
Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 139- 153 (1972) 
�9 by Springer-Verlag 1972 

Deviations in the Skorohod-Strassen 
Approximation Scheme 

David G. Kostka 

1. Introduction 

Recent proofs of the law of the iterated logarithm rely on the Skorohod 
embedding into Brownian motion ~ (t) of the sum S, of n independent, identically 
distributed random variables Xi with mean zero and variance one (see [3, pp. 276 to 
278] and (4) in the Appendix). By this embedding S. has the same distribution as 

~ ( ~ T ~ )  where the sequence { T~}i>= 1 are independent' n~ identically i= 

distributed with mean one. Using the strong law of large numbers on ~ T~ it is 
shown (see [3, pp. 291-292]) that i= 

r~ - ~ (n) 
(1.1) P[(~:  lim i_ = 0 ] = 1  

,~ o~ t /n  lg lg n 
where lg n = loge n. 

More recent work has involved the situation where the Xi have moments 
higher than the second and thus the T~ have moments higher than the first. For 
this case better convergence rates than given by the strong law of large numbers 

n 

may be used (see [2]). In this section assuming lira =~(T/-1) =O(c,) a.s. for a 
n ~ c ( ,  t 

sequence of positive numbers {G}, it is shown that 

52T~ - r  
(1.2) P [e): lim- (c, lg n)_ ~ <oo] =1.  

This is an upper class result for the lim. 

Kiefer I-9] has considered a more specialized case. Assuming E (T~-- 1) z = fl < oo 
he shows that 

((2fl n lg lg n)~ lg n) ~ 

Notice that he finds the exact constant for the lim. His proof relies on the law of 
the iterated logarithm applied to the sequence { Ti}, Namely, 

(T~-- 1) 
(1.4) P[co:  lim i=a - 1 ] = 1 .  

, ~  ] , /2f lnlglgn 
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(1.5) 

and 

In this section Kiefer's result is generalized. Essentially it is shown that if 
there exists a sequence of numbers {c,},>__ ~, where c, is regularly varying with 
exponent �89 Cn/n&T as n--*o% and 

tl 

(T~- 1) 
P[co: lim ~=~ = 1 ] = 1  

n ~  oo C n  

(1.6) 

then 

(1.7) 

" 1) ~ ( r ~ -  
P[co: 1-~ i - 1 ] = 1  

n ~  Go C n 

Ti - ~ (n) [ -  J P co: lim i_ ~ =1 =1 .  
.-~ ~ (c. tg n) ~ 

This is both an upper and lower class result for the lim. The method of proof 
follows that employed by Kiefer but is substantially simpler. 

This section concludes with a specific example of a sequence of random 
variables {T/} such that E(Ti -1)  2= oo and a sequence of numbers {c,} such that 
(1.5) and (1.6) and thus Eq. (1.7) are satisfied. The example is interesting since 
the usual law of the iterated logarithm does not apply (see [14]) to this sequence 
of variables. 

2. Proof of Eq. (1.2) 

Let {X,},_>_I be independent random variables with the same distribution; 
make the normalizations E(X,)=0,  E(X,2)=I; let S,=XI+.. .+X,; and let 

~ (~T/)i= be the Skorohod representation of S. where ~ (t) is standard Brownian 

motion (see (4) in the Appendix). We can prove an easy upper class result about 
the fluctuations in the Skorohod embedding versus the Brownian motion. 

" 1) ~1(T,- 
(2.1) Theorem. Suppose lim ~ < K with probability one for some K >0 

n ~  0(3 C n  

where {G} is a sequence of positive numbers, then 

- ~ (n) [ -  ] P co: lira i_ <oe =1 
n ~  o(3 where lg n = log e n. (c, lg n) 5 

Proof For 0 > 0 let 

A.={co: ~ (i~=lT~) -~(n)>O(c,,lg n)~}~{co: i~=lT~-n < 2K cn}. 

It is sufficient to show that with probability one only finitely many A. occur. 

