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Introduction 

The limit theory for supercritical, positively regular Markov branching processes 
with a finite set of types has tong been known in its sharpest form. See [-18] and [2] 
for the discrete and continuous time case, respectively. For processes with a 
general set of types the situation is less satisfactory. The theory is comparatively 
incomplete, and the techniques used to prove the fundamental convergence 
results depend on second moment assumptions. See [12, 13, 14] for the general 
case and [9, 10, 21, 22] for diffusion examples. 

In this paper we develop the general theory with conditions as weak as those 
for a finite set of types. In particular, we obtain almost sure convergence without 
assumptions beyond positive regularity, and we solve the problem of finding the 
proper generalization of the x log x condition which is necessary and sufficient 
for the non-degeneracy of the limit variable. Some results are extensions or sharp- 
ened versions of known results, others are completely new. Also, many of our 
proofs, when specialized, are simpler than those in the literature for a finite set of 
types, which often do not admit a generalization to the infinite case. 

The formal basis of our theory is an asymptotic representation of the first 
moment semigroup, which we adopt as definition of positive regularity in case of 
a general set of types. The concept of positive regularity is not unambigous in the 
infinite case, and the motivation for our specific assumptions derives from branch- 
ing diffusions. For a large class of such processes the representation can be derived 
by exploiting asymptotic spectral properties of the generator. The idea first 
occurred in connection with the limit theory for critical processes ([15]). 

Branching diffusions not only are of heuristic value for the development of a 
general theory, they also serve as models for various biological and physical 
phenomena, thus providing a testing ground for any general theory. We considered 
it to be crucial that, when applying the theory to a branching diffusion, all our 
conditions could be expressed in terms of the quantities from which the process 
is actually constructed. 
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In Section 1 we give the preliminaries and state the results in the general 
setting. Section 2 contains the corresponding proofs. Sections 3 and 4 deal with a 
class of branching diffusions: We define the model, derive the first moment 
representation, and reformulate our limit theory in terms of natural model 
parameters. 

w 1. General Model: Preliminaries and Statement of Results. 

Let (X, 9A) be a measurable space, 2 the Banach algebra of all bounded, 91- 
measurable functions ~ on X with norm II~[I =sup  I~(x)l, and denote by 2 +  the 
nonnegative cone in 2 .  x 
Write X (n) for the symmetrized n-fold direct product of X, let 0 be some extra 
point, X (~ = {0}, and 

2 = (~ X ("). 
n~O 

Define 92 as the o--algebra induced on 2 by ~1[. Every element # e 2  defines a 
counting measure 

2 [ A ] =  la(xi); ~c=<x 1, ...,x,>, n>0,  

on X, where 1A is the indicator function of A c X, and we write 

[41 = S ~(x) ~ [dx]. 
X 

Take 1/'= N = {0, 1, 2 . . . .  } or ] I '=N+ = [0, oo[, and suppose to be given a Markov 
process {~t, P~} in (2,  ~l) with parameter set ]17 and stationary transition proba- 
bilities satisfying the branching condition 

P~ = 0) = 1, 

P~(2t[Ai] = hi; i=  1, ..., m) 
k 

= 2 I~ P<X~>(xt[AJ --nij, i= 1,..., m) (1.1) 
n i l+ . . .+n~k=n i  j = l  

i = 1 ,  . . . ,m 

for all t e g ,  2 = (x l ,  ..., xk> s 2 ,  k > 0, n i e N, and every decomposition {A1, ..., Am} 
of X with A~E~I, i=  1, ..., m, m>0.  Such a process is called a Markov branching 
process. For questions of existence and construction see [16, 201. 

If for some 92~2 and tell', E~2,[13<oo,  where 1 ( ' ) - 1 ,  then E~:2t[.] is a 
bounded linear functional on 2 .  If furthermore 

sup E <x> )~t[1] < o() (1.2) 
x~X 

then E <'> xt[" ]: 2 ~ 2 is a bounded linear operator, and if (1.2) holds for s, t ~]1", 
then 

E<~> :#t + s I t / ]  = E<X> -~t[ E<' > s  (~/m2) 

is an immediate consequence of (1.1) and the Markov property. 
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We now define our general model by the following additional structure: 

(M) The f irst  moment semigroup {E <" > x~[']}t~lr exists and can be represented in 
the form 

E~X>2t[~l]=pt~o*[tt](p(x)+Q<,~>[tl], x e X ,  teJF, t IEN 

with pc]0, oo[, (peN+ and (p* a non-negative bounded linear functional on N such 
that 

(p* [(p] = 1, 

~p*[Q~)[. ]] -0 ,  QS)[(P]_=0, 
IQ,<~>[n]l_-<~,~0*(n)cp(x), x~x, nsN+, t>0, 

for  some c~.: l r ~  [0, oo[ satisfying 

~ - t  (zt--'~ O , t--~GO. 

