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Markov Additive Processes. [ *

Erhan Cinlar

1. Introduction

Our notation and terminology follows Blumenthal and Getoor [1]. When
referring to it we write, for example, BG I1.7.4 to mean expression (or theorem
or statement) (7.4) in chapter II of [1]. We recall some of the basic particulars as
follows. If (F, #)and (G, %) are measurable spaces and a function f: F—G is
measurable relative to % and ¢ then we write fe #/9;if G=R, %= then we
abbreviate this and write feZ; if fe# is also bounded then we write febZ.
By o() is meant the o-algebra generated by (). Let (F,%) and (G, %) be two
measurable spaces. A mapping N: Fx % —[0, 1] is called a transition proba-
bility from (F,%) into (G, %) if a) A— N(x, A) is a measure on ¥ for fixed xeF,
and b) x > N(x, 4) is in b.F for any fixed Ae%. If N is a transition probability
from (F,%) into itself and feb.Z, then we write

(1.1) Nf(x)=N(x,f)=[ N(x,dy) f(y), xeF.

Then, NfebZ and f— Nf is a positive linear contraction on the Banach space
(F,%) with the supremum norm.

Let (E, &) be a measurable space, T a subset of [0, 4+ co] containing the origin.
Let £ be an arbitrary set, .# a o-algebra of subsets of Q, {.#,; te T} an increasing
family of sub-o-algebras of .#, and P a probability measure on 4. Let {X,; teT}
be a stochastic process over (2, .#, P) with values in (E, &) and let {Y,;teT} be
a stochastic process over (2, .4, P) with values in (F,.#)=(R™, #™) for some m=1.
Wedefine 4 , =0 (X,;ueLssust)fors,teT; A, =K, forteT; ' =0(X,;ucT);
and similarly, ¥,=0¢(X,, ¥,; 0Su=t,ueT) for teT, and put ¥ =0(X,, Y,; ucT).
(1.2) Definition. A family {Q; ;;s<t,s,teT} of transition probabilities from
(E, &) into (E x F, & x.%)is called a semi-Markov transition function on (E, &, #)

provided that
Qs,t(x’ A X B)= j Qs,u(x5 dy X dZ) Qu,t(y9 A X (B_Z))

ExF
forany s<u<t,s,u,teT, xeE, Ac &, Be # where B+a={b+a: be B} for any acF.
Given a semi-Markov transition function Q; , on (E, &, #) the formula
(1.3) B .(x,y; Ax B)=0; ,(x, Ax(B—y))

defines a Markov transition function B, on (E x F, & x %), which is translation
invariant in the second variable and vice versa.
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(1.4) Definition. (X, Y)={X,, ¥,; te T} is a Markov additive process with respect
to {#,; teT} and with semi-Markov transition function Q, , provided that (X, Y)
be a Markov process with respect to {4,; teT} (in the sense of BG I.1.1) whose
transition function B , satisfies (1.3).

Let (X,Y) be a Markov additive process with respect to {.#,;teT}; then
(X,Y) is a Markov additive process with respect to {%,; teT} also. Following
are some of the immediate consequences of the Definition (1.4). We omit the
proofs (most of which may be found in [5]). Throughout we take T=[0, + oo];
the results below need only trivial alterations for general T, and if T={0,1,...}
most of these results are well known.

(1.5) The process X ={X,;teT} is a Markov process with respect to {.#,} with
state space (E, &) and transition function

Ks,t(xa A)=Qs,t(x= Ax F);
s<t,xeE, Acé.

(1.6) Foranytz0,if Webo(X,,Y,~Y;u2t), then

E[W\4]=ELW|X,].
(1.7) For any s<t and feb % we have
ELAY,— YA T=ELf(Y,— YIA .

(1.8) For any integer n=1,0<t, <1, < - <t,, and h,, ..., h,eb F we have

E[[Th(= Y )1 | = TTEh (= ¥, )]

that is, given the process X, Y is a process with independent increments.
(1.9) Let A,=E[Y,— Y,|#]. Then 4A={A,;t=0} is an additive functional of X.

(1.10) Let M =E[exp[i(Y,~ Yo, y)]|#"] where (¥, y) is the usual inner product
in F. Then, for any fixed yeF, {M?; t=0} is a multiplicative functional of X.

