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Markov Additive Processes. I* 

Erhan ~inlar 

1. Introduction 

Our notation and terminology follows Blumenthal and Getoor [1]. When 
referring to it we write, for example, BG II.7.4 to mean expression (or theorem 
or statement) (7.4) in chapter II of [1]. We recall some of the basic particulars as 
follows. If ( F , ~ ) a n d  (G,~) are measurable spaces and a function f :  F-~G is 
measurable relative to ~ and ~ then we write f ~ / ~ ;  if G=IR, f ~ = ~  then we 
abbreviate this and write f ~ ;  if f ~  is also bounded then we write f~b~ .  
By a(.)  is meant the a-algebra generated by (.). Let ( F , ~ ) a n d  (G, ~) be two 
measurable spaces. A mapping N: F x f~ ~ [0, 1] is called a transition proba- 
bility from ( F , ~ ) i n t o  (G, ~) if a) A- .N(x ,  A) is a measure on f~ for fixed x~F, 
and b) x ~ N ( x ,  A) is in b ~  for any fixed A ~ .  If N is a transition probability 
from (F ,~ )  into itself and f ~  b ~,, then we write 

(l.l) N f ( x ) = N ( x , f ) = S N ( x ,  dy)f(y  ), xeF .  

Then, Nfebo~ and f - -*Nf  is a positive linear contraction on the Banach space 
(F,o~) with the supremum norm. 

Let (E, ~) be a measurable space, T a subset of [0, + oo] containing the origin. 
Let s be an arbitrary set, J-{ a a-algebra of subsets of f2, {Jg~; te  T} an increasing 
family of sub-a-algebras of d//, and P a probability measure on Jg. Let {Xt; t E T} 
be a stochastic process over (~2, ~g, P) with values in (E, g) and let { Y~; teT}  be 
a stochastic process over (f2; d//, P) with values in ( F , ~ ) =  (IR m, ~" )  for some m> 1. 
We define ~ , t  =a(X.; u~ T, s < u < t) for s, t e T; JC~t =:Ko, t for t ~ r; off =a(X.; u ~ T); 
and similarly, ~e~=a(X., Y.; O<u<t, ueT) for teT, and put 5r  Y.; ueT). 

(1.2) Definition. A family {Qs,,; s<t,s, teT}  of transition probabilities from 
(E, g) into (E x F, g x ~ )  is called a semi-Markov transition function on (E, g, ~-) 
provided that 

Qs, t(x, A x B ) =  ~ Qs, u(x, dyxdz)Q.,,(y,  A x ( B - z ) )  
E x F  

for any s <u < t, s, u, te T, xeE, AeN, B e ~ w h e r e  B + a= {b + a: beB} for any aeF. 
Given a semi-Markov transition function Qs,, on (E, g, ~ )  the formula 

(1.3) (x, y; A • B) = Q ,t (x, A x ( 8 -  y)) 
defines a Markov transition function P~,, on (E x F, g x ~) ,  which is translation 
invariant in the second variable and vice versa. 
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(1.4) Definition. (X, Y)= {X t, Yt; teT} is a Markov additive process with respect 
to {~'t; t ~ T} and with semi-Markov transition function Qs, t provided that (X, Y) 
be a Markov process with respect to {J/4; teT} (in the sense of BG 1.1.1) whose 
transition function P~.t satisfies (1.3). 

Let (X, Y) be a Markov additive process with respect to {~r t~T}; then 
(X,Y) is a Markov additive process with respect to {~e~; tsT} also. Following 
are some of the immediate consequences of the Definition (1.4). We omit the 
proofs (most of which may be found in [5]). Throughout we take T =  [0, + oo] ; 
the results below need only trivial alterations for general T, and if T =  {0, 1,...} 
most of these results are well known. 

(1.5) The process X =  {X~; teT} is a Markov process with respect to {J/~} with 
state space (E, g) and transition function 

Ks, t(x, A)=Qs.t(x, A x F); 
s<t, xeE, AcE. 

(1.6) For any t>=O, if W~ba(X., Y,- Y,; u>t), then 

[wl~aJ = ~ [WlXJ. 

(1.7) For any s<t a n d f ~ b f f w e  have 

E [/(Yt - Y~) [ o f ]  -- E [/(Yt - Y~)I o'g~, t]. 

(1.8) For any integer n > 1, 0 < to < tl < . . .  < t,, and hl . . . . .  h ,s  b o~we have 

E h~(Yt,- Yt,_ ,)[~ff = E[h,(Yt,-  Yt,=l)lo~ff], 

that is, given the process X, Y is a process with independent increments. 

(1.9) Let A, = E [ Yt- I1o I g f ] .  Then A = {A,; t > 0} is an additive functional of X. 

(1.10) Let Mtr=E[exp [i(Yt-Yo, y ) ] [ ~ ]  where (y', y) is the usual inner product 
in F. Then, for any fixed y~F, {Mr; t>_0} is a multiplicative functional of X. 

The name Markov additive process is supposed to suggest its two most 
important properties: (1.5) and (1.8). Ezhov and Skorohod [5] called it a Markov 
process with homogeneous second component and characterized the Y process 
by using characteristic functions under the assumption of continuity for (y, t) ~ M• 
(cf. [5] Theorem 1). They also give a complete characterization of M~, and there- 
fore of {Y~; t > 0}, in the case when X is a regular step process (with all states 
holding). 

