Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 159-166 (1972) © by Springer-Verlag 1972

On Finite Tail σ -Algebras*

Marius Iosifescu

1. Introduction

Let $\xi = (\xi_t)_{t \in \Theta}$ be a stochastic process on a probability space (Ω, \mathcal{K}, P) assuming values in an arbitrary measurable space (X, \mathcal{X}) . Here Θ is either N = $\{0, 1, 2, ...\}$ or the non-negative half line $[0, \infty)$.

Let \mathscr{K}_s^t , $s \leq t$, denote the σ -algebra generated by the family $(\xi_u)_{s \leq u \leq t}$, $\mathscr{K}_s = \mathscr{K}_s^s$, and \mathscr{K}_{s}^{∞} = the least σ -algebra containing all the σ -algebras $\mathscr{K}_{s}^{t}, t \geq s$. The σ -algebra $\mathscr{T} = \bigcap_{s \in \Theta} \mathscr{K}_{s}^{\infty}$ is called the *tail* σ -algebra of ξ .

A σ -algebra contained in \mathscr{K} will be said to be δ -trivial (under P), $0 \leq \delta < 1$, if the probability of any set belonging to it is either 0 or greater than or equal to $1-\delta$. Clearly, a δ -trivial σ -algebra is equivalent to a finite σ -algebra containing at most $\lceil (1-\delta)^{-1} \rceil$ atoms, and, conversely, any finite σ -algebra is δ -trivial for some $0 \le \delta < 1$. A 0-trivial σ -algebra will be simply called *trivial*. Notice that δ -trivialness with $\delta < \frac{1}{2}$ amounts to trivialness because 0 < P(A) < 1 would imply that both P(A) and $P(A^c)$ are greater than $\frac{1}{2}$.

It is well known that if ξ is a sequence of independent random variables, then its tail σ -algebra is trivial (Kolmogorov's 0-1 law). Blackwell and Freedman [2] have proved that the same conclusion holds for homogeneous irreducible, aperiodic, recurrent, countable state, discrete parameter Markov chains. Recently, Cohn [3] has proved that the tail σ -algebra of any finite state, discrete parameter Markov chain (homogeneous or not) is δ -trivial.

In this paper we characterize (Theorems 1 and 2) stochastic processes having a δ -trivial tail σ -algebra, then we exhibit (Theorem 3) the simplification arising in the Markovian case.

Several applications to discrete state space Markov processes are made. Theorem 4 gives necessary and sufficient conditions for the δ -trivialness of the tail σ -algebra in terms of the transition and absolute probabilities. Theorem 5 is a necessary and sufficient condition for the tail σ -algebra to be trivial under any initial distribution. Theorem 7 exhibits a class of Markov processes for which the strongly mixing property and the trivialness of the tail σ -algebra are equivalent. Finally, Theorems 6 and 8 extend the above quoted results in [2] and [3] to the continuous parameter case.

2. The General Case

The theorems below slightly extend some results by Bártfai and Révész [1] and Blackwell and Freedman [2].

^{*} This paper was written while the author was an Overseas Fellow of Churchill College, Cambridge, Great Britain.

M. Iosifescu:

Theorem 1. Assume that

$$\lim_{a \to \infty} \sup_{B \in \mathscr{H}^{\infty}} (P(A \cap B) - P(A) P(B)) \leq \delta P(A)$$

for any $A \in \bigcup_{s \in \Theta} \mathscr{K}_0^s$. Then \mathscr{T} is δ -trivial.

Proof. Let us first notice that the above limit does exist as the quantity under 'lim' does not increase when t increases. Moreover, it is non-negative because

$$P(A \cap B) - P(A) P(B) = -(P(A \cap B^c) - P(A) P(B^c)).$$

Passing to the proof of the theorem, it is easily seen that the assumption made implies that for any $T \in \mathcal{T}$ and $s \in \Theta$ we have

$$P(T|\mathscr{K}_0^s) - P(T) \leq \delta$$
 a.s.

Now, by a well-known property (see e.g. [6], p. 409) $P(T|\mathscr{K}_0^{s_n}) \to P(T|\mathscr{K}_0^{\infty})$ a.s. for any increasing sequence $(s_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} s_n = \infty$. Therefore

$$P(T|\mathscr{K}_0^\infty) - P(T) \leq \delta$$
 a.s

Taking into account that $T \in \mathcal{T} \subset \mathscr{K}_0^{\infty}$ and integrating the above inequality over T we obtain

$$P(T) - P^2(T) \leq \delta P(T)$$

whence either P(T) = 0 or $P(T) \ge 1 - \delta$, q.e.d.