(2.2) A.={co: sup ~(t)-~(n)>O(enlgn)-~}=--A'.. 
. .  . I t _ n l < 2 K c n  
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In the following C stands for various positive constants. By Lemma (3) in the 
Appendix 

P(A',)<4P(~(n+ZK c,)-  ~(n)> O(c, lg n) ~-) 

(~ (n+2Kc , l -~ (n )  O(c, lgn) -~ ] = > 
4P l/~2~c" ~ ] 

=4P@(1)>  2 ~ K  (lgn) Q 

<= C e -~ by Gaussian tail estimates 

C n -02/4K. 

Thus, ~ P(A,)< ~ P(A'~) 
n=l n~l 

< C ~ n -~ 
n = l  

<oo 

if OZ/4K> 1. By Borel-Cantelli only finitely many A, occur a.s. This completes 
the proof. 

(2.3) Proposition. Let {c,},~ 1 be a sequence of positive numbers, then 

P [o): limm( sup ~(t)--~!n).] ] 
,~\lt-,l=<c. (c~lgn) ~ / < ~ 1 7 6  =1. 

Proof Same as for Theorem (2.1). 

The proofs of Theorem (2.1) and Proposition (2.3) do not require the usual 
and more difficult method (see [-2]) of looking at the events in (2.2) along a sub- 
sequence. (However, the method will not yield Eq. (1.1).) That we do have the 
right order of magnitude for the lira is indicated by later equations of the form (1.7) 
and by the next proposition. 

(2.4) Proposition. Let {c.}._>_1 be a sequence of real numbers where c.'foo as n~oo 
and c. N n I - ~ for some 6 > O, then 

"~~176 \lt-.l~c. (c. lg n) ~ -1 .  

Proof Set e > 0 and let 
(2.5) nk+~ = n~ + [ % ] .  

P(~(nk+l)-- ~(nk)> e (C,~ lg nk) 6) 
(2.6) k= 1 

= ~ P(r n~) ~) 
k = l  

(2.7) 

by Gaussian tail estimates. 

ct? __>~ 1 
k = l  n(~ 2/2+~ 
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Now note that 

.k.l 1 1 
E Cnn[eX/2+o(1)] ~-~(nk+X--nk) Cnkn[e2/2+o(1)] 

nmn k 
(2.8) 

e.~ 1 
= Cn k n[ke2/2 +o(1)] = n[ke2]2 +.(1)1" 

Using this in line (2.7) gives 

~, P ( 4 (nk +1)-- ~ (nk) > e (C.k lg nk) ~) 
k=l  

oo o~ .~+~ 1 > ~  1 
(2.9) >-_ ~ ~, c.n[~2/2+o(1)] c, nt~2/2+o(1)] 

k=l  n=nk n=l 

1 •2 
>= ~ nii_,S)n[~2/2+oO)] =o9 when ~-<~.  

n=l  

Thus, since the events in (2.9) are independent, the Borel-Cantelli lemma gives 
~(nk+x)--~(nk)>e(c,~lgnk) ~ infinitely often almost surely which yields the re- 
quired result. 

The following theorem due to Feller [6] is useful for finding sequences {c.} 
in Theorem (2.1) in terms of moment conditions on the random variables {X,}. 

(2.10) Theorem (Feller). Let {Xn}n>=l be a sequence of independent, identically 
distributed random variables such that E (IX 1 I) < o% E (X1)= 0, and for some 0 < 6 < 1, 
E([X 111 +~)= oo. Let {c,} be a sequence of numbers for which there exists an e with 
O<e<l such that c,n-m+~T, c,/nJ,, and let S ,=XI + . . .+X , ,  then [S,[>c, in- 
finitely often a.s. if and only if IX, I > c, infinitely often a.s. 

In the following there are two applications of Theorem (2.1). 