The name Markov additive process is supposed to suggest its two most
important properties: (1.5) and (1.8). Ezhov and Skorohod [5] called it a Markov
process with homogeneous second component and characterized the Y process
by using characteristic functions under the assumption of continuity for (y, t) — M}
(cf. [5] Theorem 1). They also give a complete characterization of M, and there-
fore of {Y;; t=0}, in the case when X is a regular step process (with all states
holding).

A more detailed account is given in [3] in a more modern setting; [3] can
be read independent of this one. If the state space E is finite, what we have becomes
what Neveu [12] called an F-process. In the discrete parameter case certain
specific problems (such as central limit theorems, hitting times) associated with
Markov additive processes were discussed by Volkov [18], Miller [10, 11},
Keilson and Wishart [7, 8], Pyke [14], Pyke and Schaufele [ 15, 16], and Cinlar
[2]. In the case of continuous time parameter, Fukushima and Hitsuda [6],
Keilson and Wishart [7], and Pinsky [13] have given central limit theorems for
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the second component in the case where E is finite. In a different direction, where
F=IR and Y non-decreasing, a random time change (with Y as time) gives us
semi-Markov processes. These were introduced by Lévy [9], Smith [17].

In the next section we show that, given a semi-Markov transition function Q; ,,
a Markov additive process (X, Y) exists if and only if the Markov process X
exists. In Section 3 we show the existence of a regular version of the conditional
probability P{-|#}; and using it the process Y is characterized completely. In
Section 4 we consider the construction of the conditional distribution of ¥, — ¥,
given " directly from the transition function Q,,. When this construction is
possible we have a nice canonical construction for the (X, Y) process.

2. Existence of Markov Additive Processes

Let {Q, ;s teT} be a semi-Markov transition function on (E, &, #) and
define E , and K , as in (1.3) and (1.5) respectively.

We let 7 be the class of all finite subsets of the parameter set T; and define
@ ET>E ;s FT>F, n;: EPxFT-E’xF’ to be the natural projections
defined for Je 7.

(2.1) Theorem. Let u be a probability measure on & x & and put v(A)=u(4 x F),
Aeé. Then, there exists a Markov additive process with the initial distribution p

and semi-Markov transition function Q, if and only if there exists a Markov
process with the initial distribution v and transition function K, ,.

Proof. Necessity follows from the statement (1.5). To prove the sufficiency,
suppose there exists a Markov process with the initial distribution v and transition
function K ,. Then there is a Markov process of the function space type equiv-
alent to it; that is, a Markov process X ={X,; teT} over the probability space
(ET, &7, P) so that X,=¢, and P is the limit of the projective system of proba-
bility measures {B; Je 7} where

2.2 E(A)=5v(dx0)jKO,tl(x05dx1)5"'§Kt“_l,tn(xn—l’dxn) Ly(xgs-ees Xy)
for any Ae&’ if J={t,,...,t,}eT.
Let us define, for Ae &’ xF!, J={t,,...,t,}€T,

(23)  B(A)=[pdxo) [ B, (X0, dx) J+[ B, _, 1, (p_1,d%,) La(xrs ., Xy

This defines a projective system of probability measures {P,; Je 7 }.Let P be the
finitely additive set function on the (finite dimensional) cylinder sets C of
M=ET x F defined by putting

24) P(C)=P(Cy) if C=n7YC,), Coed’ xF".

For any fixed cylinder set B of %, the mapping A— P(A x B) is finitely additive
on the cylinder sets of 7. Further, since K, ,(x, A)=R, ,(x, y; Ax F)=0Q, ,(x, AX F)
forall s,teT, xeE, Ae&, we have

P(Ax B)<P(Ax FT)=P(A)

7
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for any cylinder 4 of &7 by (2.2) and (2.3). Hence, if the cylinders 4,|# then
P(A,x B)|0 since P(4,)|0. Thus, A—P(4x B) is countably additive on the
algebra of finite dimensional cylinders of &7, and therefore there is a unique
measure A—Q(4,B) on &7 which coincides with 4— P(4 x B) on the cyl-
inders of &7.

