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On Finite Tail a-Algebras* 

Marius Iosifescu 

1. Introduction 

Let ~=(~t)t~o be a stochastic process on a probability space (f2, ~ ,  P) as- 
suming values in an arbitrary measurable space (X, Y'). Here O is either N =  
{0, 1, 2,...} or the non-negative half line [0, oo). 

Let JY~J, s < t, denote the a-algebra generated by the family (~,)s_< u_<t, ~ = ~'~fl, 
and ~y~flo = the least a-algebra containing all the a-algebras ~ t ,  t > s. 

The a-algebra J =  (-] jy(~o is called the tail a-algebra of 4. 
S 6 0  

A a-algebra contained in ~ff will be said to be &trivial (under P), 0 < 6 < 1, if 
the probability of any set belonging to it is either 0 or greater than or equal to 1 - 6. 
Clearly, a 6-trivial a-algebra is equivalent to a finite a-algebra containing at most 
[(1 - 6)- 1] atoms, and, conversely, any finite a-algebra is 6-trivial for some 0 ~ ~ < 1. 
A 0-trivial a-algebra will be simply called trivial. Notice that 6-trivialness with 
6 < 1 amounts to trivialness because 0 < P (A)< 1 would imply that both P (A) and 
P(A c) are greater than �89 

It is well known that if ~ is a sequence of independent random variables, then 
its tail a-algebra is trivial (Kolmogorov's 0-1 law). Blackwell and Freedman [2] 
have proved that the same conclusion holds for homogeneous irreducible, 
aperiodic, recurrent, countable state, discrete parameter Markov chains. Recently, 
Cohn [3] has proved that the tail a-algebra of any finite state, discrete parameter 
Markov chain (homogeneous or not) is 6-trivial. 

In this paper we characterize (Theorems 1 and 2) stochastic processes having 
a 6-trivial tail a-algebra, then we exhibit (Theorem 3) the simplification arising 
in the Markovian case. 

Several applications to discrete state space Markov processes are made. 
Theorem 4 gives necessary and sufficient conditions for the 6-trivialness of the 
tail a-algebra in terms of the transition and absolute probabilities. Theorem 5 
is a necessary and sufficient condition for the tail a-algebra to be trivial under any 
initial distribution. Theorem 7 exhibits a class of Markov processes for which the 
strongly mixing property and the trivialness of the tail a-algebra are equivalent. 
Finally, Theorems 6 and 8 extend the above quoted results in [2] and [3] to the 
continuous parameter case. 

2. The General Case 

The theorems below slightly extend some results by Bfirtfai and R6v6sz [1] 
and Blackwell and Freedman [2]. 

* This paper was written while the author was an Overseas Fellow of Churchill College, Cambridge, 
Great Britain. 
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Theorem 1. Assume that 

lim sup (P (An  B ) -  P (A) P (B)) < 6P (A) 
t ~  oo BeY~t  r 

for any A ~ ~J X'o z. Then 9- is 5-trivial. 

Proof. Let us first notice that the above limit does exist as the quantity under 
' l im'  does not increase when t increases. Moreover, it is non-negative because 

P (A n B) - P (A) P (B) = - (P (A n B c) - P (A) P (BS-  

Passing to the proof of the theorem, it is easily seen that the assumption made 
implies that for any T~ 3- and s e O we have 

P(TIX'd)-P(T)<~ a.s. 

Now, by a well-known property (see e.g. [6], p. 409) P(TIXo ~-) ~ P(TI~o  ~ 
a.s. for any increasing sequence (s~),~N such that lim sn = 0o. Therefore 

t l ~ o o  

P(TIX'~c)-P(T)<5 a.s. 

Taking into account that T ~ J c  Xo | and integrating the above inequality over 
T we obtain 

P(T)-PZ(T)<~P(T) ,  

whence either P ( T ) = 0  or P(T)> 1- f i ,  q.e.d. 

The proof of the next theorem is based on the following simple 

Proposition. Let E i E X  be such that P(Ei)>0, 1 _<j<r. Then 

P(A) 
P (A I E j) < min P (Ek) 

l<=k<_r 

for any A ~ X" and 1 <j < r. 