(2.11) Example. Assume E(Xi)=0, E(X2)=I,  g(IXda)<oo, and E(lXda+o).--oo 

f~ any ~ >0" Then bY the Sk~176176 embedding ~ ( ~  Ti ) i= has the same distri- 

bution as S , = X I + . . . + X , ,  E(T/)=I, and E(Ti~)<~. Assume E(T/~+~)=oo for 
any 6 >0. By Feller's theorem (2.10) and Lemma (1) in the Appendix 

Thus by Theorem (2.1) 

I~1 =O(n}) Z / - - n  a . s .  
i= 

Ti - ~ (n) = 0 (n ~ lg n) ~ a.s. 
i -  

(2.12) Example. AssumeE(Xi)=O,E(X~)=l, andE(X~)<oe. Then~ Ti has 
i= 

the same distribution as S,, E(Ti)-- 1, and E(Ti2)<oe. By the law of the iterated 
logarithm 
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Thus by Theorem (2.1) 

Ti -~ (n )=O[ lgn (n lg lgn )~]  ~ a.s. 
i -  

Except for showing the exact constant, this is the upper class result of Kicfcr [9]. 

3. Proof of Eq. (1.7) 
Under more specialized conditions on the sequence of random variables 

{Xi}i>=l it is possible to find the exact deviations of the lim and prove equations 
of the form (1.7). 

(3.1) Theorem. I f  {T/}i>=a are the random times of the Skorohod embedding and 
U. = T 1 +. . .  + T~ is such that there exists a sequence of real numbers {G} where c. 
is regularly varying with exponent �89 c,/n- ~, and 

(3.3) 

then 

( 3 . 2 )  l im--lU.-n[ __<K a.s., lim U.~--nk > 11--~-1= / e \  a.s. 
n ~  oe Cn k ~  oe Cnk  \ z ]  

Jot some K > O, -~  > 0 and subsequence {nk}k >__1 where ~ ni = 0 (n,), n k ~ 7 k for some 
7>2, and i=1 

lim U, - n  = 1 a.s. 
n ~  oo Cn 

P [co: l<lim ~(U.)-~(n) ] 
=,~  o~ (c, lg n) -~ 

=1.  

Note: In our examples condition (3.3) forces condition (3.2) to hold.) 

Proof We will show that 

(U,) - ~ (n) > (1 - t/) (c, lg n) ~ 

infinitely often a. s. for any q > 0. Let nr be a subsequence of the integers increasing 
as fast as 7 r, 2 < 7, so that 

occurs infinitely often a. s. for e > O. Let 

(3.5) 5 6 =  max IU. + i - U .  - i l < - ~ c . .  
" l<=i<=,3nr " r 

where 6 < 7. We will now show that there exists a 6 > 0 such that F~,6, the comple- 
ment of F,.~, occur only finitely often a.s. as r~oo. By the assumption on the 
sequence {Ti} 

m 

(3.6) ,=~I(T~- 1) =<2Kcm 
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for all but a finite number of m a.s. Thus if (3.6) holds for two values m = M and 
m = k > M, then 

~=~+ ( T ~ - I ) <  ~ _ ~ ( T ~ - I ) + I ~ ( T ~ - I ) [  

<2KCk+2Kcu.  
In particular 

(3.7) max [~, (T~- l )<4KCk~ 
n r < k < ( l  +~)nr i=nr  

r 

for all but a finite number of nr a.s. where kr = ~ 6 n~. But 
i = l  

r 

(3.8) kr= ~ 6ni < C 6(n~) 
i = 1  

where C, as usual, represents various positive constants. Since c, is regularly 
varying with exponent �89 

4K ck =4K(kr)�89 L(k,) 

where L is a slowly varying function (see [5, pp. 268-269]). Thus using 

(3.8) 
8 

4K % <  4K(C 6 n.) ~ L(C 6 nr)N C 6 c,, <-~ c.~ 

l 
for 6 = e/2 C. Thus only finitely many F~,~ occur a.s. Now the event 

(3.9) ( l - e )  % <  U . -  n<(1 +e) Cnr 

for all n such that nr-<_ n__< nr + 6 nr occurs for infinitely many r a.s. 

Let Jr = integral part of (6 nr/4 %) and for O -  i < Jr define 

n'r.i=n~+int(2icJ, n'/,i=nr+int((2i+l) c..) 

