Markov Additive Processes. I*

Erhan Çinlar

1. Introduction

Our notation and terminology follows Blumenthal and Getoor [1]. When referring to it we write, for example, BG II.7.4 to mean expression (or theorem or statement) (7.4) in chapter II of [1]. We recall some of the basic particulars as follows. If (F, \mathscr{F}) and (G, \mathscr{G}) are measurable spaces and a function $f: F \rightarrow G$ is measurable relative to \mathscr{F} and \mathscr{G} then we write $f \in \mathscr{F} / \mathscr{G}$; if $G=\overline{\mathbb{R}}, \mathscr{G}=\overline{\mathscr{R}}$ then we abbreviate this and write $f \in \mathscr{F}$; if $f \in \mathscr{F}$ is also bounded then we write $f \in b \mathscr{F}$. By $\sigma(\cdot)$ is meant the σ-algebra generated by (\cdot). Let (F, \mathscr{F}) and (G, \mathscr{G}) be two measurable spaces. A mapping $N: F \times \mathscr{G} \rightarrow[0,1]$ is called a transition probability from (F, \mathscr{F}) into (G, \mathscr{G}) if a) $A \rightarrow N(x, A)$ is a measure on \mathscr{G} for fixed $x \in F$, and b) $x \rightarrow N(x, A)$ is in $b \mathscr{F}$ for any fixed $A \in \mathscr{G}$. If N is a transition probability from (F, \mathscr{F}) into itself and $f \in b \mathscr{F}$, then we write

$$
\begin{equation*}
N f(x)=N(x, f)=\int N(x, d y) f(y), \quad x \in F . \tag{1.1}
\end{equation*}
$$

Then, $N f \in b \mathscr{F}$ and $f \rightarrow N f$ is a positive linear contraction on the Banach space (F, \mathscr{F}) with the supremum norm.

Let (E, \mathscr{E}) be a measurable space, T a subset of $[0,+\infty]$ containing the origin. Let Ω be an arbitrary set, \mathscr{M} a σ-algebra of subsets of $\Omega,\left\{\mathscr{M}_{t} ; t \in T\right\}$ an increasing family of sub- σ-algebras of \mathscr{M}, and P a probability measure on \mathscr{M}. Let $\left\{X_{t} ; t \in T\right\}$ be a stochastic process over (Ω, \mathscr{M}, P) with values in (E, \mathscr{E}) and let $\left\{Y_{t} ; t \in T\right\}$ be a stochastic process over (Ω, \mathscr{M}, P) with values in $(F, \mathscr{\mathscr { F }})=\left(\mathbb{R}^{m}, \mathscr{R}^{m}\right)$ for some $m \geqq 1$. We define $\mathscr{K}_{s, t}=\sigma\left(X_{u} ; u \in T, s \leqq u \leqq t\right)$ for $s, t \in T ; \mathscr{K}_{t}=\mathscr{K}_{0, t}$ for $t \in T ; \mathscr{K}=\sigma\left(X_{u} ; u \in T\right)$; and similarly, $\mathscr{L}_{t}=\sigma\left(X_{u}, Y_{u} ; 0 \leqq u \leqq t, u \in T\right)$ for $t \in T$, and put $\mathscr{L}=\sigma\left(X_{u}, Y_{u} ; u \in T\right)$.
(1.2) Definition. A family $\left\{Q_{s, t} ; s<t, s, t \in T\right\}$ of transition probabilities from (E, \mathscr{E}) into $(E \times F, \mathscr{E} \times \mathscr{F})$ is called a semi-Markov transition function on $(E, \mathscr{E}, \mathscr{F})$ provided that

$$
Q_{s, t}(x, A \times B)=\int_{E \times F} Q_{s, u}(x, d y \times d z) Q_{u, t}(y, A \times(B-z))
$$

for any $s<u<t, s, u, t \in T, x \in E, A \in \mathscr{E}, B \in \mathscr{F}$ where $B+a=\{b+a: b \in B\}$ for any $a \in F$.
Given a semi-Markov transition function $Q_{s, t}$ on $(E, \mathscr{E}, \mathscr{F})$ the formula

$$
\begin{equation*}
P_{s, t}(x, y ; A \times B)=Q_{s, t}(x, A \times(B-y)) \tag{1.3}
\end{equation*}
$$

defines a Markov transition function $P_{s, t}$ on $(E \times F, \mathscr{E} \times \mathscr{F})$, which is translation invariant in the second variable and vice versa.

[^0](1.4) Definition. $(X, Y)=\left\{X_{t}, Y_{t} ; t \in T\right\}$ is a Markov additive process with respect to $\left\{\mathscr{A}_{t} ; t \in T\right\}$ and with semi-Markov transition function $Q_{s, t}$ provided that (X, Y) be a Markov process with respect to $\left\{\mathscr{A}_{t} ; t \in T\right\}$ (in the sense of BG I.1.1) whose transition function $P_{s, t}$ satisfies (1.3).