Notice that (M) implies that (p* is a measure. For convenience we take (p* El] = 1. 
Also, (p* and (p are the left and right eigenvectors, respectively, of E ( > ~ t [ .  ] 
corresponding to the eigenvalues pt. In particular, (p* is the invariant distribution 
of the types and W~=p-~t[(p], t~JF, is a martingale with respect to 

~ = ~,()?~; 0__<s<t). 

We restrict ourselves to the investigation of the supercritical case p >  1. We 
first state the main results for JF=N and then give the extension to " if=N+. In 
discrete time the a.s. existence of W=l i rn  W~ is immediate without further assump- 

tions, appealing to the martingale theorem. 

Theorem 1. Given (M) with p > 1, 

p-  n ~,, [r/] - - ~  (p* [r/] W,, n ~ o o ,  

for  all ~1~ ~ , .  

The limit variable W may be degenerate at O. The question of how properly 
to generalize the x log x condition known to be necessary and sufficient for non- 
degeneracy in the finite case presents a problem. The answer is provided by the 
next theorem. Let 

I, = q)*[-E <> ~,[(p] log ~nF(p]], (1.3) 

so that I n is the x logx moment of~n[(p ] given that the type of the original particle 
is distributed according to p*. 

Theorem 2. Either I~ < oo for all n > O, or I n = + oo for  all n > O. I f  I~ < oo, then 
E (~> W= p(x) V x ~ X .  I f I  1 = + oo, then W=-O a.s. [p<x>] V x ~ X .  

Let us now turn to ]F= ]R+. In order to ensure the a.s. existence of W-- lim W t 
t ~ o O  

we have to assume separability of {)?tl-(p], P~}. The continuous time version of 
Theorem 2 follows immediately from the discrete time version. As regards The- 
rein 1, the proof for discrete time is easily adapted to show that 

p - t ) ? , E t / ] ~  p*[r/] W,, t--,oo, t/~s176 (1.4) 
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Also, 

p-"~,~E~/]-~s~go*E~/]W, N~n-~oo,  s>0 ,  ~ /G ~ .  (1.5) 

is immediate without further assumptions. But the passage from this a.s. conver- 
gence of skeletons to a.s. convergence as t -~ ~ continuously is a non-trivial 
problem, which has been considered before in various settings ([2, 14 i, 17]). A 
simple and natural situation is the following: 

Theorem 1'. Let X be a separable metric space, 9.1 the topological Borel algebra, 
and {.~t,P ~} right-continuous, satisfying (M) with p > l .  I f  OG~ + is lower semi- 
continuous a.e. [go*] and 

p_t#t[O ] .... > q~*[0] W,, t ~ o o ,  (1.6) 

then 

V_t~t[Oll] .... ~, ~* [O/~] W, t ~ ,  (1.7) 

for every qG~ which is continuous a.e. [go*]. 

The role of the various assumptions will become transparent from the proofs 
in w 2. We always have (1.6) for # = go, of course, but if inf go(x) = 0, as is the case 

x 

for branching diffusions with absorbing barriers, this is unsatisfactory since one 
would like to describe also, for example, the asymptotic behaviour of ~t[1], the 
size of the population at time t. To deal with this case we need additional structure 
and we return to the problem in connection with our branching diffusion model 
in w 

We conclude with a theorem on the existence of moments of W and rates of 
convergence. Theorem 2 suggests that corresponding results from the finite case 
([5, 7, 1]) can be generalized to the present context by carrying conditions on the 
offspring distribution into conditions on 

F~ 6G]F\  {0}. (1.8) 

Theorem 3. Lee 6 > O. I f  
03 

0 

for some p with 1 < p < 2, then 

E ~ W P < ~  and W -  W.=o(p -"/q) 

where 1/p + 1/q = 1. Also, if 
O3 

y(log+ y).+i dFZ(y)< 
0 

for some ~ > O, then 

E ~W(log + W ) ~ < ~  and 

[P~] 

w -  W.=o(n -~) [P~]. 

1 In Theorem 2 and Corollary 2.1 of [14] it should read r = 0 ~ and ~ = ~p ~, respectively, where ~EN 
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We shall omit the proof. The convergence rates are obtained by combining 
methods of the present paper and of [1]. For the existence of moments our method 
is different from the approach in the literature ([5, 7]) and will appear elsewhere. 

w 2. General Model: Proofs 

The branching property (1.1) implies that for every 6 e l F \  {0} there exists a 
process {fit, P~} in (2-, ~1) which is equivalent to {2t, P~'} and has the following 
property: There exists an increasing family {(5k}k~N of o--algebras such that for 
every ~I-measurable t /and all n, m e N  

G+m)d ] = Z A, ,i 
i=1 

where th~ ~na , i  . ..c y(, + m)a, i=  1, . . . ,  #, ~ [1], are (5, + m-measurable, independent conditioned 
upon (5,, and satisfy 

p ,  , " n a ,  i ^ _ _  < y l  a> ^ ^ 
a(y(,+m)a~Al(5,)-P a (ymaEA), A ~ I ,  

with 33,a= <... i , y,a, ...). Hence it does not lead to a loss in generality if for any 
fixed 6 such a representation is used for (xt, pe,} itself. 