Proof. ~ For any l < j  < r we can write 

P(A)>_P(AnEj)=P(AIEj)P(Ei)>-P(AIEj) min P(Ek). q.e.d. 
_ _  - -  l_<k_~r 

Theorem 2. Assume that 3- is 5-trivial. Then 

lim sup (P (A c~ B ) -  P (A) P (B)) < 6P (A) 
t ~ o o  Be~ ~ 

for any A ~ ~ .  
Proof. If J -  is cS-trivial the above Proposition implies that for any A E X" 

P(AIJ )<(1 -6 ) -~  P(A) a.s., 
whence 

p(AI .Y- ) -P(A)<SP(AIF ) a.s. (1) 

I am indebted to Dr. D. Williams for this simple proof. 
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Then, for Ae3(f and B e ~ t  ~ we can write 

P(A n B)-P(A)  P(B) 

= ~ [P(A ] JT~t~)(o)-P(A JY)((o)] P(do)+ ~ [P(A f3--)((o)-P(A)] P(d@. 
B B 

The first integral above is dominated by 

j" I P (A [ ~(ft ~) (o)) - P (A ] 3--) (r l P (da)) 

which by [6] loc. cit. tends to 0 as t ~ ~ .  By virtue of (1) the second integral is 
dominated by 6P (A), q.e.d. 

3. The Markovian Case 

3.1. When ~ is a Markov process a simplification occurs in Theorems 1 and 2. 
We have namely 

Theorem 3. Assume that ~ is a Markov process. Then in Theorems 1 and 2 
sup can be replaced by sup.  

B e 3Ur ~ B E.~t 

Proof We shall prove that 

f(A) = sup (P(A n B ) -  P(A) P(B)) 
B e : ~ W  

= sup (P(A n B)-P(A)  P(B)) = g ( a )  
B e a~it 

for any A e ~ffo s with s < t. 

Clearly, f (A)> g(A). To prove the converse inequality let us notice that by 
the Markov property we can write 

P ( A n B ) -  P(A) P(B)= P(A) [ ~ P(Bl~)((o) Pt, A(dO)-- ~ P(BI3f~t)((o) P,(do))] 
Y2 

= P(A) ~ n (B [ ~f~,)(o)(Pt. A -- Pt)(d~o), 

for any Ae~ffo s such that P(A)#O, and any B e ~ t  ~, t>s, where P~ is the restriction 
of P at ~ t  (i.e. P,(E)=P(E) for any Ee~,~) and Ptt.a(,)=Pt(.IA). The inequality 
f (A)<g(A) is an immediate consequence of the above equation on account of 
the following 

Lemma. Let ((2, ~q~, 2) be a measure space and assume that the signed measure 2 
is finite and a-additive and such that 2 (Q)= 0. I f  h is any bounded real valued and 
~q~-measurable function defined on (2, then 

h (co) 2 (do~) < (ess sup h -  ess inf h) sup 2 (L). 
yj L~.Sf 

The proof of this Lemma can be found in [5], p. 40, q. e. d. 
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3.2. Theorem 3 allows us to give a necessary and sufficient condition for 6- 
trivialness of the tail a-algebra of a Markov process in terms of its transition 
probabilities. For the sake of simplicity assume that the state space X is at most 
a countable set with elements i,j . . . .  Put pi(t)=P(r i), i eX ,  and 

X(t)={i:  pi(t)>O}, t eO.  

Denote by p~j(s, s+ u), i , j~X,  s, u e 0 the transition probabilities of the process, 
that is 

Pij(s, s + u) = P ( 4 (s + u) =j [ ~ (s) = i). 

On account of the well known fact that 

sup E(u,-vi)=} E lu,-v,I 
E c X  i ~ E  i e X  

for any twoprobabili ty distributions (ui)i~ x and (vi)i~x on X, Theorems 1, 2 and 3 
yield 

Theorem 4. Assume that ~ is a Markov process with at most a countable set of 
states. Then 

1. A necessary and sufficient condition for its tail a-algebra to be 6-trivial (6 >�89 
is that 

lim ~ ]p~j(s, s+u)-pj (s+u)[  <26  (2) 
u ~ o o  j ~ X  

for any s eO and ieX(s).  
2. A necessary and sufficient condition for its tail a-algebra to be trivial is that 

lira ~ Ipo(s, s+u) -p j ( s+u) t=O (3) 
u ~ o ~  S e X  

for any sEO and iEX(s). 
(For any f ixed seO and i~X(s) the quantity under ' l ira' is a nonincreasing 

function of  u.) 