The proof of the next theorem is based on the following simple

Proposition. Let $E_i \in \mathcal{K}$ be such that $P(E_i) > 0, 1 \leq j \leq r$. Then

$$P(A | E_j) \leq \frac{P(A)}{\min_{1 \leq k \leq r} P(E_k)}$$

for any $A \in \mathscr{K}$ and $1 \leq j \leq r$.

*Proof.*¹ For any $1 \leq j \leq r$ we can write

$$P(A) \ge P(A \cap E_j) = P(A | E_j) P(E_j) \ge P(A | E_j) \min_{1 \le k \le r} P(E_k). \quad q.e.d.$$

Theorem 2. Assume that \mathcal{T} is δ -trivial. Then

$$\lim_{t\to\infty} \sup_{B\in\mathscr{K}_{t^{\infty}}} (P(A\cap B) - P(A) P(B)) \leq \delta P(A)$$

for any $A \in \mathscr{K}$.

Proof. If \mathcal{T} is δ -trivial the above Proposition implies that for any $A \in \mathcal{K}$

$$P(A|\mathscr{T}) \leq (1-\delta)^{-1} P(A)$$
 a.s.

whence

$$P(A|\mathcal{T}) - P(A) \leq \delta P(A|\mathcal{T}) \quad \text{a.s.}$$
(1)

160

¹ I am indebted to Dr. D. Williams for this simple proof.

Then, for $A \in \mathscr{K}$ and $B \in \mathscr{K}_t^{\infty}$ we can write

$$P(A \cap B) - P(A) P(B)$$

= $\int_{B} \left[P(A \mid \mathscr{K}_{t}^{\infty})(\omega) - P(A \mid \mathscr{T})(\omega) \right] P(d\omega) + \int_{B} \left[P(A \mid \mathscr{T})(\omega) - P(A) \right] P(d\omega).$

The first integral above is dominated by

$$\int_{\Omega} |P(A | \mathscr{K}_{t}^{\infty})(\omega) - P(A | \mathscr{T})(\omega)| P(d\omega)$$

which by [6] loc. cit. tends to 0 as $t \to \infty$. By virtue of (1) the second integral is dominated by $\delta P(A)$, q.e.d.

3. The Markovian Case

3.1. When ξ is a Markov process a simplification occurs in Theorems 1 and 2. We have namely

Theorem 3. Assume that ξ is a Markov process. Then in Theorems 1 and 2 $\sup_{B \in \mathscr{K}_t^{\infty}}$ can be replaced by $\sup_{B \in \mathscr{K}_t}$.

Proof. We shall prove that

$$f(A) = \sup_{B \in \mathscr{K}_{t}} \left(P(A \cap B) - P(A) P(B) \right)$$
$$= \sup_{B \in \mathscr{K}_{t}} \left(P(A \cap B) - P(A) P(B) \right) = g(A)$$

for any $A \in \mathscr{K}_0^s$ with s < t.

Clearly, $f(A) \ge g(A)$. To prove the converse inequality let us notice that by the Markov property we can write

$$P(A \cap B) - P(A) P(B) = P(A) \left[\int_{\Omega} P(B|\mathscr{K}_{t})(\omega) P_{t,A}(d\omega) - \int_{\Omega} P(B|\mathscr{K}_{t})(\omega) P_{t}(d\omega) \right]$$
$$= P(A) \int_{\Omega} P(B|\mathscr{K}_{t})(\omega) (P_{t,A} - P_{t})(d\omega),$$

for any $A \in \mathscr{K}_0^s$ such that $P(A) \neq 0$, and any $B \in \mathscr{K}_t^\infty$, t > s, where P_t is the restriction of P at \mathscr{K}_t (i.e. $P_t(E) = P(E)$ for any $E \in \mathscr{K}_t$) and $P_{t,A}(.) = P_t(.|A)$. The inequality $f(A) \leq g(A)$ is an immediate consequence of the above equation on account of the following

Lemma. Let $(\Omega, \mathcal{L}, \lambda)$ be a measure space and assume that the signed measure λ is finite and σ -additive and such that $\lambda(\Omega)=0$. If h is any bounded real valued and \mathcal{L} -measurable function defined on Ω , then

$$\int_{\Omega} h(\omega) \,\lambda(d\omega) \leq (\operatorname{ess sup} h - \operatorname{ess inf} h) \sup_{L \in \mathscr{L}} \lambda(L).$$

The proof of this Lemma can be found in [5], p. 40, q.e.d.