Where it is unambiguous, we shall write P, E instead of P~, E ~. 
Our plan for the proofs is motivated by the fact that if the x log x condition 

fails to hold, we need W= 0 a.s. in our proof of Theorem 1. Hence Theorem 2 will 
be proved first. 

Here and in w 4 it will be convenient to work with the function 

(x/e,  O<x<--e, 
log* x = ~log x, e < x < oo. 

We summarize some of the properties of log*" 

Lemma 1. The function x log*x is non-negative, non-decreasing, and convex. I f  
S = X 1 +. . .  + X N is the sum of N independent non-negative rai, dom variables, 

N 

E S log* S < E  S log* E S +  ~ E Xi log* X~. (2.1) 
i = l  

Proof The first part Of the lemma is immediate from log* (a + b) < log* a + log* b, 
a, b > 0, and Jensen's inequality 

N N 

E S log* S : E ~ X i log* ~, Xj 
i=1  j - 1  

N 

=< ~, {E X i log* ~, Xj + E X i log* Xi} 
i=1  j * i  

< ~, {E Xil~ 2 E X j + E X i l o g *  Xi} 
/=1 j ~ i  

N 

_ _ < E S l o g * E S + ~ , E X  i log* X i. [] 
i=1  
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We shall use (M) in the form 

c;, pm~0*D] o(x)=< E<~> 2mD] __<c + p~ q,* En] q~(x), 

r e = l , 2  . . . .  , 0<t/~s176 c~--+ 1, c~+---~ 1 (m-~oo) (2.2) 

with c~, %+ independent of x, r/. This is immediate for t/bounded, and the extension 
to 5fg, follows by monotone convergence. 

Proof of the first assertion of Theorem 2. Let 

* -  * * ( 2 . 3 )  z*(x)-E<~>~.E~0] log* x, Eo], I, -(p El,]. 

We may replace I, by I*. By convexity and the martingale property I* is non- 
decreasing in n, so that it suffices to prove that I* < 0% n > 0, implies that I~, < oo. 
Letting N = 2 , [1 ] ,  X ~" ~=x2',[qo], S=22,[(P] it follows from (2.1), (2.2) that 

t*n(X ) = E  <x) E(~ 2 nEqo] log* ))a, [(P]l~,) 

, ^  ~ . < +c2,*(x)+c3I* <E<~> {P"X,[9] log* p x,E(p] + x ,  Et,]} =c  a 

for suitable constants q ,  c2, c 3. Integration with respect to (p* completes the 
proof. [] 

The next lemma presents a key step in the proofs of Theorem 1 and Theorem 2 
as well as in the transition from discrete to continuous time here and in w 4. 

Lemma2.  Let cS~Jl'\{O}, and let Y~. ~ �9 .... Z,,i,  n = 0 , 1 , . . . , i = l , . . . , ~ , a [ 1 ]  be 
random variables such that 0 < Y~ ~ < Za,, ~. Suppose that the Y~ ~' s are independent 
conditioned upon ~.~, that the same is true for the random variables 

and that the distribution G a <~,> of Z ~ ,, ~ depends only on the type x~ of the i th particle 
alive at time n 6. Define 

~ [ 1 )  2~[11 

i - i  i = 1  

Thentheassumpt ions(M) ,p>l ,  andq~*[ f  ydGa<.>(y)]<ooimplythat 

P(S ,+S , )<  c~, (2.4) 
n=O 

Var {~a _ E(~al~.a)} < oo. (2.5) 
n=O 

In particular 

~a .... (2.6) S.-E(S.I~.~)  ,0, n-~c~. 

Proof Let 
On 6 

r176 }o d<.(y), S 
pn 6 0 

y2 dGa<~>(y), ~O(y) = ~p* E6~. >(y)3. 
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By assumption the distribution G a has finite mean, and we get 

= P(Z. ,~>p I~.a = ~ Ex .0 [ (  ~ 
n=O n=O i = 1  n=O 

oo 

L i 
n=O n=O pn6 0 

Var ~0 ~a = {S.-E(S.I~.a)} ~ E V a r  (Sa.[3,,o) 
n = 0  n = 0  

(C_/1" ) < p-2 .a  E(~a, i2l~.a ) < p_2.a E~.a [~> l 
n = 0  n = 0  

< C p- . a  (p. [{23 = C P-"a S y2 daa(y) 
n = 0  n = 0  0 
oo 

< C' ~ y dG~(y)+ C"< co. 
0 

By standard estimates (2.5) implies that ~~ ~a a.s. S . -E(S . I~ .a )  0, so that (2.6) follows 
by (2.4). [] 

Remark. If we drop the summation over n and replace n e N  with tel0,  co[, the 
estimates above show that at least a ~a P(St #St)  + 0, Vat ($~-E($~1~.))--, 0, 
s,~ ~,a)~ 0, t--, co. 