Let (X, Y) be a Markov additive process with respect to $\left\{\mathscr{A}_{i} ; t \in T\right\}$; then (X, Y) is a Markov additive process with respect to $\left\{\mathscr{L}_{t} ; t \in T\right\}$ also. Following are some of the immediate consequences of the Definition (1.4). We omit the proofs (most of which may be found in [5]). Throughout we take $T=[0,+\infty]$; the results below need only trivial alterations for general T, and if $T=\{0,1, \ldots\}$ most of these results are well known.
(1.5) The process $X=\left\{X_{t} ; t \in T\right\}$ is a Markov process with respect to $\left\{\mathscr{M}_{t}\right\}$ with state space (E, \mathscr{E}) and transition function

$$
K_{s, t}(x, A)=Q_{s, t}(x, A \times F) ;
$$

$s<t, x \in E, A \in \mathscr{E}$.
(1.6) For any $t \geqq 0$, if $W \in b \sigma\left(X_{u}, Y_{u}-Y_{t} ; u \geqq t\right)$, then

$$
E\left[W \mid \mathcal{M}_{t}\right]=E\left[W \mid X_{t}\right]
$$

(1.7) For any $s<t$ and $f \in b \mathscr{F}$ we have

$$
E\left[f\left(Y_{t}-Y_{s}\right) \mid \mathscr{K}\right]=E\left[f\left(Y_{t}-Y_{s}\right) \mid \mathscr{K}_{s, t}\right] .
$$

(1.8) For any integer $n \geqq 1,0 \leqq t_{0}<t_{1}<\cdots<t_{n}$, and $h_{1}, \ldots, h_{n} \in b \mathscr{F}$ we have

$$
E\left[\prod_{i=1}^{n} h_{i}\left(Y_{t_{i}}-Y_{t_{i-1}}\right) \mid \mathscr{K}\right]=\prod_{i=1}^{n} E\left[h_{i}\left(Y_{t_{i}}-Y_{t_{i-1}}\right) \mid \mathscr{K}\right]
$$

that is, given the process X, Y is a process with independent increments.
(1.9) Let $A_{t}=E\left[Y_{1}-Y_{0} \mid \mathscr{K}\right]$. Then $A=\left\{A_{t} ; t \geqq 0\right\}$ is an additive functional of X.
(1.10) Let $M_{t}^{y}=E\left[\exp \left[i\left(Y_{t}-Y_{0}, y\right)\right] \mid \mathscr{K}\right]$ where $\left(y^{\prime}, y\right)$ is the usual inner product in F. Then, for any fixed $y \in F,\left\{M_{t}^{y} ; t \geqq 0\right\}$ is a multiplicative functional of X.

The name Markov additive process is supposed to suggest its two most important properties: (1.5) and (1.8). Ezhov and Skorohod [5] called it a Markov process with homogeneous second component and characterized the Y process by using characteristic functions under the assumption of continuity for $(y, t) \rightarrow M_{t}^{y}$ (cf. [5] Theorem 1). They also give a complete characterization of M_{i}^{y}, and therefore of $\left\{Y_{t} ; t \geqq 0\right\}$, in the case when X is a regular step process (with all states holding).

A more detailed account is given in [3] in a more modern setting; [3] can be read independent of this one. If the state space E is finite, what we have becomes what Neveu [12] called an F-process. In the discrete parameter case certain specific problems (such as central limit theorems, hitting times) associated with Markov additive processes were discussed by Volkov [18], Miller [10, 11], Keilson and Wishart [7, 8], Pyke [14], Pyke and Schaufele [15, 16], and Çinlar [2]. In the case of continuous time parameter, Fukushima and Hitsuda [6], Keilson and Wishart [7], and Pinsky [13] have given central limit theorems for
the second component in the case where E is finite. In a different direction, where $F=\mathbb{R}$ and Y non-decreasing, a random time change (with Y as time) gives us semi-Markov processes. These were introduced by Lévy [9], Smith [17].

In the next section we show that, given a semi-Markov transition function $Q_{s, t}$, a Markov additive process (X, Y) exists if and only if the Markov process X exists. In Section 3 we show the existence of a regular version of the conditional probability $P\{\cdot \mid \mathscr{K}\}$; and using it the process Y is characterized completely. In Section 4 we consider the construction of the conditional distribution of $Y_{t}-Y_{s}$ given \mathscr{K} directly from the transition function $Q_{s, t}$. When this construction is possible we have a nice canonical construction for the (X, Y) process.

2. Existence of Markov Additive Processes

Let $\left\{Q_{s, t} ; s, t \in T\right\}$ be a semi-Markov transition function on ($E, \mathscr{E}, \mathscr{F}$) and define $P_{s, t}$ and $K_{s, t}$ as in (1.3) and (1.5) respectively.