3.2. Theorem 3 allows us to give a necessary and sufficient condition for δ -trivialness of the tail σ -algebra of a Markov process in terms of its transition probabilities. For the sake of simplicity assume that the state space X is at most a countable set with elements i, j, \ldots Put $p_i(t) = P(\xi(t)=i), i \in X$, and

$$X(t) = \{i: p_i(t) > 0\}, \quad t \in \Theta.$$

Denote by $p_{ij}(s, s+u)$, $i, j \in X$, $s, u \in \Theta$ the transition probabilities of the process, that is

$$p_{ij}(s, s+u) = P(\xi(s+u)=j | \xi(s)=i).$$

On account of the well known fact that

$$\sup_{E \subset X} \sum_{i \in E} (u_i - v_i) = \frac{1}{2} \sum_{i \in X} |u_i - v_i|$$

for any two probability distributions $(u_i)_{i \in X}$ and $(v_i)_{i \in X}$ on X, Theorems 1, 2 and 3 yield

Theorem 4. Assume that ξ is a Markov process with at most a countable set of states. Then

1. A necessary and sufficient condition for its tail σ -algebra to be δ -trivial ($\delta \ge \frac{1}{2}$) is that

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_j(s+u)| \le 2\delta$$
⁽²⁾

for any $s \in \Theta$ and $i \in X(s)$.

2. A necessary and sufficient condition for its tail σ -algebra to be trivial is that

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_j(s+u)| = 0$$
(3)

for any $s \in \Theta$ and $i \in X(s)$.

(For any fixed $s \in \Theta$ and $i \in X(s)$ the quantity under 'lim' is a nonincreasing function of u.)

Notice that (2) with $\delta < \frac{1}{2}$ must imply (3) (on account of Theorems 1, 2, and 3, too). I do not know a direct proof of this fact.

3.3. Until now the initial distribution of our Markov process, $p_i(0) = P(\xi(0)=i)$, $i \in X$, has been kept fixed. Theorem 4 allows us to characterize Markov processes for which the tail σ -algebra is trivial under any initial distribution (the transition probabilities remaining the same). To this end put $\overline{X}(0) = X$ and $\overline{X}(t) = \{j: p_{ij}(0, t) > 0 \text{ for some } i \in X\}$ for $t \neq 0$.

Theorem 5. Assume that ξ is a Markov process with at most a countable set of states. Then a necessary and sufficient condition for its tail σ -algebra to be trivial under any initial distribution is that

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_{kj}(s, s+u)| = 0$$
(4)

for any $s \in \Theta$ and $i, k \in \overline{X}(s)$.

Proof. Suppose first that the tail σ -algebra of ζ is trivial under any initial distribution. Taking as initial distribution that which assigns to each of the states *i* and *k* probability $\frac{1}{2}$, on account of (3) we obtain that

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(0, u) - p_{kj}(0, u)| = 0$$
(5)

for any $i, k \in X$. Further, for any $s \neq 0$ and $i \in \overline{X}(s)$ for which $p_{li}(0, s) > 0$, Eq. (3) implies that $\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_{lj}(0, s+u)| = 0.$ (6)

Conversely, suppose that (4) holds and consider any initial distribution. As

$$p_{ij}(s, s+u) - p_j(s+u) = \sum_{l \in \overline{X}(s)} p_l(s) [p_{ij}(s, s+u) - p_{lj}(s, s+u)]$$

for any $s \in \Theta$, $i, j \in X$, by dominated convergence and on account of (4) we have

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_j(s+u)|$$

$$\leq \sum_{l \in \overline{X}(s)} p_l(s) \lim_{u \to \infty} \sum_{j \in X} |p_{ij}(s, s+u) - p_{lj}(s, s+u)| = 0$$

for any $s \in \Theta$ and $i \in \overline{X}(s) \supset X(s)$.

But this means that (3) holds for the initial distribution we considered, q.e.d. As an application of Theorem 5 we shall prove

Theorem 6. Assume that ξ is a homogeneous continuous parameter Markov process with at most a countable set of states (i.e. $p_{ij}(s, s+u) = p_{ij}(u)$ for any $i, j \in X$, $s, u \in \Theta$) that form a recurrent class. Then the tail σ -algebra of ξ is trivial under any initial distribution.

