
»v.v

Given (3.8) to (3.10), we can extend (3.5) first to {€%,, using the Stone-Weierstrass
theorem, and then to {e4, using the fact that E¢ £,[1,] and v*[1,] are o-
additive in Ae¥. With (3.6), (3.8), (3.9), (3.10) and, if w,(0)=0 or w,(y())=0,
also (3.7), (3.11), and L'Hospital’s rule

v,(x) w,(y)
vo(x) wo(y)
Since v, 20, r =0, (3.12) implies
¥ [EN=00) vELIEN]
uniformly in ¢ 4. Hence

[E< £,[£] — e’ v [£] v ()| S o, 08 1] vo(),

o0
=y O@W?}e™,
v=1

—0(). | (3.12)

sup

x

y

and by (3.4), (3.7), e"**a,— 0, t —>o0. Thus (M) with the convention @*[1]=1 is
satisfied with @ =v¥[1] v,, *=%[1])"! v}, p=e'. O v

§ 4. Branching Diffusions: Limit Results
The set-up is that of § 3 with p=e**>1, W,=p~'%,[0], W=1lim W,.
t

Theorem 1”. Assume in addition to the assumptions of § 3 that p> 1. Then for any
neLo.

P 2N o* MW, oo,

p " R, ]2 @* ] W, Nsn—co, Vex0.
If n is bounded and a.e. continuous, then

PR 2= @] W, 100

Proof. The two first assertions are immediate from (1.4) and (1.5). For the third
we have only to prove p~'&,[1] 2% W, t > o0, in view of the absolute continuity
of ¢*, p*[11=1, and Theorem 1". However, the assumption (2.14) of Lemma 8 is
fulfilled for U= X, so our problem reduces to proving

limsup p "%, [1]SW as.
t— 0
Define the auxiliary process (v,, P, v, =%,[1]+N,, where N, is the number of

particles absorbed up to time ¢ plus the number of branching events up to time .
Clearly, y, is non-decreasing and

£[11=y, 0=s<y, 4.1)
E®y <e*,  O<oa=|k|(Im]+1)< 0. 4.2)
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Now let >0 be fixed and let ¥, =Z ;=yi% 5 be defined the obvious way.
Using (2.6), we get in the notation of Lemma 2

%0 s[1]
limsup p~* %,[1] Llimsup p="2 Y V2,
- o0 n= 0 i=1
=lim sup S =1lim sup E(§?|§, )
<lim sup E(S}[§, ;) <e*’ limsup p="2 %, ,[1] =e*° W

As 60, the proof is complete. []

We recall the definition (1.3) of 1,. Degeneracy of W at 0 is, of course, equivalent
to I,=+co for some ¢>0. But the relation I, < oo is difficult to verify and it is
therefore desirable to have a criterion in terms of the natural model parameters
A, k, m of the branching diffusion. A heuristic consideration of I, for small ¢ leads
to the condition

o¥lkox]< oo, 4.3)

where

K(x)= i p.(x)nlogn.

n=2
Theorem 2'. For any t>0, I, < oo if and only if (4.3) holds. That is,
E W=p(x) VxeX
if and only if (4.3) holds, and W=0 a.s. [P<*] Yxe X otherwise.

Remark. The properties of ¢ and ¢* obtained in §3 make it possible to verify
(4.3) without knowing ¢ or ¢* explicitly.
E.g. in the case of absorption at o and B, (4.3) is equivalent to

f (x=®)* (B—x)* k(x) k(x) dx < 0.

Of course the heuristic derivation of (4.3) does not constitute a rigorous proof.
To see the problem, note that the situation is somewhat similar to that of [31,
where despite the simplicity of the model the proof is non-trivial. In addition fo
the times of branching, or split times, 7,,1,, ..., our proof also has to take into
account the stopped diffusion, ie. the transition semigroup {7,°} of the

exp { — jf k(x,) ds}-subprocess of (x,, P¥).
For conovenience let ¢;, ¢,, ... denote constants with O<c,< o0,
Lemma 10. There are t,>0 and c,, ¢, such that
GO*=e*T<c, 0%  0si<t,. (44)
Proof. We have

t
PRI =T0% g = g* + [ TO% 4% ot s, 45)
0
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where A%* is the adjoint of the generator A° of {T;°}, see [11]. But

(A°* +km) p* =1, @*, (4.6)
so that

o* Tt°§¢*+io£ T o* ds,

from which the second inequality in (4.4) follows by iteration (take c,=e’0"%).
Also, from (4.6), A°* p* = —c, @*. Inserting this in (4.5), we get

t
P* TPz o*—c5 [T *o*ds=(1—cycity) @*
0

for t<1,. Choose ¢, such that e’ ¢ to<1. []
Proof of the Sufficiency of (4.3). For £,eX, xeX define (cf. (2.3))

i%(Ro)=E% %, [p]log* £,[0] 1y, ,on,  1F,(0)=15((xD)
Then

| |
=] T2 [ {3, 8 7, d) | dsti2. @)
0

X

Forj=1,...,%,[1], define B(j, n) as the event that there are at most » splits in the
j th line of descent up to time ¢. Then

xo[1]

ﬁ:[@] 1{rn+1>t}§ Z J%?’][QD] 1B(j,n)’

j=1
and by (2.1),
iF(Ro) = p Kol @] log* (p' Ro[oD) + X0 L1 4]
Thus for 0=t <t,,

jz,,, n(x, d%)

< 3. 20 (8o og* (v () +vif, )
§c4+cs @(x) K(xX)+ cg 1 ,(X). (4.8)
Inserting (4.4) and (4.8) in (4.7) leads to
¥ ]Ser+eg 9¥lkor]teot sup o*[i7,]

_S._

for 0=1=<1,. Since [|1f o)l Sy V>0, it follows from our assumption (4.3) that

F=*[if]=sup sup @*[K],] <0

N 0<s=t

for 0=t <ty, cot<1. [

Proof of the Necessity of (4.3). Let
(%) =E %,[p] log* £.[¢],
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so that 1f (x) =1*({x)) (cf. (2.3)). Then
l*>E< >R [Lollog* X [¢] 1{t1§
=§ DLk [TF (R) n(-, dR)] ds. 4.9)
0 X

Since X,[ @] is a submartingale, it follows by convexity that
Rz xle]log* £[e],

(7006 vt )2 in@Mwwm@mmm

n=

2 p(x) 1(x)— ¢y | (4.10)
Thus, if *[kpx] =+ o, it follows by inserting (4.4) and (4.10) in (4.9) that

t
IF=e*[i¥]2¢, [ *[kox—kec, ]ds= +
4]

for0zt=t,. O
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