C'.i = {~ (fir'.i) - ~ (n'r.i) > (1 - q) (c.. lg n,) ~ } 

C'/,i = { sup I~ (n;'~ + x %) - ~ (n;',i) l < r/(c., lg nr) -~-} 
O<x__<3~ 

Q',= U c'r,,, Q','= 0 c';,,. 
O<=i<Jr O<=i<Jr 

Suppose (3.9) holds for n = fir.i, 0 < i < Jr, then 

~t n e nr, i -~  .r~n'r,i+(1-~) % 

Un~.<=n'r i+(1 + ~) c.r~n','i+ ~c. ~. 

This together with C',.i n C~'~ entails 

(v .~ , , ) -  ~ (n;. i) > (i  - 2 ~) (c.~ lg n.) ~ 
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which gives the desired result of the theorem. Thus it is sufficient to show that 

P(Q'/occurs i. o.) = 0 
and 

P(Q', occurs i.o.)=O 

which we do in that order. 

P( C'/, i) < C P { ~ (n'/, i + 3 e c J  - ~ (n'/, i) > r/(c.~ lg n~) ~ } 

< C P  {~(1)> t/(c"~ lg n:)-~ ~ 
= (3 c.y j 

C e-"21gnr/6e~-~ C 1 
nt/2/6e 

r 

Jr (~ nr 
P(QT) < ~ P(C'/,i) < C 

i= o 4 c.r  n~ z/6~ " 

~ p . . . . .  < Therefore, t~g,) oo for e sufficiently small and thus by Borel-Cantelli 
r = l  

P(Q" occurs i.o.)=0. Now, 

P(C',. i) = P(~ (1) > ( 1 ,  t/) (lg nr) +) 

2 - ~ ( l g  nr)(1 +o(1)) 1 (12r/)2 (1 +o(1)) 

e 

Jr 
lg P(Q')= ~ lg P(C;,~) 

i=0  

(1 2t/)2 ( 1 +0(1)) 
< 6nr l g [ i - n ,  ] 
---- 4cn~ 

6nr (1 ~_rt)z (1 + o(i)) (1 ~.rt) ;z (i +o(1)) 
< - C ~ c  " n, < - Chn~- 'n ,  

nr 

since the regular variation with exponent �89 of c, implies c. < n ~ +" for n > N(a). Thus 

P(Q-~) <oo since a is arbitrarily small and occur i.o.)= 0 by Borel-Cantelli. 
r = l  

This completes the proof. 
By a method more delicate than used in the proof of Theorem (2.1), we can 

find the exact upper class result. The method of proof follows that employed by 
Kiefer (but involves a change of his subsequence) and uses the following lemma 
which he proves. 

(3.10) Lemma. I f  ~ is standard Brownian motion and T, L, 6, c are positive values 
with T < L ,  then 

P[  sup [~(tl)-~(t2)[>c] 
O <--tl <t2~L; ltl--t2l <-- T 

<__ 8 ( L -  T + 6 ) ( T + 2 b )  ~- 
6c(2n)~ e x p [ - c 2 / 2 ( T +  26)]" 
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The upper class theorem is stated below. 

(r, 
(3.11) Theorem. Suppose lira ~ <_ 1 with probability one where c. = n �89 h (n) 

l,t ~ oO C n 

and h(n) is a non-decreasing slowly varying function, then 

P[r 1-~ ~=1 , a _ ~ ! _ < l / = l  
.-~ ~ (c. lg n) - ] 

where lg n = lOge n. 

Proof. For ~>0  let 

q .=(1 +e) c., d.=( l+e) (c . lgn)  ~ , 

For real numbers t and integers n and r let 

and 
M *  = ((t,  n): 

Define the events 

and 

nr = integral part of r 2. 

M.={t :  I t - n l < q , }  

I t - n l < q  . . . .  ; t, n e [ n , - q  . . . . .  nr+~+q . . . .  ]}. 