Now B—Q(4, B) is finitely additive for any cylinder 4 in &*. This implies,
through the monotone class theorem, that B—Q (4, B) is finitely additive for any A
in &7. By the special nature of (R™, ™), Kolmogorov extension theorem applies
to show the existence of a measure B— P(4, B) on # " wich is the unique extension
of B~Q(A, B) for each fixed Ae&”. Another application of the monotone class
theorem shows that A—P(4, B) is a measure on &7 for any Be #”. Thus, by
standard theorems, there is a unique measure P on .# = &7 x # Tso that P(4 x B)=
P(A4,B) for all Ae&”, Be #”. Obviously P(C)=P(C) for any cylinder Ce.Z.
Therefore, P is the unique limit of the projective system {P,; Je7 } defined by (2.3).

Finally, let Q=ET x F” and for each w=(w;, w,)eQ define

X, (w)= Dy (1), Yr(w)=‘#m (@,).

Then, (X, Y)={X,, Y,;; te T} is a Markov process over (@, .#, P) with state space
(ExF,& x #)and transition function E ,. That (X, Y) is a Markov process over
{Q, #,P) adapted to {a(X,, Y,; u<t); te T} with semi-Markov transition func-
tion Q, , follows from Definition (1.4). This completes the proof.

A second canonical construction will be given in Section 4; it will be a more
intuitive one but is possible only under certain, however slight, restrictions.

3. Characterization of the Additive PartY

Let (X, Y) be a Markov additive process over (2, .#, P) with X taking values
in (E, &) and Y in (F, &#), with parameter set T=[0, + oo]. We assume that, almost
surely, t —Y; is right continuous. We will first show that there exists a regular
version Q¥ of P{-| 4} (w) on £. Then, by (1.8), Y is a process with independent
increments on the probability space (Q, &, Q¥) for any fixed we Q. This enables us
to use the well-known results about such processes to obtain a complete charac-
terization of Y, thus generalizing Theorem 1 of [5]. Of course, the existence of a
regular version Q is also of independent interest.

Let Q=E” x FT and define a mapping n: Q — Q by putting
(3.1) ro@)=(X,(0), (), teT, weQ.

For H=(w,z)eQ define X,(d)=w(t), Y,(@)=z(t) for all teT. Define L=
o(X,, Y;teT), £ =6(X,;teT), and P=Prn~".

(32) Lemma. There exists a regular version Qof P{:|A}on L
Proof. For s<t, BeZ, we Q let

(3.3) u(w, By=(P{YoeB| £ }) (w),

(34) G, (W, B)=(P{Y,~ Y.eB A })(w)
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be selected so that B— u(w, B) and B— G, ,(w, B) be both probability measures for
any fixed w; (this is possible by the special nature of (R™, #™). Let

M, =Ef{exp[i(Y,— Y, y)]|o¢}
for 0=s<t, yeF. Then, for any yeF, s<t<u
3.5) M (W) M ,(w)=M ,(w)

for all w except in some null set N(s, ¢, u, y). By the right continuity of ¥, ¢ - M} , is
right continuous. Then, the results of Walsh [19] apply (though our M}, are
complex valued instead of his real-valued case, all the proofs go through with
obvious modifications) to show that the exceptional set can be taken to be inde-
pendent of 5, ¢, u. So, there is a null set N, such that (3.5) holds for all 5, 7, u whenever
w¢ N,. Repeating this for each y in a suitably chosen countable set which is dense
in F, and using the continuity properties of characteristic functions, we conclude
that (3.5) holds for all 5, ¢, u, y provided that w is not in a certain null set N.

We have thus shown that there is a null set N such that, for w¢ N,
j. Gs,t(ws dy) Gt,u(wv B_y)=Gs,u(w= B)

for all s,t,u, B. We now re-define G, ,(w, B) for weN so that G ,{w,{0})=1 for
all s, t.