We are now prepared to complete the proof of Theorem 2. The idea is to 
exploit systematically the martingale property of {W~}.~ N or rather of { W.a}.~, 
where 6 is a large integer to be determined later. Our method is different from 
that used for a finite set of types in [18, 4]. We shall use the set-up of Lemma 2 
with 

ya._ a ^n3,  i . , , - Z . , ~ = x ( . + . a  [c#]. 

Then 
1 ~n 8 [1] s~.-p.~ Z *r.%~[,]=pa<.+,~, 

i = 1  

and we let 

W("+l)~=P-aSa.-p(.+l)a E ga. n.z l{Yn~, i < p",~}, 
i = l  

~,, a (x) = E <~> xa [q~] 1{~ t~l > o"}, (2.7) 

1 
s., a = p( .+ .a  ~.a [r a] 

so that 

E ( W ( ( n + l )  6 1 ~ n 6 )  = W n ~ - E ( W ( ( n + j . ) o -  l / ~ ( . + l ) a [ ~ n 6 )  

=W, ta p(.+,,a Y, E(Y.a,,l{r.~,>p.~}la.a)=W.a-e.,a. (2.8) 
i = l  

From Lemma 2 we immediately get 
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Lemma 3. (M), p > 1, implies that 

P (W{.+ 1)a:# ~.+1,o) < oo (2.9) 
n=0 

and that 

~, {[~(n+l)a--Wn0-~gn,  a} converges a.s. and in ~01. (2.10) 
n=O 

In fact, (2.9) is clear from (2.4), and (2.10) follows from (2.5) and the convergence 
theorem for 2 '2-bounded martingales, if we observe that the terms of the series 
in (2.10) are martingale increments by (2.8). 

Lemma 4. Let ~., a be defined by (2.7). Then for any m, 6 > O, 1 o < oo if and only if 

n=0 

Proof Note that (cf. (1,8)) 
oo 

~~ ~ ydFa(Y), Ia= ~ ylogydVa(y).  [] 
pn rn 0 

Lemma 5. For an appropriate choice of 6 there are constants Cl, c2>0  such that 
~.,a(x)> q ~o* [~., 1] q~(x) and thus 

en, 6~:C2 Wna q?* [-~n6,1] (2.11) 

Proof Let A = {)2 0 [(p] > p"}, A~ = {2]- 1, i [-q~] > p,}. Since Ai _c A, 

in, a (x) = E <x> E (2 0 [~o] 1A I~a- 1) 

= g <x> 2~_ 1 [4.. 1] >= pa-  1 cL 1 ~o* [~., 1] o (x) (cf. (2.2)), 

and we need only to take 6 with c~_ t > 0. The estimate (2.11) is now immediate 
from the definitions. [] 

Proof of Theorem 2, completed. Suppose first 11 < oe. From (2.2), Lemma 4, and 
the definition of e., a we get 

n-0  n=0 

Therefore we have s of ~, e., 1 by positivity and of ~ {I?V.+I-141.} 
by (2.10) with 6=1.  Since lg'.+l< W.+,, we get for any N 

E <x>w=E <x> Wo+y~{%+l-%} 

=> (w~ {w~ w"} wo} 
co 
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As N-~  o% the last term tends to 0, so that E <x> W> ~0 (x). The converse inequality 
is immediate from Fatou's lemma, since E <x> W n = (p(x). 

Next suppose that I t = + oo. By (2.9), the Borel-Cantelli lemma, and (2.10) 
we have a.s. convergence of ~ { W(,,+ i) ~ - IV, ~ + e,, ~} and therefore, since W exists, 
of ~ ~,, ~. Let W -  = inf W, ~. 

Then by Lemmata 4 and 5 

oo> ~, e , ,a>c 2 W -  ~ q~*[~,a,~]=+oo a.s. on { W - > 0 }  
n = O  n = O  

which is only possible i fP  <x> ( W > 0 ) = P  <x> (W-  > 0 ) = 0 .  [] 
We now proceed to the proof of Theorem 1. The idea is quite simple and be- 

comes transparent if we set G- - t / in  the next two lemmata. However, this identifica- 
tion would lead us to Theorem 1 for ]t/] __< c q~ only. The added generality of Lemma 6 
is needed in order to deal with ~/c ~r 

Lemma 6. Let  {G} be a sequence of  averaging functions such that 0 <__ tln < t 1 for 
some q e ~ l . .  Define Jbr any m 

y_l . _  ^,,, i Z 1 __ ^n, i . , , -Xn+~[~n+m], ., ~-x,,+m[~]. 