Proof. By Theorem 5 it is sufficient to prove that

$$\lim_{u \to \infty} \sum_{j \in X} |p_{ij}(u) - p_{kj}(u)| = 0$$
(6)

for any $i, k \in X$. But this is an immediate consequence of a theorem by Orey [7] establishing (6) for irreducible, recurrent, aperiodic, discrete parameter Markov chains, so that $\sum_{j \in X} |p_{ij}(nh) - p_{kj}(nh)| \to 0$ as $n \to \infty$ (through integral values) for any h > 0, and of the fact that the quantity under 'lim' in (6) is a nonincreasing function of u, q.e.d.

3.4. We close the study of the Markovian case with a remark about strongly mixing Markov processes.

An arbitrary stochastic process ξ is said to be strongly mixing if

$$\alpha(\tau) = \sup_{s \in \Theta} \sup_{A \in \mathscr{K}^{S}_{o}, B \in \mathscr{K}^{S}_{o}} \left(P(A \cap B) - P(A) P(B) \right)$$

tends to zero as $\tau \to \infty$. On account of Theorem 1, the strong mixing property implies the trivialness of the tail σ -algebra. The theorem below exhibits a case for which the converse implication is also true.

M. Iosifescu:

Theorem 7.² Assume that ξ is a stationary homogeneous Markov process with at most a countable set of states (i.e. $p_i(s) = \pi_i, p_{ij}(s, s+u) = p_{ij}(u)$ for any $i, j \in X$, $s, u \in \Theta$). Then the strong mixing property is equivalent to the trivialness of the tail σ -algebra. Moreover,

$$\alpha(\tau) \leq \frac{1}{2} \sum_{i \in X} \pi_i \sum_{j \in X} |p_{ij}(\tau) - \pi_j|.$$

Proof. For any $A \in \mathscr{K}_0^s$, $B \in \mathscr{K}_{s+\tau}$ we have

$$P(A \cap B) - P(A) P(B) \leq \sum_{i \in X} \pi_i \left| \sum_{j \in B} (p_{ij}(\tau) - \pi_j) \right|$$

and the proof follows on account of Theorems 3 and 4, q.e.d.

The above theorem (together with Theorem 6) extends a result by Davydov [4].

4. An Application to Finite State Markov Processes

By making use of Theorem 1 we shall now deduce a result first proved by Cohn [3] for the discrete parameter case.

Theorem 8. Assume that $\xi = (\xi_t)_{t \in \Theta}$ is a finite state Markov process. Then its tail σ -algebra is δ -trivial for some $0 \leq \delta < 1$.

Proof. Let $E_i(t) = \{\xi_i = i\}$ and put as above $p_i(t) = P(E_i(t))$, $i \in X$, and $X(t) = \{i: p_i(t) > 0\}$.

We shall prove that there is an increasing sequence $(t_n)_{n \in \mathbb{N}} \subset \Theta$ with $\lim_{n \to \infty} t_n = \infty$ and there are two disjoint sets Y and Z, $Y \neq \emptyset$, $Y \cup Z = X$ such that

$$\liminf_{n\to\infty}\inf_{i\in X(t_n)\cap Y}p_i(t_n)=\gamma>0$$

and $\lim_{n\to\infty} \sum_{i\in\mathbb{Z}} p_i(t_n) = 0.^3$

Admitting that this is true, let us show that δ -trivialness follows with $\delta = 1 - \gamma$. For given $0 < \varepsilon < \gamma$ and $A \in \bigcup_{t \in \Theta} \mathscr{H}_0^t$ choose an *n* large enough in order that $A \in \mathscr{H}_0^{t_n}$, $\sum_{i \in \mathbb{Z}} p_i(t_n) \leq \varepsilon$, and $\min_{i \in X(t_n) \cap Y} p_i(t_n) \geq \gamma - \varepsilon$. Notice that our Proposition implies that whatever $B \in \mathscr{H}$ we have

$$P(B) \ge (\gamma - \varepsilon) P(B|\mathscr{K}_{t_n})(\omega)$$
(7)

for almost all ω not belonging to the event $E'(t_n) = \bigcup_{i \in \mathbb{Z}} E_i(t_n)$, the probability of which is $\leq \varepsilon$. By the Markov property

$$P(A \cap B) - P(A) P(B) = \int_{A \cap E'(t_n)} + \int_{A \cap (E'(t_n))^c} \left(P(B \mid \mathscr{K}_{t_n})(\omega) - P(B) \right) P(d\omega)$$

for any $B \in \mathscr{K}_s^{\infty}$ with $s > t_n$. The first integral above is dominated by ε and the second one, because of the estimate (7) for P(B), is dominated by $(1 - \gamma + \varepsilon) P(A)$, so that

$$P(A \cap B) - P(A) P(B) \leq \varepsilon + (1 - \gamma + \varepsilon) P(A)$$

² Compare with Lemma 2 in [8] p. 207.