Then, if for fixed we @ we define
Q;(w,4)= f W, dxo} Go (W, dx;—xo) [ ---f Gy, | oW dx,—X, ) 4(Xy,..., X,)

for each ﬁnlte subset J={t;,...,t,} of T=[0, + oo} and set AeF", it follows that
{Qs(w,*); J is finite subset of T} is a projective system of measures over (F, %),
and by the Kolmogorov extension theorem, has a projective limit Q(w, ) on F ..
For Ac&” and BeZ#Tand & =(w, z)eQ we put

(3.6) 0(&d, A x By=¢,,(A) Q(&», B)

where ¢,, is the Dirac measure concentrated at w. Finally, let Q (&, *) be the restric-
tion to 3 of the unique extension of §(&, -) onto &7 x # 7. There remains only to
show that @ is the desired version.

By their definitions (3.3), (3.4) the functions (-, B) and G,(-, B) are both
in o for any Be.#. Hence, being essentially a product of measurable functions,
0,(-,A) is in A for any Ae#”, J finite. By the monotone class theorem, since
cyhnders with base in #” generate # 7, the function Q(+, 4) is in A for all AeF7.
Then, (3.6) and a second application of the monotone class theorem give the -
measurability of Q(-, 4) for any Ae P

Applying (1.8) to the Markov additive process (X, ¥) over (Q, &, P) we have,
in view of (3.3), (3.4),

O, B)=P{(Y,, ..., Y)eBo| A}

for any finite J={s, ..., t} and cylinder set Be# " with base B,e #"’. Applying the
monotone class theorem twice and noting (3.6) we see that

0(-,A)=P{A|A}, AeZ
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(3.7) Theorem. There exists a regular version Q of P{-|A"} on &.

Proof.AIt is easy to show that the mapping  defined by (3.1) is in both /4"
and Z/¥; and fgrther that, for any fe (respectively fe %), there is ge A
(respectively ge.#) such that f=gom.

For feb %, geb?, f=gon, define
(3.8) Q(w,f)=0(rw,g)

where Q is the regular version of P{:|/'} on 2 constructed in Lemma (3.2)
above. Notlng that w —Q (o, f) is the composition of & — 0(d,g)and v — h=nw
which are in & and 4/ respectively, we see that Q(-, f)e #. For fixed we,
Q(c,*) is non-negative, and finitely additive. Further, if {f,} is a non-decreasing
sequence of functions in b.% and if f,=g,on, f=lim f,eb.?, f =gem, then

limg,=g on zQ, PrQ)=1;
lim Q (e, f,)=1lim Q (n », g,)=0 (n », 8)=Q(w, f).

Therefore, Q(w, +) is a measure on Z.

To complete the proof we need to show that, for any feb A and heb %,
(3.9 [ f(@) Q(@, h) Pw)={ f () h(w) Pdw).
Let f=gon, h=kon for geb A, kebZ. Then
[fQhdP={(gon)@kom)dP

=[gQkd(Pn~")=[gQkdP

since Qh(w)=0(w, h);Q(n o, k)=Qkon(w) and P=Pn~". Since ge A,
(3.11) fgQkdP=(gkdP=[(gom)(kom)dP= | fhdP.
Now (3.10) and (3.11) give (3.9).

For fixed we, Y={Y,; teT} is a process with independent increments on

the probability space (2, £, Q(w, *)). From well-known results we get the following
characterization. We omit the proof (cf. Doob [4], Chapter 8 and [5], Theorem 1).

(3.12) Theorem. Suppose Y ={Y,; t=0} is right continuous. Then,
Y= Yo= A4+ Y + Y+ Y, 20
where o(A,; t=20), o(Y/;t=20), a(Y<; t20), o(Y?; t=0) are conditionally inde-
pendent given A =a(X,; t=0) and the following hold:
a) A={A,; t=0} is an additive functional of the Markov process X.

b) Y/={Y/;t=0} is a purely discontinuous process whose jump times are
fixed given A, or more precisely,

Y =3 Vil0.0(T)

and

(3.10)

where V,V,,Vs,..., are conditionally independent given A, and for each i,
T, is either a constant or a stopping time for X.
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¢) Y'={Y;t=0} is a Gaussian process on (R", #™) over (2, %, Q(w,*)) for
any wef2.

d) Y?={Y?; t=0} is a stochastically continuous Lévy process with independent
increments without a Gaussian component over (2, %, Q(w, *)).