Then (M), p > 1, and the assumption 

~,,m p, ~, E(Y~il~za, ,>:}]~,)  "'~',0, n--.oo, Vm 
i = l  

imply 

2 , [ t / , ] /pn-q ,* [G]  W "---~-. 0, n-~Go. (2.13) 

Proof  In the notation of Lemma 2 with 6 = 1, 

^ n + m  1 m 

Also, by (2.2) 

c,7, p"~o*l-rl.+,.] IV,,, ~ + m . < E(SnI~.)_-<c., W. p ~o [ ~ . + , . ]  . 

Using (2.6) and (2.12) we get 

lim sup {)2,[G]/p" - ~o* [r/,] W} 
n 

= l imsup ^ "+ " {x.+~[~.+,.]/p -~o*[~.+m] w}  

= lira sup {S~/p ~ - 9"  It/n+ m'] W} 
n 

= lira s up {E (S~l~,)/p ~ - ~o* [G + ~] W} 
n 

<l imsupcp*[G+, , ]  {c, + Wn-W}<(p*[~/] ~ + 1} W. -- ( Cm -- 
n 

Letting m--.  oo, it follows that the lira sup of the/eft-hand side of (2.13) is < 0. The 
inequality for lim inf is obtained similarly. [] 

Remark. If we replace h e n  with t~[0, oc[, then E 3t, m< ; ydG, l ( y ) ,  where G 1 
p t  

is as in the proof of Lemma 2. This shows c5~, ,, & 0, t -~  vo. Taking qn = q and using 
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the remark following the proof of Lemma 2, we can repeat the argument with a.s. 
convergence replaced by convergence in probability to get (1.4). 

Lemma7.  I f  we can take tl<_CCp, c>O, in Lemma6, then (2.13) holds, assuming 
only (M), p > 1. 

Proof We can assume c = 1. Then by (2.7) 

O<6,,,,<p-"2c,[~,,ml<p ~ W.. 

Thus by Theorem 2, (2.12) holds if I,, = + o% and otherwise Lemma 4 implies 

E6,,m<c* ~ q)*[~,,,~]<oo and thus (2.12). [] 
n = O  n ~ O  

Proof of Theorem 1. We take r/ ,=r/ in Lemma 6 and have to prove (2.12), that is 
tl ^ 6,,,, = p-  x, [~,] am+ 0, where 

~ , (x)=E <x> 2,, [t/] l ~ t , ~ > :  ~. 

But by (2.2) {~,} satisfies the assumption of Lemma 7 with c = c + p" ~0" It/] so 
that by (2.13) 

lira sup 3, ,~ = lira sup q~* [~,] W =  0, 

where we have used the dominated convergence theorem for the last equality. [] 

We conclude this section by giving the transition from discrete to continuous 
time, i.e. the proof of Theorem 1'. Define for e, 6>0,  Uc_X, 0 ~ +  

us(x)= {y~ u: o(y)___(1 +e) -~ '9(x)}, 

~ ' (x )  =e<~> (~,e U~(x)V t ~ [0, 6]). 
Lemma 8. Suppose that for every ~ > 0 

~ 1  v a.s. [qo*], 6+0. (2.14) 

Then 
lim inf p ' ~t ['91 v] > (P* ['91 v] W. (2.15) 

Proof Consider the ith particle alive at time n 6 with type x~, and let 

Then 

xt['91v] > Z Y-~': Vt~[n6,(n+l)6].  
i = 1  

With a, ~_ Z,, ~-'9(xi), (2.6) and (1.5) give 

lim inf p - '  =t t ['91 v] > P-  ~ lim inf p -  "~ ~ Y~'~,, i 
t ~ e o  t ~ o o  i = 1  

2na[1] 
p-~ lim in fp - , a  ~ o,~ = E(Y/,,, i~,~) 

= p - o  lira infp -"~ ~.~ [(1 +e)-~ ,9 # ~ ]  = p  ~ (o* [(1 +e) -~ 0 ~)~] W. 

(2.15) follows from (2.14) by letting 6--+0, ~-~0 in that order. [] 
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Lemma 9. Suppose X is metric, 9.I the Boret ~-algebra, (s Pe) right-continuous. 
Also, let p-~ s [,9] ~ (p* [,91 W for some ,geN+, 1.s.c.a.e. [~o*]. Then for any 
U c X whose boundary OU has (p*-measure O, 

p-tCq[,91v I .... ,cp.[,91v]W, t---~oo. (2.16) 

Proof If x is in the interior of U, our assumptions imply that ~ ( x ) ] "  1 as 6 ~0, 
so that (2.15) holds. Since OU=OU', also 

lira sup p-t  :~t [0 lv] = q0* [,9] W -  lim infp -t  2 t [,9 lye I < p* [0 Iv], 
t ~ C O  t ~ o o  

completing the proof. [] 