Notice that (2) with 6 <�89 must imply (3) (on account of Theorems 1, 2, and 3, 
too). I do not know a direct proof of this fact. 

3.3. Until now the initial distribution of our Markov process, Pi (0) = P(~ (0) = i), 
i a X, has been kept fixed. Theorem 4 allows us to characterize Markov processes 
for which the tail g-algebra is trivial under any initial distribution (the transition 
probabilities remaining the same). To this end put X(0) = X and X(t) = {j: pij(O, t) > 0 
for some i~X} for t*0 .  

Theorem 5. Assume that ~ is a Markov process with at most a countable set of 
states. Then a necessary and sufficient condition for its tail a-algebra to be trivial 
under any initial distribution is that 

lim ~ Ipi~(s, S+U)--pkj(S, S+U)[ =0  (4) 
u . o o  j ~ X  

for any s~O and i, k~X(s). 
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Proof Suppose first that the tail a-algebra of ~ is trivial under any initial distri- 
bution. Taking as initial distribution that which assigns to each of the states i and 
k probability �89 on account of (3) we obtain that 

lim ~ Ipij(0, u)-pki(0,  u)l = 0  (5) 
u ~  j e X  

for any i, k �9 X. Further, for any s 4:0 and i �9 X (s) for which Pu (0, s) > 0, Eq. (3) implies 
that 

lim ~ IPi~(s, s+u)-pi~(O, s+u)l  =0 .  (6) 
u ~  j e X  

Now it is easily seen that (5) and (6) imply (4). 
Conversely, suppose that (4) holds and consider any initial distribution. As 

p~j(s, s+u)-p~(s+u)= Z p~(s)[p~j(s, s+u)-pt~(s, s+u)] 
l ~ ( s )  

for any s � 9  i , j � 9  by dominated convergence and on account of (4) we have 

lim ~ IPi~(s, s+u) -p j ( s+u) l  
u-o o~ j e X  

< ~ p~(s) lim ~ IPij(s, s+u)-p~j(s ,  s + u ) l = 0  
l~2(s )  u ~  ov j e X  

for any s � 9  and i eX(s )~X(s) .  
But this means that (3) holds for the initial distribution we considered, q.e.d. 

As an application of Theorem 5 we shall prove 

Theorem 6. Assume that ~ is a homogeneous continuous parameter Markov 
process with at most a countable set of  states (i. e. pij(s, s-]-u) = Pij (u) for any i,j �9 X, 
s, u �9  O) that form a recurrent class. Then the tail a-algebra of  ~ is trivial under any 
initial distribution. 

Proof By Theorem 5 it is sufficient to prove that 

lim ~, IPij(u)--pkj(U)[ = 0 (6) 
u ~ m  j ~ X  

for any i, k � 9  But this is an immediate consequence of a theorem by Orey [-7] 
establishing (6) for irreducible, recurrent, aperiodic, discrete parameter Markov 
chains, so that ~ [pij(nh)--pk~(nh)l~O as n ~  m (through integral values) for 

j ~ X  

any h>0,  and of the fact that the quantity under ' l im' in (6) is a nonincreasing 
function of u, q. e. d. 

3.4. We close the study of the Markovian case with a remark about strongly 
mixing Markov processes. 

An arbitrary stochastic process ~ is said to be strongly mixing if 

a (z)=sup sup (P(Ac~B)-P(A)P(B))  

tends to zero as z-~ oe. On account of Theorem 1, the strong mixing property 
implies the trivialness of the tail a-algebra. The theorem below exhibits a case for 
which the converse implication is also true. 
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Theorem 7.2 Assume that ~ is a stationary homogeneous Markov process with 
at most a countable set of  states (i. e. Pi (s) = hi, pi~(s, s + u) = Pij (u) for any i, j e X, 
s, ueO) .  Then the strong mixing property is equivalent to the trivialness of the tail 
a-algebra. Moreover, 

i~X j ~ X  

Proof. For any A e o~ff~, B~o~+, we have 

P (A c~ B ) -  P (A) P(B) <= E ni I 2 (Pij(Z)-- 7~j) I 
iEX j~B  

and the proof follows on account of Theorems 3 and 4, q.e.d. 