³ This is one of the main points in Cohn's proof, too.

for any $0 < \varepsilon < \gamma$ and any $A \in \bigcup_{t \in \Theta} \mathscr{K}_0^t$ provided that $B \in \mathscr{K}_s^\infty$ with $s > t_n$, where t_n depends upon both A and ε . But δ -trivialness then follows at once from Theorem 1, with $\delta = 1 - \gamma$, because of the lim which occurs in the sufficient condition given there.

Coming back to the proof of the above statement in italics, let

$$\alpha = \liminf_{t\to\infty} \min_{i\in X(t)} p_i(t).$$

If $\alpha > 0$, clearly, we can take Y = X, $Z = \emptyset$, $\gamma = \alpha$ and as $(t_n)_{n \in N}$ any sequence through which the above 'lim inf' is reached. If $\alpha = 0$, let $(a_n)_{n \in N} \subset \Theta$ be a sequence such that

$$\lim_{n\to\infty} \min_{i\in X(a_n)} p_i(a_n) = 0$$

and let i_n be a state such that

$$\min_{i\in X(a_n)}p_i(a_n)=p_{i_n}(a_n), \quad n\in N.$$

In the sequence $(i_n)_{n \in N}$ at least one state, say 1, appears infinitely often. Therefore, for a subsequence $(b_n)_{n \in N} \subset (a_n)_{n \in N}$ we have $\lim_{n \to \infty} p_1(b_n) = 0$, so that state 1 will be the first element of Z. Next let

$$\beta = \liminf_{n \to \infty} \min_{i \in X(b_n) - \{1\}} p_i(b_n).$$

If $\beta > 0$, we take $Y = X - \{1\}$, $Z = \{1\}$, $\gamma = \beta$, and $t_n = b_n$, $n \in N$. If $\beta = 0$, we repeat the above procedure to include a new state, say 2, in Z, that is, we find a subsequence $(c_n)_{n \in N} \subset (b_n)_{n \in N}$ such that $\lim_{n \to \infty} p_2(c_n) = 0$. We must stop before including all the states in Z as $\sum_{i \in X} p_i(t) = 1$ for all $t \in \Theta$, q.e.d.

Corollary. Let ξ be a finite state Markov process. Then, either

$$\lim_{u \to 0} \sum_{j \in X} |p_{ij}(s, s+u) - p_j(s+u)| = 0$$

for any $s \in \Theta$ and $i \in X(s)$, or

$$1 \leq \sup_{s \in \Theta} \sup_{i \in X(s)} \lim_{u \to 0} \sum_{j \in X} |p_{ij}(s, s+u) - p_j(s+u)| < 2.$$

Proof. Combine Theorems 4 and 8, q.e.d.

Acknowledgement. The author wishes to express his gratitude to Professor D.G. Kendall and to Dr. David Williams for their useful comments on this paper

References

- 1. Bártfai, P., Révész, P.: On a zero-one law. Z. Wahrscheinlichkeitstheorie verw. Gebiete 7, 43-47 (1967).
- 2. Blackwell, D., Freedman, D.: The tail σ -field of a Markov chain and a theorem of Orey. Ann. Math. Statistics **35**, 1291-1295 (1964).
- Cohn, H.: On the tail σ-algebra of the finite nonhomogeneous Markov chains. Ann. Math. Statistics 41, 2175-2176 (1970).
- 12 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24

- 4. Davydov, Ju. A.: The strong mixing property for Markov chains with a countable number of states. Soviet. Math., Doklady 10, 825-827 (1969).
- 5. Iosifescu, M., Theodorescu, R.: Random processes and learning. Berlin-Heidelberg-New York: Springer 1969.
- 6. Loève, M.: Probability theory. 3d ed. Princeton: Van Nostrand 1963.
- 7. Orey, S.: An ergodic theorem for Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 1, 174-176 (1962).
- 8. Rosenblatt, M.: Markov processes. Structure and asymptotic behaviour. Berlin-Heidelberg-New York: Springer 1971.

Prof. Dr. M. Iosifescu Centre of Mathematical Statistics of the Academy of the Socialist Republic of Romania Calea Griviței 21 Bucharest 12, Romania

(Received March 20, 1972)

166