Proof of Theorem 1'. The case ~p* [0] =0  is trivial, and (1.7) is also obvious on 
{W=0}. On {W>0} the random probability measure #,[tl]=s is 
well-defined and for each continuity set U of if[q]--O* [0t/]Ro* [0], we have 
#t [lv] .... >/2 [lv] by (2.16). Taking an appropriate denumerable class of such 
U's, Theorem 2.2 of [6] shows that #t converges weakly to # for almost all realiza- 
tions of the process, completing the proof ([6]). [] 

w 3. Branching Diffusions: Preliminaries and Representation 
of the First Moment Semi-Group 

We now discuss our theory in terms of branching diffusions. The principal math- 
ematical difficulties that arise in our context are present already with a one- 
dimensional diffusion. For greater clarity we therefore restrict ourselves to this 
case. However, all results and proofs of this and the following section can be 
formulated with n-dimensional diffusions, and we shall do this in the more com- 
prehensive framework of a future publication. 

Let X c 1R be a bounded interval with endpoints c~, ft. The interval may be 
closed, half-open, or open. Denote by cg, the set of real-valued functions on X 
which are restrictions of n-times continuously differentiable functions on [~, fl]. 
Let {x, P } be the Markov branching process determined ([16, 201) by the follow- 
ing data: 

(a) The diffusion process (xt, px) on X defined by the differential generator of 
its transition semigroup, 

d2 bJ~u, u ~ ( A ) ,  
Au=a~-~x2U+ 

where 

aeCg 2, beCg 1, inf a(x)>0, (3.1) 
x ~ X  

and @(A) is the set of all ueCg 2 satisfying the separated endpoint conditions 

, / ~ u ( c ~ + ) - < u ' ( ~ + ) = o ,  ~ u( /3- )  + ~;~ u ' ( /~-)  = o, 

~ ,  < ,  7p, v5 E ~ +, G ,  %) 4= (o, o), (~B, '&) 4= (o, o). 
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Here 7~ +0, 7'~ = 0  corresponds to complete absorption at c~ and 7~ = 0, 7'~ + 0  to 
complete reflection at e and correspondingly for ft. 

(b) The termination density 

k E ( ~  r k~_~0, (3.2) 

(c) The local branching law 
n 

n(x, ft)=Po(X) lx(0)+ ~ l~i((x . . . .  ,~'---~)) p,(x) (Ae~) 
n=>2 

p,,e~+, n e N \ { 1 } ,  

with 
m= ~ np,~Cg 2. 

n~=l 

p,-=l 
n:f-1 

(3.3) 

The process {2t, P?} is constructed according to the following intuitive picture: 
All particles move independently, each according to (xt, W). Branching of a 
particle which is at the point x~X at time t occurs in [t, t+A]  with probability 
k(x) A + o(A). At the point x and time of branching a particle is replaced according 
to rE(x, �9 ) by a (possibly empty) population of new particles. 

Condition (3.3) is more than enough to guarantee that (2t, P~) is conservative 
([202). 

�9 Theorem 4. The process {2t, W} constructed from (a), (b), (c) has the property (M) 
with 

fl 
~o~(A), ~o*E~]=j ~(x)~o(x)r(x)dx , 0 < c _ - < r ( x ) ~  2. 

Proof. The diffusion process is constructable as a conservative process either 
on X, when X is compact and no absorption occurs, or on X ' = X w  {6} with 0 
serving as trap. If X is non-compact, we take X' as the one-point compactiflcation 
of X. Define % = ~ 0  if X is compact and % = { r  r  as x~cg} 
otherwise. Then the transition semigroup {T,} of (x ,  W) satisfies T~ % _  ego, t >0, 
and is strongly continuous on % .  In conjunction with k, m~Cg ~ this implies not 
only E < > ~2~ [ 1 ] ~ +  V t>0 ,  but also that {E <> 32, [ ' ] } ~ o  is a strongly continuous 
semigroup on % with differential generator 

Lv=Av+k(m-1)v,  v~(L)=~(A) ,  

cf. [16], slightly adapted. 

Consider now the eigenvalue problem 

Lv=)~v, v~(A) .  

Since a, b, k, m eC~ ~ and inf a(x)> 0, multiplication by 
x 

p(x)=-exp{! b(y)'''~ay[ 
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leads to the regular Sturm-Liouville problem 

( p v ' ) ' + ( q - 2 r ) v = O ,  v e ~ ( A ) ,  

q = k (m - 1) p/a, r = p/a. 

As is well-known, see e.g. [8] Chapters 7 and 8, there exists a sequence of real 
eigenvalues 

20 > 22 > 2 z > . . .  ~ - oo (3.4) 

and a complete system of eigenfunctions {v~}, v~ corresponding to 2~, such that 

~t 

That is, for ~e~(A) 

g <x>&[~] ~ ~' , 
= e v~ [4]  v~(x), t > 0 ,  (3.5) 

where 

v~* [~] = f ~(x) v~(x)r(x),tx. 