A. = { sup [~ ( t ) -  ~(n)l > d.} 
t e M ~  

A* = { sup I ~ ( t ) -  ~ (n) l > d.r}- 
(t, n) e M~* 

IfA, occurs for some n satisfying n, < n < nr+ ~ then A* occurs. Thus if ~ P(A*) < oo, 
r = l  

the Borel-Cantelli |emma will give the desired result that only finitely many A, 
occur almost surely. Using the fact that h(n) is a non-decreasing slowly varying 
function we have 

G/,~ r h ( r2)~ % + ~ 

G = ( 1  ~e) % ~ ( 1  ~e) r h(r2)"~qn~+~ 

d . ~ ( 1  We) (G21g  r)4"-~ (1 +e) (rh(r 2) 21g r) �89 

In the lemma above let 

L=nr+l-nr+2q.r+l ,  T=q.r+~, c=d.r , 6=r.  

This lemma yields the following where K represents various constants. 

P(A*)< 8 ( L -  T+  6) (T+26)  ~ exp [ -c2 /2(T+26)]  
= -  6c(2r0~ 

rh(r2)(rh(r2)) ~ [ - ( l~e)2(2c .~ lg  r) ] < K r(rh(r 2) lgr) �89 e x p [  +2r )  J = 2 ( 1 +  e) (c.,+1 

< K ,h(r~)x exp [ - ( 1  -t-e)(lg r)(1 d- o(1))] 
= (lg r) ~ 
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since the slow variation of h(n) implies h(n)<n ~ for n>N(~), a>0 .  Thus 

~ P ( A * ) < ~  and only finitely many A* occur almost surely. This completes 
r = l  

the proof. 

(3.12) Corollary. Under the assumptions of  the above theorem and Theorem (3.1) 

] .-~ ~ (c. lg n) ~ = 1 = 1. 

Proof This is a combination of the above theorem and Theorem (3.1). 

In the following there are two examples of Corollary (3.12). 

(3.13) Example. Assume E ( X i ) = O  , E(XiZ)=l, and E(X4)<m.  Then ~ Ti 
i 

has the same distribution as S. = X1 + ' . - +  X,, E(T~)= 1, and E(T/-1)2=/3 < m. 
By the law of the iterated logarithm 

and 

~ T ~ - n  
lim i= l 
,-, ~ (2/3 n lg lg n) ~ 

_ 

lim i 
,~ o~ (2 fln lg lg n) + 

= 1 a.s. 

= 1 a.s. 

By the Skorohod embedding (see (4) in the Appendix), r z~ has the 
i= n > l  n 

same distribution as [ l /~  .>_1 

1 ~  i = 0 / =  1 
, ~  V~lg lg  n 1 

(see [-3, pp. 291--292]). It is also known (see [10, pp. 41-49]) that 

lim ~(nk) > ( 1 , 4 )  a.s. 
k~o~, ] /2n k lg lg n k 

where n k "~ yk and ~ is large. Thus 

nk 

E T,-n  
hm - - -  1 > 1 -  
k~ ~, (2 fln k lg lg rig) ~ = 

a.s.  
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Since n , ~ ?  k where ? is large, the second part of condition (3.2) is satisfied. Thus 
by Corollary (3.12) 

~ - ~ (n) 
P[(o: lim i=1 : = 1 ] = 1 .  

This is Kiefer's result [9]. 

(3.14) Example. Assume the {Ti} in the Skorohod embedding satisfy 

and 

~ T ~ - n  
i = 1  

lim (2Kn(lg lg n)2) ~ n---~ oo 
=1 a.s. 

n 

lira (2Kn(lg lg n)Z) ~ n---~ oo 
= 1  a.s. 

and condition (3.2). 
(Proposition (8) in the Appendix gives a proof of the existence of such non- 

negative i.i.d, random variables with infinite variance and their common distribu- 
tion is explicitly shown.) The above sequence { T~} satisfies the conditions of Corol- 
lary (3.12) and thus 

~ -~(n) 
[ ' =1]=1.  P ~: l im (2Kn(lgnlglgn)Z) ~ 

Appendix 
(1) Lemma. Let X be a random variable. Then E([XI)<c~ if and only if 

(2) ~ P(Ixl > n) < ~ .  
n = l  

Proof Do an integration by parts on E (IX[) and then approximate the integral 
with a series. 