We let \mathscr{T} be the class of all finite subsets of the parameter set T; and define $\varphi_{J}: E^{T} \rightarrow E^{J}, \psi_{J}: F^{T} \rightarrow F^{J}, \pi_{J}: E^{T} \times F^{T} \rightarrow E^{J} \times F^{J}$ to be the natural projections defined for $J \in \mathscr{T}$.
(2.1) Theorem. Let μ be a probability measure on $\mathscr{E} \times \mathscr{F}$ and put $v(A)=\mu(A \times F)$, $A \in \mathscr{E}$. Then, there exists a Markov additive process with the initial distribution μ and semi-Markov transition function $Q_{s, t}$ if and only if there exists a Markov process with the initial distribution v and transition function $K_{\mathrm{s}, \mathrm{t}}$.

Proof. Necessity follows from the statement (1.5). To prove the sufficiency, suppose there exists a Markov process with the initial distribution v and transition function $K_{s, t}$. Then there is a Markov process of the function space type equivalent to it; that is, a Markov process $\hat{X}=\left\{\hat{X}_{t} ; t \in T\right\}$ over the probability space ($E^{T}, \mathscr{E}^{T}, \hat{P}$) so that $\hat{X}_{t}=\varphi_{\{t\}}$ and \hat{P} is the limit of the projective system of probability measures $\left\{\hat{P}_{J} ; J \in \mathscr{T}\right\}$ where

$$
\begin{equation*}
\hat{P}_{J}(A)=\int v\left(d x_{0}\right) \int K_{0, t_{1}}\left(x_{0}, d x_{1}\right) \int \cdots \int K_{t_{n-1}, t_{n}}\left(x_{n-1}, d x_{n}\right) I_{A}\left(x_{1}, \ldots, x_{n}\right) \tag{2.2}
\end{equation*}
$$

for any $A \in \mathscr{E}^{J}$ if $J=\left\{t_{1}, \ldots, t_{n}\right\} \in \mathscr{T}$.
Let us define, for $A \in \mathscr{E}^{\mathscr{E}} \times \mathscr{F} J, J=\left\{t_{1}, \ldots, t_{n}\right\} \in \mathscr{T}$,

$$
\begin{equation*}
P_{J}(A)=\int \mu\left(d x_{0}\right) \int P_{0, t_{1}}\left(x_{0}, d x_{1}\right) \int \cdots \int P_{t_{n-1}, t_{n}}\left(x_{n-1}, d x_{n}\right) I_{A}\left(x_{1}, \ldots, x_{n}\right) \tag{2.3}
\end{equation*}
$$

This defines a projective system of probability measures $\left\{P_{J} ; J \in \mathscr{T}\right\}$. Let P be the finitely additive set function on the (finite dimensional) cylinder sets C of $\mathscr{M}=\mathscr{E}^{T} \times \mathscr{F}^{T}$ defined by putting

$$
\begin{equation*}
P(C)=P_{J}\left(C_{0}\right) \quad \text { if } C=\pi_{J}^{-1}\left(C_{0}\right), \quad C_{0} \in \mathscr{E}^{J} \times \mathscr{F}^{J} . \tag{2.4}
\end{equation*}
$$

For any fixed cylinder set B of \mathscr{F}, the mapping $A \rightarrow P(A \times B)$ is finitely additive on the cylinder sets of \mathscr{E}^{T}. Further, since $K_{s, t}(x, A)=P_{s, t}(x, y ; A \times F)=Q_{s, t}(x, A \times F)$ for all $s, t \in T, x \in E, A \in \mathscr{E}$, we have

$$
P(A \times B) \leqq P\left(A \times F^{T}\right)=P(A)
$$

for any cylinder A of \mathscr{E}^{T} by (2.2) and (2.3). Hence, if the cylinders $A_{n} \downarrow \emptyset$ then $P\left(A_{n} \times B\right) \downarrow 0$ since $\hat{P}\left(A_{n}\right) \downarrow 0$. Thus, $A \rightarrow P(A \times B)$ is countably additive on the algebra of finite dimensional cylinders of \mathscr{E}^{T}, and therefore there is a unique measure $A \rightarrow Q(A, B)$ on \mathscr{E}^{T} which coincides with $A \rightarrow P(A \times B)$ on the cylinders of \mathscr{E}^{T}.

Now $B \rightarrow Q(A, B)$ is finitely additive for any cylinder A in \mathscr{E}^{T}. This implies, through the monotone class theorem, that $B \rightarrow Q(A, B)$ is finitely additive for any A in \mathscr{E}^{T}. By the special nature of $\left(\mathbb{R}^{m}, \mathscr{R}^{m}\right)$, Kolmogorov extension theorem applies to show the existence of a measure $B \rightarrow P(A, B)$ on \mathscr{F}^{T} wich is the unique extension of $B \rightarrow Q(A, B)$ for each fixed $A \in \mathscr{E}^{T}$. Another application of the monotone class theorem shows that $A \rightarrow P(A, B)$ is a measure on \mathscr{E}^{T} for any $B \in \mathscr{F}^{T}$. Thus, by standard theorems, there is a unique measure \bar{P} on $\mathscr{M}=\mathscr{E}^{T} \times \mathscr{F}^{T}$ so that $\bar{P}(A \times B)=$ $P(A, B)$ for all $A \in \mathscr{E}^{T}, B \in \mathscr{F}^{T}$. Obviously $\bar{P}(C)=P(C)$ for any cylinder $C \in \mathscr{M}$. Therefore, \bar{P} is the unique limit of the projective system $\left\{P_{y} ; J \in \mathscr{T}\right\}$ defined by (2.3).