Moreover, v~ has exactly v zeros in ]c~, fl[, i.e. we can choose 

Vo(X)>0, xe]e ,  fl[, (3.6) 

and know by unicity that 

(Vo(~+), v;(~+))+(O,O), (Vo(g-), v;(/~-))+(O,O). (3.7) 

By (3.1)-(3.3) we have p, r~,~ 2, and we can use Liouville's substitution 
x 

,~(x) = (p(x) r(x)) ~/'* ~(y), y = ~ (r(~)/p(~)) ~/~ c/z~ [0, y(/3)] 

to obtain the normal form 

w"+(c~-,~) w = 0, 
where 

=q/r +(pO_~/~ d~ (p,.),% 
dy 2 

with regular separated endpoint conditions, generally with changed coefficients. 
The eigenvalues remain the same as before. 

Now applying the theory of asymptotic spectral behavior of differential 
operators ([19]), 

)~= - (roy)2 [1 + 0  ( ! ) ]  v>0,  (3.8) 
y(p) 

{ 2  / I/2 
w~(y)= \ y ~ ]  sin []/~ly+c~]+cS~(y) ,  v>0, (3.9) 



208 S. Asmussen and H. Hering 

sup Iv cL(y)l < ~ ,  (3.10) 
y,V 

sup I6'~(Y)I < 0o. (3.11) 

Given (3.8) to (3.10), we can extend (3.5) first to ~eCgo, using the Stone-Weierstrass 
g~ theorem, and then to ~ e ~ ,  using the fact that  E<X>2t[1A-1 and v v [1A] are o-- 

additive in Asg.I. With (3.6), (3.8), (3.9), (3.10) and, if Wo(0)=0 or wo(y(/~))=0 , 
also (3.7), (3.11), and L'Hospital 's  rule 

vv(x) = w~(y) = 
supx Vo(X) supy Wo(y ) O(v). (3.12) 

Since v 0 >0 ,  r > 0 ,  (3.12) implies 

iv* [33t< O(v) vN frill] 
uniformly in ~ m N. Hence 

IE <x> 2,[~] - e z~ v~ [4] vo(x)l < ~t v* I-1~13 Vo(X), 

~,= ~ O(v2)e ~v ,̀ 
V=I 

and by (3.4), (3.7), e -z~ c 5 ~ 0, t - , o o .  Thus (M) with the convent ion (p*[1] = 1 is 
satisfied with q)=v*[1]  Vo, ~o* =(v*[1])  -1 v~, p = e  ~~ [] 

w 4. Branching Diffusions: Limit Results 

The set-up is that  of w 3 with p = e z~ > 1, Wt = p -  t s [(P], W =  lim W t . 
t 

Theorem 1". Assume in addition to the assumptions of w 3 that p > 1. Then for any 

p- '~ , [~]  F, o*E~] w,, t--,oo, 

p- '~2,~[~] - a ~  O* [~/] W, N~n--~ oo, ge>0 .  

I f  t 1 is bounded and a.e. continuous, then 

p-t~,Et]] . . . .  ' e e [ ~ ]  W~ t - , o o .  

Proof. The two first assertions are immediate  from (1.4) and (1.5). For  the third 
we have only to prove p t2t[1]  .... > W, t ~ o% in view of the absolute cont inui ty 
of q~*, (p* [1] = 1, and Theorem 1'. However ,  the assumption (2.14) of L emma  8 is 
fulfilled for U = X, so our  problem reduces to proving 

lim sup - t  ^ a.s. p xt[1]  ~ W 
t~oo 

Define the auxiliary process (y ,P~) ,  y t = 2 t [ 1 ] + N t ,  where N~ is the number  of 
particles absorbed up to time t plus the number  of branching events up to time t. 
Clearly, Yt is non-decreasing and 

x~[1 ]=y t ,  O<_s<_t, (4.1) 

E<~> yt<e~t, 0 < ~ =  I[k/I (llmll + 1)< oo. (4.2) 
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Now let 6 > 0  be fixed and let a _ a _ ,a,~ Ys be defined the obvious  way. 
Using (2.6), we get in the no ta t ion  of L e m m a  2 

~ 6111 
l i m s u p p - 7 2 t [ l ] < - l i m s u p p  -~a ~ Y~ 

- -  t L  i 
7--, oO n ~ oO i =  1 

= lira sup S~ = lira sup E ( S ~ ] ~ )  
n ~ o o  n ~ o r )  

< lim sup ~ ~ ~ - "  ~ ^ = e ~ E(S,]~, ,~)<e lira sup _ p x . ~ [ 1 ]  W 
n ~ o o  t t ~ o o  

As c~,L0, the p roo f  is complete.  [ ]  

We recall the definition (1.3) of I7. Degeneracy  of W at 0 is, of course, equivalent  
to I 7 = + o2 for some t > 0. But the relation I~ < oo is difficult to verify and it is 
therefore desirable to have a criterion in terms of the natura l  model  pa ramete r s  
A, k, n of the branching  diffusion. A heuristic considerat ion o f / ,  for small t leads 
to the condi t ion 

(p* [k (p ~c] < o% (4.3) 

where 

~c(x) = ~ p,(x) n log n. 
n=2 

Theorem 2'. For any t > 0 ,  17 < oo if and only if (4.3) holds. That is, 

E ~ W =  (p(x) ~'x~X 

if and only if (4.3) holds, and W = 0  a.s. [p<~5] V x ~ X  otherwise. 