(3.13) Corollary. Let M? be defined as in (1.10).
a) The “fixed” discontinuities {T;} described in (3.12b) are the points of dis-
continuity of the non-decreasing function
t> [ IM?|dy.
lI¥liefo, 1]
b) If N?=E[exp[i(y, A,+ Y+ Y)]|A], yeF, then

W) =exp 14,0 3)~HC @) 3} [ (9 -1 ) B, )]

where C,(®) is a non-negative definite symmetric operator on F and B,(w,*) is a
measure on (F, F) satisfying
1]

lerHXH2

Furthermore, {C,; t >0} is a continuous additive functional of X for which C,—C,
is non-negative for t=u; and {B,(A); t >0} is a non-decreasing continuous additive
functional of X for each Ae%.

We shall give a finer analysis of the structure of Y later after we introduce the
proper machinery.

B, (w,dx)< oo

4. A Canonical Construction

Suppose we are given an integer m, a measurable space (E, &), and a semi-
Markov transition function {Q;,; 0<s<t< + oo} on (E, & %). Our object is to
construct a Markov additive process (X, Y) with these elements so as to render
the structure presented in Section 3 clear. This we wili be able to do under certain
conditions.

Define
(41) Ks,t(x’A):Qs,t(xﬂAXF)a
4.2) L, (x, A)= [ Q, ,(x,Axdy), yeF.

We assume the following hold:

(4.3) a) There exists a probability space (2° %, P%) and functions X,e.#°/&
such that X={X,;t=>0} is a Markov process over (Q°, £, P°) with transition
function K

S, 19

b) For each xeE, {x}ed&; and there is a countable family Z<& such that
o(B)=6;

¢) For any countable set T which is dense in [s, t] we have o(X,; sSu=<t)=
a(X,; ueT).
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For any fixed yeF, {L ;; 0Ss<t=< + oo} is a semi-group of transition opera-
tors which is subordinate to {K, ,; 0Ss<t=< + oo}. By (4.3a) we have a Markov
process X, and conditions (4.3 b) and (4.3 ¢) insure the existence of-a multiplicative
functional {M?; t=0} of X which generates {Q?,} (cf. BG IIL.2.3 for the detailed
description whose adaptation to the present case we omit).

For fixed ®°eQ°, construct a probability measure Q(°,+) on Q'=Fo+=],
H'=F19+=l and functions Y;: Q' > F, Y,e A /F, so that

§Q(@°, do') exp[i(Y(0")~ Yo (@), y) | = M? (@°)

for each yeF; t=0. Since M} is a multiplicative functional which is a charac-
teristic function in y, this is possible.
Finally let
Q=0°%Q", M=A"xA",

and define P as the unique probability measure on .# which satisfies
P(4xB)= [ P°(do°) Q(»°, B)
A

for each Ae 4%, Be 4. Extend the definitions of X, and Y, onto Q in the natural
manner. Then, (X, Y)={X,, Y;; t=0} is a Markov additive process over (Q, .#, P)
with Q as the semi-Markov transition function. (We omit the proof.)

We close this account with some examples.

(4.4) Example. Let X be a regular step process over (Q,.#, P) with state space
(E, &) and suppose t — Y, is right-continuous, non-decreasing. Then, in the decom-
position given in (3.12) the ¥ term is missing and each of t > 4,, t > Y/, t > Y% is
non-decreasing. Define

t,=inf {s: Y,>1t}.

Then, if we define X, = X .,» We obtain a process which is in general non-Markovian.
Such a process is called a semi-Markov process (cf. [3, 9, 14, 17)).

(4.5) Example. Let Y be a Brownian motion over (Q, .#, P) with state space (R, %).
Let X be a diffusion on (IR, #) obtained from Y through a stochastic integral. Then
X is a Markov process and (X, Y) is a Markov additive process. If the diffusion X
is observed, then Y can be written

Yi=4+Y

where {4,} is an additive functional of X and Y is obtained from a Brownian
motion Y independent of X via the time change

th = YIB,

where {B,} is a continuous non-decreasing additive functional of the diffusion X.

This example may be helpful if the same Brownian motion Y is used to define
two diffusions X!, X2 and X' can be observed. Then, given X*, we first consider
the conditional structure of ¥ and then use this to make inferences about X?2.
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