Finally, let $\Omega=E^{T} \times F^{T}$ and for each $\omega=\left(\omega_{1}, \omega_{2}\right) \in \Omega$ define

$$
X_{t}(\omega)=\varphi_{\{t\}}\left(\omega_{1}\right), \quad Y_{t}(\omega)=\psi_{\{t\}}\left(\omega_{2}\right)
$$

Then, $(X, Y)=\left\{X_{t}, Y_{t} ; t \in T\right\}$ is a Markov process over $(\Omega, \mathscr{M}, \bar{P})$ with state space $(E \times F, \mathscr{E} \times \mathscr{F})$ and transition function $P_{\mathrm{s}, \mathrm{t}}$. That (X, Y) is a Markov process over $(\Omega, \mathscr{M}, \bar{P})$ adapted to $\left\{\sigma\left(X_{u}, Y_{u} ; u \leqq t\right) ; t \in T\right\}$ with semi-Markov transition function $Q_{s, t}$ follows from Definition (1.4). This completes the proof.

A second canonical construction will be given in Section 4; it will be a more intuitive one but is possible only under certain, however slight, restrictions.

3. Characterization of the Additive Part Y

Let (X, Y) be a Markov additive process over (Ω, \mathscr{A}, P) with X taking values in (E, \mathscr{E}) and Y in (F, \mathscr{F}), with parameter set $T=[0,+\infty]$. We assume that, almost surely, $t \rightarrow Y_{t}$ is right continuous. We will first show that there exists a regular version Q^{w} of $P\{\cdot \mid \mathscr{K}\}(w)$ on \mathscr{L}. Then, by (1.8), Y is a process with independent increments on the probability space ($\Omega, \mathscr{L}, Q^{w}$) for any fixed $w \in \Omega$. This enables us to use the well-known results about such processes to obtain a complete characterization of Y, thus generalizing Theorem 1 of [5]. Of course, the existence of a regular version Q is also of independent interest.

Let $\hat{\Omega}=E^{T} \times F^{T}$ and define a mapping $\pi: \Omega \rightarrow \hat{\Omega}$ by putting

$$
\begin{equation*}
\pi \omega(t)=\left(X_{t}(\omega), Y_{t}(\omega)\right), \quad t \in T, \omega \in \Omega \tag{3.1}
\end{equation*}
$$

For $\hat{\omega}=(w, z) \in \hat{\Omega}$ define $\hat{X}_{t}(\hat{\omega})=w(t), \quad \hat{Y}_{t}(\hat{\omega})=z(t)$ for all $t \in T$. Define $\hat{\mathscr{L}}=$ $\sigma\left(\hat{X}_{t}, \hat{Y}_{i} ; t \in T\right), \hat{\mathscr{K}}=\sigma\left(\hat{X}_{t} ; t \in T\right)$, and $\hat{P}=P \pi^{-1}$.
(3.2) Lemma. There exists a regular version \hat{Q} of $\hat{P}\{\cdot \mid \hat{K}\}$ on $\hat{\mathscr{L}}$.

Proof. For $s<t, B \in \mathscr{F}, w \in \widehat{\Omega}$ let

$$
\begin{align*}
\mu(w, B) & =\left(\hat{P}\left\{Y_{0} \in B \mid \hat{\mathscr{K}}\right\}\right)(w), \tag{3.3}\\
G_{s, t}(w, B) & =\left(\hat{P}\left\{\hat{Y}_{t}-\hat{Y}_{s} \in B \hat{\mathscr{K}}\right\}\right)(w) \tag{3.4}
\end{align*}
$$

be selected so that $B \rightarrow \mu(w, B)$ and $B \rightarrow G_{s, I}(w, B)$ be both probability measures for any fixed w; (this is possible by the special nature of $\left(\mathbb{R}^{m}, \mathscr{R}^{m}\right)$). Let

$$
M_{s, t}^{y}=\hat{E}\left\{\exp \left[i\left(Y_{t}-Y_{s}, y\right)\right] \mid \mathscr{K}\right\}
$$

for $0 \leqq s \leqq t, y \in F$. Then, for any $y \in F, s<t<u$

$$
\begin{equation*}
M_{s, i}^{y}(w) M_{i, u}^{y}(w)=M_{s, u}^{v}(w) \tag{3.5}
\end{equation*}
$$

for all w except in some null set $N(s, t, u, y)$. By the right continuity of $Y, t \rightarrow M_{s, t}^{y}$ is right continuous. Then, the results of Walsh [19] apply (though our $M_{s, t}^{y}$ are complex valued instead of his real-valued case, all the proofs go through with obvious modifications) to show that the exceptional set can be taken to be independent of s, t, u. So, there is a null set N_{y} such that (3.5) holds for all s, t, u whenever $w \notin N_{y}$. Repeating this for each y in a suitably chosen countable set which is dense in F, and using the continuity properties of characteristic functions, we conclude that (3.5) holds for all s, t, u, y provided that w is not in a certain null set N.

