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On Strassen’s Version of the Loglog Law
for Some Classes of Dependent Random Variables*

Marius Josifescu

1. Preliminaries

Let (2, #, P) be a probability space and for any two c-algebras J¢; and %,
contained in " define their dependence coefficient by (cf. [6], p. 1)

¢(H), Hy)=sup (ess sup [P (B|#;) ()~ P (B))).

Consider a strictly stationary sequence (£,),,, of real valued random variables
on Q and assume that E¢, =0, E|¢,[**°< o0 for some §>0. For any AcN*=
{1,2,...} denote by %, the o-algebra generated by the family (£,: ne A) and put

It will be assumed that

Y ¢F(n)<oo.

neN*

It is known that under the conditions assumed, if we set

o?=E&}+2Y E& &,

neN*

we have 0< 6% <o and E ( Yy, fj) =n(o*+ p,) with p,=o0(1) as n—co.
j=1

Such strictly stationary sequences have been first studied in [3] where, among
other results, it has been proved that the central limit theorem holds for suitably
normed consecutive partial sums. It has been shown in [4] and [5] that these
sequences obey the loglog law, namely, if 6 >0, then

PR,
P(limsup~—L-—— 1):1.

nso o)/ 2nloglogn B

The same result has been later given in [7].

This paper shows that Strassen’s version of the loglog law (cf. [8], Theorem 3)
is still valid for strictly stationary sequences satisfying the above conditions.
Moreover, it will be shown (§ 3) that some non-stationary sequences obey Strassen’s
theorem too.

* This paper was written while the author was an Overseas Fellow of Churchill College, Cambridge,
Great Britain.
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The proof of the main result is an adaptation of the proof Chover [1] has
given to Strassen’s theorem using the tools developed in [4] and {5].

2. The Main Result

Let C denote the Banach space of all continuous real valued functions defined
on [0, 1] endowed with the usual supremum norm. Let K be the set of absolutely

1
continuous he C such that h(0)=0and | [#'(z)]*d¢< 1. Here i’ denotes the deriva-
o

tive of h determined almost everywhere with respect to Lebesgue measure.
Assume that ¢>0 and for each fixed weQ and n=3 define the function
fu(,@)in Cby

1£k<n,

0,w)=0 (k = jgk'léj(w)
o0 )=

and linear over the subintervals k/n<t<(k+1)/n, 0Sk<n—1. Our main result
is the following extension of Strassen’s theorem.

Theorem 1. The sequence (f,(-, w)),,g3 considered as a subset of C is precompact
and its derived set coincides with K for almost every wef).

Proof. To prove the above theorem one has to follow Chover’s proof of the
corresponding theorem for independent, identically distributed random variables
making the following changes.

1. The maximal inequality (4) in [1], p. 84 is to be replaced by the maximal
inequality that can be deduced from Lemma7 in [5] just as the former was
obtained from Lemma (2) in [2], p. 192.

2. Esseen’s estimate of the rapidity of convergence to the normal distribution
is to be replaced by the estimate given in Theorem 1 of [4].

3. The arguments in Section 4 of [1] from line 10 of p. 88 on are now to be
based on the fact that for every fixed me N* the distribution function

m mil v+ i/mm 2
P (e %, (2 <9
ne’ 2, k={(v/m)n]+1 ,
is asymptotically (n —»0) ¥,(a)+0(n~?) uniformly in 20, where ¥, is the
distribution function of ¥*(m, 1) and ¢{8)>0 is a constant depending on é. To

prove this one has to immitate the computations in [4], pp. 307-309 after having
written

[((v+ 1)/m) n)
ék =u,+v,,
. k=[(v/m)nl+ 1
with
v+ 1)/m)n]—s [((v+ 1)/m) n]
u,= Z 51( ’ v, = ék >
k=[(v/m)nl+1 k={{(v+1/m)nl—s+1

0<v<m—1, where s=[(n/m)’], 0< p <1 suitably chosen.

4. The classical Borel-Cantelli lemma (for independent events) used in [1],
p- 90 is to be replaced by Lemma 5" in [4].
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3. An Extension

We shall indicate a class of non-stationary sequences of random variables to
which Theorem 1 still applies.

Let (W, #") and (X, &) be two measurable spaces, u(+; *) a #” x Z-measurable
mapping of W x X into W, P a transition probability function from (W, #") to
(X, Z)(i.e. P(w; -)isa probability on & for any we W and P(-; 4) is a #“measurable
function for any 4 € &). These are the elements constituting a homogeneous random
system with complete connection (for details see [6], Ch. 2).

Denote by (X", &") the n-fold product of the measurable space (X, %) and
setu(+; xMy=u(+;x,)o---ou(+; x,) for x=(x,, ..., x,)e X", ne N*, where o denotes
composition of mappings.

For any we W, consider the probability space (2, ., P,), the elements of which
are defined as follows:! Q=X 4 =™,

P (prg) A)=P(w; A), AeZ,
P, (praly Ay x - xA,):Aj P(w;dxl)Aj~ P(u(w;x,);dx,) ... | Plu(w;x"1);dx)
1 2 Aq

for[z2and 4,,..., 4,e%. Define on Q the sequence of random variables (17,), . y«
with values in X given by #,(w)=x, if w=(x,),. 5. Then we have
P, e4)=P(w; 4),
P, (1,1 (@)eAln;, 1Sj<n)=P(u(w; n™); 4)
for all neN*, Ae %, where ™ =(n,, ... n,).
We shall say that uniform ergodicity holds if for each le N* there exists a
probability B on %" such that

}Hg Pw(pr(;,ln +1-1) A(l)) = Ploo (A(l))

uniformly with respect 1o we W, leN*, A®eZ". Set
&, =sup|P (pry, ), ., 1, A?)—B°(4P)|, neN*,

the sup being taken over all we W, le N*, A%e & For conditions ensuring uniform
ergodicity and for estimates of the ¢, see [6], pp. 81-85.

When uniform ergodicity holds there exists a probability P, on # such that
the sequence (1,),.n+ is a strictly stationary one on (@, %, P,). In particular,
P (pri 1y AY)=B>(4%) for any |, neN* AYe®’. Further, ¢_(n)<e, for
all ne N*. Finally, if we consider the tail s-algebra

3- = ﬂ e%/‘n, o
ne N*

then P_(T)=P,(T) for all TeZ and weW (cf. [6], pp. 135-136).

Taking into account the fact that the event appearing in Theorem 1 lies in 7
we can state

! For AcN* the mapping pr, is the projection of X™ on X4 defined by pr, {(x, e} =(X)se- If
A=(m,m+1,...,n) we shall write pr,=pr,, ,.
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Theorem 2. Let f be an Z-measurable real valued function and set £, = foun,.
Assume that

i) E_ ¢, =0 and there exists a >0 such that E_|&,|*+° < o0;
i) ) ef<oo;
ne N*
iif) 0?=E,&+2 Y E_ &, ¢,, 0.
ne N*
Under these conditions the sequence (f,(*,®)),55 considered as a subset of C
is precompact and its derived set coincides with K both P - and P -almost surely

whatever we W.

Applications to the continued fraction expansion will be given elsewhere.
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