(3) Lemma. I f  ~ is standard Brownian motion and T and b are positive values then 

P( sup ~(t)>b)=2P(~(T)>b). 
O<=t<T 

Proof See [-5, pp. 171-172]. 

(4) Skorobod Embedding. Let {X,}.>=I be independent random variables with 
the same distribution; make the normalizations E(X.)=0, E(X.Z)=I; and let 
S , = X , + . . . + X . ;  then the following theorem due to Skorohod holds (see [-3, 
pp. 276-278] and [2]). There exists a probability space ((2, ~,  P) with a Brownian 
motion ~(t) (normalized so that E[~(t)]=0 and E[~2(t)]=t) and a sequence 
of non-negative, independent, identically distributed random variables {T~}~>I 
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(5) 

(6) 

(7) 

(8) 
(non-negative) distribution 

defined on it such that the following conditions hold: 

i) ~ ~ T i  has the same distribution as {S.}.>_l. 
i -  n > l  

ii) E(T~)=E(X2)= 1. 

iii) / fE( lS ,  lk)<~ then E(Tk/2)<oo, 2<k. 

Proposition. Let {T,},_> 1 be independent random variables with the common 

where lg x = log e x. Then 

Kdx  
F(dx)= x31gx , x > 2  

= 0 ,  x < 2  

and 

n 
X 

lim i= 1 
n~ co C n 

- 1 a . s .  

" (T,))I __~1 ( T / - E  
lim i - 1 a.s. 
n~ 0o Cn 

where c. = [2Kn(lg  lg n)2] ~. 

Our proof makes use of the following result of Heyde [8]: Let {X.}.=> 1 be a 
sequence of independent random variables, {a.}.___l a non-decreasing sequence 
of positive numbers, a. ---, 0o; let V. = X. if IX.] < a.,  while V. = 0 if IX.I > a.. If 

then 

[ 
~ E  2 2 

.=1 ~X. +a.]  < ~  

1 ~ [ X k _ E ( ~ ) ] ~  0 
a n k = l  

as n ~ ~ with probability one. 

This allows us to reduce the problem to the law of the iterated logarithm for 
random variables which are bounded but whose distribution depends upon n. 
Then following Har tman and Wintner, we can use Kolmogorov's la w of the iterated 
logarithm for bounded random variables to produce the required result. 

Proof. Let Y. = T. if T. < ~ (n) l / n  

= 0 otherwise, 

where lim e(n)=0;  and let Z . =  T . -Y . .  We will exhibit a sequence {e.} such that 
n~ 0o 

lim Y I + ' " + Y " - E ( Y I + " ' + Y " ) - 1  a.s. 
and .-. o~ c. 

lim IY I+ ' "+  Y ~ - E ( Y ' + ' " +  Y~)t ---1 a.s. 
n~  oo Cn 

l la  Z. Wahrscheinlichkeitstheorie verw, Oeb., Bd. 24 
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while 

N o w ,  

lim IZt +''" + Z . - E ( Z ~  + ... +Z.)]  = 0  a.s. 
n ~  ~ C?I 

a.)r Kdx  
E (Y~Z) = ~ =K( lg  lg x)l a")V~ 

2 x l g x  

K [lg (lg e (n) + lg l/n)] ~ K lg lg n 

for e(n) decreasing slowly enough. 

var (Y.) = E (Y2) _ [E (Y,)] 2 ~ K lg lg n. 

Define B , =  ~var(Yi), then B,,,,~Knlglgn by the asymptotic properties of 
i = 1  

regularly varying functions (see [1, pp. 272-273]). 

lg lg B. ! / lg lg (K n lg lg n) ~ (K n) ~. 