We have thus shown that there is a null set N such that, for $w \notin N$,

$$
\int G_{s, t}(w, d y) G_{t, u}(w, B-y)=G_{s, u}(w, B)
$$

for all s, t, u, B. We now re-define $G_{s, t}(w, B)$ for $w \in N$ so that $G_{s, t}(w,\{0\})=1$ for all s, t.

Then, if for fixed $w \in \hat{\Omega}$ we define

$$
Q_{J}(w, A)=\int_{\mu}\left(w, d x_{0}\right) \int G_{0, t_{1}}\left(w, d x_{1}-x_{0}\right) \int \cdots \int G_{t_{n-1}, t_{n}}\left(w, d x_{n}-x_{n-1}\right) I_{A}\left(x_{1}, \ldots, x_{n}\right)
$$

for each finite subset $J=\left\{t_{1}, \ldots, t_{n}\right\}$ of $T=[0,+\infty]$ and set $A \in \mathscr{F}^{J}$, it follows that $\left\{Q_{J}(w, \cdot) ; J\right.$ is finite subset of $\left.T\right\}$ is a projective system of measures over (F, \mathscr{F}), and by the Kolmogorov extension theorem, has a projective limit $\bar{Q}(w, \cdot)$ on \mathscr{F}^{T}. For $A \in \mathscr{E}^{T}$ and $B \in \mathscr{F}^{T}$ and $\hat{\omega}=(w, z) \in \hat{\Omega}$ we put

$$
\begin{equation*}
\tilde{Q}(\hat{\omega}, A \times B)=\varepsilon_{w}(A) \bar{Q}(\hat{\omega}, B) \tag{3.6}
\end{equation*}
$$

where ε_{w} is the Dirac measure concentrated at w. Finally, let $\hat{Q}(\hat{\omega}, \cdot)$ be the restriction to $\hat{\mathscr{L}}$ of the unique extension of $\tilde{Q}(\hat{\omega}, \cdot)$ onto $\mathscr{E}^{T} \times \mathscr{F}^{T}$. There remains only to show that \tilde{Q} is the desired version.

By their definitions (3.3), (3.4) the functions $\mu(\cdot, B)$ and $G_{s, t}(\cdot, B)$ are both in $\hat{\mathscr{K}}$ for any $B \in \mathscr{\mathscr { F }}$. Hence, being essentially a product of measurable functions, $Q_{J}(\cdot, A)$ is in $\hat{\mathscr{K}}$ for any $A \in \mathscr{F}^{J}, J$ finite. By the monotone class theorem, since cylinders with base in \mathscr{F}^{J} generate \mathscr{F}^{T}, the function $\bar{Q}(\cdot, A)$ is in $\widehat{\mathscr{K}}$ for all $A \in \mathscr{F}^{\mathrm{T}}$. Then, (3.6) and a second application of the monotone class theorem give the $\hat{\mathbb{K}}$ measurability of $\hat{Q}(\cdot, A)$ for any $A \in \hat{\mathscr{L}}$.

Applying (1.8) to the Markov additive process (\hat{X}, \hat{Y}) over $(\hat{\Omega}, \hat{\mathscr{L}}, \hat{P})$ we have, in view of (3.3), (3.4),

$$
\bar{Q}(\cdot, B)=\hat{P}\left\{\left(\hat{Y}_{s}, \ldots, \hat{Y_{t}}\right) \in B_{0} \mid \hat{\mathscr{K}}\right\}
$$

for any finite $J=\{s, \ldots, t\}$ and cylinder set $B \in \mathscr{F}^{T}$ with base $B_{0} \in \mathscr{F}^{J}$. Applying the monotone class theorem twice and noting (3.6) we see that

$$
\hat{Q}(\cdot, A)=\hat{P}\{A \mid \hat{\mathscr{K}}\}, \quad A \in \hat{\mathscr{L}} .
$$

(3.7) Theorem. There exists a regular version Q of $P\{\cdot \mid \mathscr{K}\}$ on \mathscr{L}.

Proof. It is easy to show that the mapping π defined by (3.1) is in both \mathscr{K} / \hat{K} and $\mathscr{L} / \hat{\mathscr{L}}$; and further that, for any $f \in \mathscr{K}$ (respectively $f \in \mathscr{L}$), there is $g \in \hat{K}$ (respectively $g \in \hat{\mathscr{L}}$) such that $f=g \circ \pi$.