The above theorem (together with Theorem 6) extends a result by Davydov [4], 

4. An Application to Finite State Markov Processes 

By making use of Theorem 1 we shall now deduce a result first proved by 
Cohn [3] for the discrete parameter case. 

Theorem 8. Assume that ~ = (~t)t~e is a finite state Markov process. Then its 
tail a-algebra is b-trivial for some 0<~ < 1. 

Proof. Let Ei(t)={~,=i} and put as above pi(t)=P(Ei(t)), i~X,  and X(t)= 
{i: pi(t)>o}. 

We shall prove that there is an increasing sequence (t,,).~n c 0 with lim t. = oo 
and there are two disjoint sets Y and Z, Y +  ~, Y u  Z = X such that ~ oo 

l iminf min A( t~ )=7>O 
n--, ao i ~ X ( t . ) r a Y  

and lim ~ p/(t0 = 0.3 
n~eo i~Z 

Admitting that this is true, let us show that &trivialness follows with b = 1 - 7. 
For given 0 < e < 7 and A e U :r choose an n large enough in order that A e oYd ~, 

t~O 
~,pi(t,)<e, and rain p i ( t , ) > 7 - e .  Notice that our Proposition implies that 

i eZ  iEX(t~) c~ Y -  

whatever B~'f"  we have 
P (B) > (7 - e) P (Bt :/t~t,,) (o9) (7) 

for almost all ~o not belonging to the event E'(t ,)= U Ei(t,), the probability of 
which is <~. By the Markov property i~z 

P ( A n B ) - P ( A ) P ( B ) =  ~ + ~ (P(Bl~f~J(o~)-P(B))P(d~o) 
A n E ' ( t . )  Ac~(E'(t,d) c 

for any B e ~  ~176 with s>t , .  The first integral above is dominated by e and the 
second one, because of the estimate (7) for P(B), is dominated by ( 1 - 7  + e)P(A), 
so that 

P(A c~ B ) -  P(A) P (B)<_e + ( 1 -  7 + e) P(A) 

2 Compare with Lemma 2 in [8] p. 207. 
3 This is one of the main points in Cohn's proof, too. 
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for any 0 < e < 7  and any A~ U cud provided that BeJt~ | with s>t,,  where t, 
t E O  

depends upon both A and e. But 6-trivialness then follows at once from Theorem 1, 
with 6 = 1 - ?, because of the lim which occurs in the sufficient condition given there. 

Coming back to the proof  of the above statement in italics, let 

= lim inf min pi(t). 
t ~  ~ i ~ X ( t )  

If e > 0, clearly, we can take Y= X, Z = ~,  ? = e and as (t,).~N any sequence through 
which the above '  lim inf' is reached. If a = 0, let (a.).~s c 0 be a sequence such that 

lim rain pi(a.) = 0 
n-.-~ ao i ~ X ( a n )  

and let i, be a state such that 

min pi(a.)=pi.(a.), n~N. 
i ~ X  (an) 

In the sequence (i.).~N at least one state, say 1, appears infinitely often. There- 
fore, for a subsequence (b.).~NC(a.).~N we have lira p~(b.)=0, so that state 1 will 
be the first element of Z. Next let .~ oo 

f l= lim inf min pi(b,). 
n--* ao i e X ( b n )  - {1} 

If fl > 0, we take Y= X - { 1 }, Z = { 1 }, ? =/~, and t, = b,, n e N. If fl = 0, we repeat 
the above procedure to include a new state, say 2, in Z, that is, we find a subsequence 
(c,),~uc(b.).~N such that lim p2(c,)=0. We must stop before including all the 

states in Z as ~ p i ( t ) =  1 for all teO, q.e.d. 
i e X  

Corollary, Let ~ be a finite state Markov process. Then, either 

lira ~ IPij(s, s+u)-pj(s+u)l = 0  
u ~  0 j ~ X  

for any seO and i~X(s), or 

1 _<sup sup lira ~ IPij(s, s+u)-pj(s+u)l <2 .  
- -  s ~ O  i e X ( s )  u ~ O  j ~  x 

Proof. Combine Theorems 4 and 8, q.e.d. 

A c k n o w l e d g e m e n t .  The author  wishes to express his gratitude to Professor D.G.  Kendall and to 
Dr. David Williams for their useful comments  on this paper 
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