Remark. The propert ies  of c# and cp* obta ined  in w 3 make  it possible to verify 
(4.3) wi thout  knowing  cp or (p* explicitly. 

E.g. in the case of absorp t ion  at c~ and fl, (4.3) is equivalent  to 
/3 

(x-.)2 (fl_ x)~ k(x) to(x) dx  < co. 

Of course the heuristic der ivat ion of (4.3) does not  const i tute  a r igorous proof.  
To  see the problem,  note that  the si tuat ion is somewha t  similar to that  of [3], 
where despite the simplicity of the model  the p roo f  is non-trivial.  In addit ion to 
the times of branching,  or split times, zl ,  z2 . . . . .  our  p roo f  also has to take into 
account  the s topped diffusion, i.e. the transit ion semigroup {T~ ~ of the 

exp { -  i k(xs) ds}-subprocess of (xt, P~ ). 

For  convenience let Cl, c2, ... denote  cons tants  with 0 < c~ < oo. 

L e m m a  10. There are t o > 0 and q ,  c 2 such that 

c 1 (p* ~ ~o* Tt~ =<c2 (p *, O~t<to .  (4.4) 

Proof We have  

fl 

qo* Tt ~ = T~ ~ ~o* = cp* + j T~ ~ A ~ cp* ds, (4.5) 
0 
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where A ~ is the adjoint  of the generator  A ~ of {Tt~ see [11]. But 

(A ~ + k m) cp* = 20 cp*, (4.6) 

so that  
t 

cp* Tt ~ __< q~* + 2 0 ~ Ts ~ cp* ds, 
0 

from which the second inequality in (4.4) follows by iteration (take c2=e2~176 
Also, from (4.6), A ~ q)*> - c  3 q~*. Inserting this in (4.5), we get 

t 

q~* Tt~ >=q~*-c3 ~T~~ * 
o 

for t =< t o. Choose t o such that  e 2~176 c3 to < 1. [ ]  

Proof of the Sufficiency of(4.3). For  2oEX, x 6 X  define (cf. (2.3)) 
^ 

log* 2&o] . . . .  

Then 

l *  - -  t , ,+l-JoTf  k!~t*_s,,(2)rc(',d2) ds+Ho. (4.7) 

For  j = 1, . . . ,  2 o [-1], define B(j, n) as the event that  there are at most  n splits in the 
j th line of descent up to time t. Then 

7~o[1] 

j=l 

and by (2.1), 

T,*,(2o) < p' 20 [q~] log* (p' 20 [q~]) + 20 ['t*,,]. 

Thus for 0 _< t_< to, 

X 

< L p~(x) {ptvcp(x)log* (ptv(p(X))+Vlt*,n(X)} 
v = 0  

C 4 -1- C 5 @(X) N,(X) "-l- C 6 lt*,, n(X). ( 4 . 8 )  

Inserting (4.4) and (4.8) in (4.7) leads to 

q) [tt, n+ l] <=Cv + Cs (P*[k(ptr + c9 t sup cp*[ls,,]* 
O = < s ~ t  

for O<_t<_t o. Since II*t*011 _-<qoVt>O, it follows from our  assumption (4.3) that  

I* = cp* [~*] < sup sup cp [,~,,] < oo 
hEN O<--s<--t 

forO<--t<--to, C9t<l. [] 

Proof of the Necessity of (4.3). Let  

T* (2) = E ~ 2 t [cp] log* 2 t[cp], 

S. Asmussen and H. Hering 
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so tha t  l * ( x ) = ~ * ( ( x ) ) ( c f .  (2.3)). T h e n  

l * > E ( ' > 2 t [ q )  ] log* 2t[q) ] lm_<t/ 

= i T~ ~ ~ g,*-s(2) re(., d2)] ds. (4.9) 
o x 

Since 2t[cpJ is a s u b m a r t i n g a l e ,  it fol lows by  convex i ty  tha t  

U ( 2 )  > 2 [ ( p ]  log* 2[(p] ,  

dX) => log* 
X n=2 

> Cp(X) ~C(X) -- q 1 '  (4.10) 

Thus ,  if ~o*[k cp ~c] = + o% it fol lows by  inse r t ing  (4.4) a n d  (4.10) in  (4.9) tha t  

t 

I~=(p*[I*']~C 1 ~ (p*[k(pK-kCl l  ] d s =  Jr- oO 
0 

forO_<t_<t o. []  
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