For $f \in b \mathscr{L}, g \in b \hat{\mathscr{L}}, f=g \circ \pi$, define

$$
\begin{equation*}
Q(\omega, f)=\hat{Q}(\pi \omega, g) \tag{3.8}
\end{equation*}
$$

where \hat{Q} is the regular version of $\hat{P}\{\cdot \mid \hat{\mathscr{K}}\}$ on $\hat{\mathscr{L}}$ constructed in Lemma (3.2) above. Noting that $\omega \rightarrow Q(\omega, f)$ is the composition of $\hat{\omega} \rightarrow \hat{Q}(\hat{\omega}, g)$ and $\omega \rightarrow \hat{\omega}=\pi \omega$ which are in $\widehat{\mathscr{K}}$ and \mathscr{K} / \hat{K} respectively, we see that $Q(\cdot, f) \in \mathscr{K}$. For fixed $\omega \in \Omega$, $Q(\omega, \cdot)$ is non-negative, and finitely additive. Further, if $\left\{f_{n}\right\}$ is a non-decreasing sequence of functions in $b \mathscr{L}$ and if $f_{n}=g_{n} \circ \pi, f=\lim _{n} f_{n} \in b \mathscr{L}, f=g \circ \pi$, then

$$
\lim g_{n}=g \quad \text { on } \pi \Omega, \quad \hat{P}(\pi \Omega)=1 ;
$$

and

$$
\lim Q\left(\omega, f_{n}\right)=\lim \hat{Q}\left(\pi \omega, g_{n}\right)=\hat{Q}(\pi \omega, g)=Q(\omega, f) .
$$

Therefore, $Q(\omega, \cdot)$ is a measure on \mathscr{L}.
To complete the proof we need to show that, for any $f \in b \mathscr{K}$ and $h \in b \mathscr{L}$,

$$
\begin{equation*}
\int f(\omega) Q(\omega, h) P(d \omega)=\int f(\omega) h(\omega) P(d \omega) \tag{3.9}
\end{equation*}
$$

Let $f=g \circ \pi, h=k \circ \pi$ for $g \in b \hat{\mathscr{K}}, k \in b \hat{\mathscr{L}}$. Then

$$
\begin{align*}
\int f Q h d P & =\int(g \circ \pi)(\hat{Q} k \circ \pi) d P \\
& =\int g \hat{Q} k d\left(P \pi^{-1}\right)=\int g \hat{Q} k d \hat{P} \tag{3.10}
\end{align*}
$$

since $Q h(\omega)=Q(\omega, h)=\hat{Q}(\pi \omega, k)=\hat{Q} k \circ \pi(\omega)$ and $\hat{P}=P \pi^{-1}$. Since $g \in \hat{\mathscr{K}}$,

$$
\begin{equation*}
\int g \hat{Q} k d \hat{P}=\int g k d \hat{P}=\int(g \circ \pi)(k \circ \pi) d P=\int f h d P . \tag{3.11}
\end{equation*}
$$

Now (3.10) and (3.11) give (3.9).
For fixed $w \in \Omega, Y=\left\{Y_{t} ; t \in T\right\}$ is a process with independent increments on the probability space. $(\Omega, \mathscr{L}, Q(w, \cdot))$. From well-known results we get the following characterization. We omit the proof (cf. Doob [4], Chapter 8 and [5], Theorem 1).

Theorem. Suppose $Y=\left\{Y_{t} ; t \geqq 0\right\}$ is right continuous. Then,

$$
\begin{equation*}
Y_{t}-Y_{0}=A_{t}+Y_{t}^{f}+Y_{t}^{c}+Y_{t}^{d}, \quad t \geqq 0 \tag{3.12}
\end{equation*}
$$

where $\sigma\left(A_{t} ; t \geqq 0\right), \sigma\left(Y_{t}^{f} ; t \geqq 0\right), \sigma\left(Y_{t}^{c} ; t \geqq 0\right), \sigma\left(Y_{t}^{d} ; t \geqq 0\right)$ are conditionally independent given $\mathscr{K}=\sigma\left(X_{t} ; t \geqq 0\right)$ and the following hold:
a) $A=\left\{A_{t} ; t \geqq 0\right\}$ is an additive functional of the Markov process X.
b) $Y^{f}=\left\{Y_{t}^{f} ; t \geqq 0\right\}$ is a purely discontinuous process whose jump times are fixed given \mathscr{K}, or more precisely,

$$
Y_{t}^{f}=\sum_{i} V_{i} 1_{[0, t]}\left(T_{i}\right)
$$

where $V_{1}, V_{2}, V_{3}, \ldots$, are conditionally independent given \mathscr{K}, and for each i, T_{i} is either a constant or a stopping time for X.
c) $Y^{c}=\left\{Y_{t}^{c} ; t \geqq 0\right\}$ is a Gaussian process on $\left(\mathbb{R}^{m}, \mathscr{R}^{m}\right)$ over $(\Omega, \mathscr{L}, Q(\omega, \cdot))$ for any $\omega \in \Omega$.
d) $Y^{d}=\left\{Y_{t}^{d} ; t \geqq 0\right\}$ is a stochastically continuous Lévy process with independent increments without a Gaussian component over. $(\Omega, \mathscr{L}, Q(\omega, \cdot))$.
(3.13) Corollary. Let M_{t}^{y} be defined as in (1.10).
a) The "fixed" discontinuities $\left\{T_{i}\right\}$ described in (3.12b) are the points of discontinuity of the non-decreasing function