Since t~1 =o [ B. ~+ \ lg lg B, ] as n ~ ,  Kolmogorov's law of the iterated logarithm 

(see I-7, pp. 169-176]) gives 

lira u 1 6 5  a.s. 
.~ ~ (2B~ lg lg B.) �89 

and 

or  

(9) 

and 

(lO) 

lim [YI + ' " +  Y"-E(Yt + " ' +  Y")[ 
.~ ~ (2 B. lg lg B.) ~ 

= 1  a.s. 

lim Y a + ' " + Y " - E ( Y I + " ' + Y " ) - I  a.s. 
. -  ~ (2K n(lg lg n)2) ~ 

lim IYx + ' " +  Y"-E(Yt + " ' +  Y")[ - 1  a.s. 
(2Kn(lg lg n)2) ~ 

Now, define V, = Z .  < (2 K n (lg lg n)Z) ~ 

= 0 otherwise 

and let W . = Z . -  V.. Now if 

x 2 

2 S G.(dx/< 

where c 2 = 2Kn(lg lg n) 2 and G. is the distribution function of Z.  then by Heyde 
(see [3, pp. 353-358]) 

(11) IZI+...+Z~-E(V~+...+V~)I=o(c~) a.s. 
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Thus  to prove (11) it is sufficient to show that  

,=lx>_,(,)v~ x2+n( lg lgn)  2 xalg x d x < ~  

which we proceed to do. In the following, C stands for various constants.  

~ x z + n(-lg lg n) 2 1. dx 

~ l g l g n  1 dx 
= S x (x 2 + n (lg lg n) 2) lg x 

n = 1 x = e (n )  V ~  

1 
+ ~', T x(xE+n(lglgn)2)lg x dx 

n = l  x---. Vnlg lg n 

0o v~lglg, 1 dx 
< Z ~ x n (lg lg n) 2 Ig x n = 1 x = e(.) V'~ 

o~ 1 dx 
+.Y'~= ~=V~l~l,, x~ lg x 

o0 1 

< .=IZ n (lg lg n) z[lg lg (]fn Ig lg n) - lg lg (e (n) v/n)] 

+ ,=1 n (lg lg n) z lg n 

<C+~ 1 [ (lg]//n+lglglgn'~] 
= , : ,  n ( lg lgn)  2 lg lg(s(n)lfn) -11 

1. [1 lg l f n -  lg(s(n) I /n)  + lg lg lg n ] 

.~ - - <o0 <=C+C =l n(Igig n) 2 lgn  

if s(n) decrease slowly enough.  For  instance it suffices that  e(n)> 1/lg lg n. Thus  

(12) tZ 1 +. . .  + Z , -  E(V1 +. . .  + V,)I= 0 In (lg tg n)2] -~. 

N o w  we will show that  

E(wl +... + w,)=o(c,). 

K x  
E ( W,) g 

J ~ x 3 lg x 
x >= (2 Kn(Ig lg n)2) ~ 

C 
n ~ lg lg n lg n 

"Z 
E ( W I + " . + W , ) < C ~  < C n  �89 

i = 1  I z  

l l b  Z. Wahrschemlichkeitstheofie verw. Geb. Bd. 24 

- - d x  

a s  tq ---~ 0 0 .  
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Thus 

(13) 

N o w ,  

(14) 

E(W1 +."  + W.)=o(n(lg lg n)Z) ~. 

~I n Pl II 

Z L E Z E(w,). 
i = 1  i = 1  i = 1  i = 1  

Combining (9), (12) and (13) in Eq. (14) gives the desired result that 
n 

i=1  = 1  a.s .  
lim (2Kn(lg lg n)2) ~ n-- .  oo 

Combining (t0), (12) and (13) in Eq. (14) gives the desired result that 

T,-~(~) 
lim i 
.-,~ (2Kn(lg lg n)2) k = 1 a.s. 

Now, by Kolmogorov's lower class proof of the law of the iterated logarithm 
(see [15, pp. 260-263]), if B~.U.~y k where y is large then 

lira Yl + ' " +  Y.~-E(Y1 + . - ' +  Y.~)> (1 r--~-) --_ a.s. 
k ~  c~ Cnk 

For our case nk is chosen so that nk"~2 k/K lg k. Then the second part of condi- 
tion (3.2) is satisfied and 

I1 k 

E 
a.s. 

k ~ ~3 Cnk \ 2 1  

This completes the proof. 
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