$$
t \rightarrow \int_{\|y\| \in[0,1]}\left|M_{t}^{y}\right| d y
$$

b) If $N_{i}^{y}=E\left[\exp \left[i\left(y, A_{t}+Y_{t}^{c}+Y_{t}^{d}\right)\right] \mid \mathscr{K}\right], y \in F$, then

$$
N_{t}^{y}(\omega)=\exp \left[i\left(A_{t}(\omega), y\right)-\frac{1}{2}\left(C_{t}(\omega) y, y\right)+\int\left(e^{i(x, y)}-1-\frac{i(x, y)}{1+\|x\|^{2}}\right) B_{t}(\omega, d x)\right]
$$

where $C_{t}(\omega)$ is a non-negative definite symmetric operator on F and $B_{t}(\omega, \cdot)$ is a measure on (F, \mathscr{F}) satisfying

$$
\int \frac{\|x\|^{2}}{1+\|x\|^{2}} B_{t}(\omega, d x)<\infty
$$

Furthermore, $\left\{C_{t} ; t>0\right\}$ is a continuous additive functional of X for which $C_{t}-C_{u}$ is non-negative for $t \geqq u$; and $\left\{B_{t}(A) ; t>0\right\}$ is a non-decreasing continuous additive functional of X for each $A \in \mathscr{F}$.

We shall give a finer analysis of the structure of Y later after we introduce the proper machinery.

4. A Canonical Construction

Suppose we are given an integer m, a measurable space (E, \mathscr{E}), and a semiMarkov transition function $\left\{Q_{s, t} ; 0 \leqq s<t \leqq+\infty\right\}$ on $(E, \mathscr{E}, \mathscr{F})$. Our object is to construct a Markov additive process (X, Y) with these elements so as to render the structure presented in Section 3 clear. This we will be able to do under certain conditions.

Define

$$
\begin{align*}
K_{s, t}(x, A) & =Q_{s, t}(x, A \times F) \tag{4.1}\\
L_{s, t}^{y}(x, A) & =\int e^{i\left(y^{\prime}, y\right)} Q_{s, t}\left(x, A \times d y^{\prime}\right), \quad y \in F \tag{4.2}
\end{align*}
$$

We assume the following hold:
(4.3) a) There exists a probability space $\left(\Omega^{0}, \mathscr{K}^{0}, P^{0}\right)$ and functions $X_{t} \in \mathscr{K}^{0} / \mathscr{E}$ such that $X=\left\{X_{t} ; t \geqq 0\right\}$ is a Markov process over ($\Omega^{0}, \mathscr{K}^{0}, P^{0}$) with transition function $K_{s, t}$;
b) For each $x \in E,\{x\} \in \mathscr{E}$; and there is a countable family $\mathscr{B} \subset \mathscr{E}$ such that $\sigma(\mathscr{B})=\mathscr{E}$;
c) For any countable set T which is dense in [s, t] we have $\sigma\left(X_{u} ; s \leqq u \leqq t\right)=$ $\sigma\left(X_{u} ; u \in T\right)$.

For any fixed $y \in F,\left\{L_{s, t}^{y} ; 0 \leqq s<t \leqq+\infty\right\}$ is a semi-group of transition operators which is subordinate to $\left\{K_{\mathrm{s}, t} ; 0 \leqq s<t \leqq+\infty\right\}$. By (4.3a) we have a Markov process X, and conditions (4.3 b) and (4.3 c) insure the existence of a multiplicative functional $\left\{M_{i}^{y} ; t \geqq 0\right\}$ of X which generates $\left\{Q_{s, t}^{y}\right\}$ (cf. BG III.2.3 for the detailed description whose adaptation to the present case we omit).

For fixed $\omega^{0} \in \Omega^{0}$, construct a probability measure $Q\left(\omega^{0}, \cdot\right)$ on $\Omega^{1}=F^{[0,+\infty]}$, $\mathscr{K}^{1}=\mathscr{F}^{[0,+\infty]}$ and functions $Y_{t}: \Omega^{1} \rightarrow F, Y_{t} \in \mathscr{K}^{1} / \mathscr{F}$, so that

$$
\int Q\left(\omega^{0}, d \omega^{1}\right) \exp \left[i\left(Y_{t}\left(\omega^{1}\right)-Y_{0}\left(\omega^{1}\right), y\right)\right]=M_{t}^{y}\left(\omega^{0}\right)
$$

for each $y \in F ; t \geqq 0$. Since M_{t}^{y} is a multiplicative functional which is a characteristic function in y, this is possible.

Finally let

$$
\Omega=\Omega^{0} \times \Omega^{1}, \quad \mathscr{M}=\mathscr{K}^{0} \times \mathscr{K}^{1},
$$

and define P as the unique probability measure on \mathscr{M} which satisfies

$$
P(A \times B)=\int_{A} P^{0}\left(d \omega^{0}\right) Q\left(\omega^{0}, B\right)
$$

for each $A \in \mathscr{K}^{0}, B \in \mathscr{K}^{1}$. Extend the definitions of X_{t} and Y_{t} onto Ω in the natural manner. Then, $(X, Y)=\left\{X_{t}, Y_{t} ; t \geqq 0\right\}$ is a Markov additive process over (Ω, \mathscr{M}, P) with Q as the semi-Markov transition function. (We omit the proof.)

We close this account with some examples.
(4.4) Example. Let X be a regular step process over (Ω, \mathscr{M}, P) with state space (E, \mathscr{E}) and suppose $t \rightarrow Y_{t}$ is right-continuous, non-decreasing. Then, in the decomposition given in (3.12) the Y_{t}^{c} term is missing and each of $t \rightarrow A_{t}, t \rightarrow Y_{t}^{f}, t \rightarrow Y_{t}^{d}$ is non-decreasing. Define

$$
\tau_{t}=\inf \left\{s: Y_{s}>t\right\}
$$

Then, if we define $\hat{X}_{t}=X_{\tau_{t}}$, we obtain a process which is in general non-Markovian. Such a process is called a semi-Markov process (cf. [3, 9, 14, 17]).
(4.5) Example. Let Y be a Brownian motion over (Ω, \mathscr{M}, P) with state space $(\mathbb{R}, \mathscr{R})$. Let X be a diffusion on $(\mathbb{R}, \mathscr{R})$ obtained from Y through a stochastic integral. Then X is a Markov process and (X, Y) is a Markov additive process. If the diffusion X is observed, then Y can be written

$$
Y_{t}=A_{t}+Y_{t}^{c}
$$

where $\left\{A_{t}\right\}$ is an additive functional of X and Y_{t}^{c} is obtained from a Brownian motion \tilde{Y} independent of X via the time change

$$
Y_{t}^{c}=\tilde{Y}_{B_{t}}
$$

where $\left\{B_{t}\right\}$ is a continuous non-decreasing additive functional of the diffusion X.
This example may be helpful if the same Brownian motion Y is used to define two diffusions X^{1}, X^{2} and X^{1} can be observed. Then, given X^{1}, we first consider the conditional structure of Y and then use this to make inferences about X^{2}.

References

1. Blumenthal, R. M., Getoor, R. K.: Markov Processes and Potential Theory. New York: Academic Press 1968.
2. Ciinlar, E.: Markov renewal theory. Advances appl. Probab. 1, 123-187 (1969).
3. Çinlar, E.: Markov Additive Processes II. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 95-121 (1972).
4. Doob, J. L.: Stochastic Processes. New York: Wiley 1953.
5. Ezhov, I. I., Skorohod, A. V.: Markov processes with homogeneous second component: I. Teor. Verojatn. Primen. 14, 1-13 (1969).
6. Fukushima, M., Hitsuda, M.: On a class of Markov processes taking values on lines and the central limit theorem. Nagoya math. J. 30, 47-56 (1967).
7. Keilson, J., Wishart, D. M. G.: A central limit theorem for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60, 547-567 (1964).
8. Keilson, J., Wishart, D. M. G.: Boundary problems for additive processes defined on a finite Markov chain. Proc. Cambridge philos. Soc. 61, 173-190 (1965).
9. Lévy, P.: Processus semi-markoviens. Proc. Int. Congr. Math. (Amsterdam) 3, 416-426 (1954).
10. Miller, H. D.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. math. Statistics 32, 1260-1270 (1961).
11. Miller, H. D.: Absorbtion probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge philos. Soc. 58, 286-298 (1962).
12. Neveu, J.: Une généralisation des processus à accroissements positifs indépendants. Abh. math. Sem. Univ. Hamburg 25, 36-61 (1961).
13. Pinsky, M.: Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 101-111 (1968).
14. Pyke, R.: Markov renewal processes: definitions and preliminary properties. Ann. math. Statistics 32, 1231-1242 (1961).
15. Pyke, R., Schaufele, R.: Limit theorems for Markov renewal processes. Ann. math. Statistics 35, 1746-1764 (1964).
16. Pyke, R., Schaufele, R.: The existence and uniqueness of stationary measures for Markov renewal processes. Ann. math. Statistics 37, 1439-1462 (1966).
17. Smith, W. L.: Regenerative stochastic processes. Proc. roy. Soc. London, Ser. A, 232, 6-31 (1955).
18. Volkov, I. S.: On probabilities for extreme values of sums of random variables defined on a homogeneous Markov chain with a finite number of states. Teor. Verojatn. Primen 5, 338-352 (1960).
19. Walsh, J.B.: The perfection of multiplicative functionals. Lecture Notes Math. 258: Séminaire de Probabilités VI, 233-242 (1972).

E. Çinlar
Department of Industrial Engineering
Northwestern University
Evanston, Illinois 60201
USA

[^0]: * Supported in part by the National Science Foundation grant GK-4196.

 7 2. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24