A more detailed account is given in [3] in a more modern setting; [3] can 
be read independent of this one. If the state space E is finite, what we have becomes 
what Neveu [12] called an F-process. In the discrete parameter case certain 
specific problems (such as central limit theorems, hitting times) associated with 
Markov additive processes were discussed by Volkov [18], Miller [10, l l] ,  
Keilson and Wishart [7, 8], Pyke [14], Pyke and Schaufele [15, 16], and Cinlar 
[2]. In the case of continuous time parameter, Fukushima and Hitsuda [6], 
Keilson and Wishart [7], and Pinsky [13] have given central limit theorems for 
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the second component in the case where E is finite. In a different direction, where 
F = I R  and Y non-decreasing, a random time change (with Y as time) gives us 
semi-Markov processes. These were introduced by L6vy [9], Smith [17]. 

In the next section we show that, given a semi-Markov transition function Qs, t, 
a Markov additive process (X, Y) exists if and only if the Markov process X 
exists. In Section 3 we show the existence of a regular version of the conditional 
probability P { - 1 ~ } ;  and using it the process Y is characterized completely. In 
Section 4 we consider the construction of the conditional distribution of Y~- Y~ 
given ~ directly from the transition function Q,,7. When this construction is 
possible we have a nice canonical construction for the (X, Y) process. 

2. Existence of Markov Additive Processes 

Let {Q~,t; s, tET} be a semi-Markov transition function on ( E , ~ , Y ) a n d  
define P~,~ and K~, t as in (l.3) and (1.5) respectively. 

We let J - b e  the class of all finite subsets of the parameter set T; and define 
cps: ET--,E J, ~s: F r - , F  J, ns: E r x F ~ E J x F  J to be the natural projections 
defined for J s  ~ .  

(2.1) Theorem. Let # be a probability measure on 8 x ~ and put v (A)=#(A  • F), 
A ES. Then, there exists a Markov additive process with the initial distribution ~l 
and semi-Markov transition function Qs, t if and only if there exists a Markov 
process with the initial distribution v and transition function Ks, t. 

Proof. Necessity follows from the statement (15). To prove the sufficiency, 
suppose there exists a Markov process with the initial distribution v and transition 
function Ks, t. Then there is a Markov process of the function space type equiv- 
alent to it; that is, a Markov process X =  {-~t; t~T}  over the probability space 
(E T, #T, p) so that 3f t = ~P~t~ and P is the limit of the projective system of proba- 
bility measures {Pj; J s  3-} where 

(2.2) ~ ( A ) =  S v(dxo) ~ Ko, t, (Xo, dx,)  ~... ~ Kt,_,, r dx,,) Ia(x ~ ..... , x,,) 

for any A e #  s if J =  {q, ..., t ,}e ~ .  

Let us define, for A e g s x  ~s ,  j = {q, ..., t,} e ~,, 

(2.3) PJ (A)= I/~ (dxo) I Po, ,~ (Xo, dxa) f " "  I Pt,,_~,,, (x,,_a, d x,,) I a (xa,. . . ,  x,). 

This defines a projective system of probability measures {Ps; J e J } .  Let P be the 
finitely additive set function on the (finite dimensional) cylinder sets C of 
M(= g r  x o ~ r  defined by putting 

(2.4) P(C)=Ps(Co) if C = n s l ( C o ) ,  C o ~ # S x Y  s. 

For any fixed cylinder set B of o~, the mapping A o P(A • B) is finitely additive 
on the cylinder sets of #r.  Further, since Ks.~ (x, A) = P~,~ (x, y; A • F) = Qs, t (x, A x F) 
for all s, t~T, x~E,  A e # ,  we have 

P(A x B)<=P(A • FT)=p(A)  
7* 
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for any cylinder A of g r  by (2.2) and (2.3). Hence, if the cylinders A,J,~ then 
P(A, xB)$O since P(A,),~O. Thus, A ~ P ( A x B )  is countably additive on the 
algebra of finite dimensional cylinders of gr, and therefore there is a unique 
measure A~Q(A,B) on 8 r which coincides with A ~ P ( A x B )  on the cyl- 
inders of gr. 

Now B-+Q(A,B) is finitely additive for any cylinder A in gr. This implies, 
through the monotone class theorem, that B ~  Q (A, B) is finitely additive for any A 
in gr. By the special nature of (IR", ~"), Kolmogorov extension theorem applies 
to show the existence of a measure B~P(A, B) on ~ r w i c h  is the unique extension 
of B-~Q(A,B) for each fixed Aeg  r. Another application of the monotone class 
theorem shows that A--*P(A,B) is a measure on g r  for any B ~ N  r. Thus, by 
standard theorems, there is a unique measure P on ~ / =  g r  x ~ r s o  that fi(A x B) = 
P(A,B) for all Aeg  r, B e ~  T. Obviously fi(C)=P(C) for any cylinder Ce~/.  
Therefore, fi is the unique limit of the projective system {Pj; J s J }  defined by (2.3). 

Finally, let-~= Erx F r and for each co=(col, ~2) -~  define 

x , ( ~ )  = ~0{,} (o~1), ~ (co) = 6,}(co2). 

Then, (X, Y)= {X t, Yt; t~ T} is a Markov process over +(fL d/, P) with state space 
(E x F, g x ~ )  and transition function P~,t. That (X, Y) is a Markov process over 
(f2, d/, fi) adapted to {a(X,, Y,; u_<_ t); t~ T} with semi-Markov transition func- 
tion Qs, t follows from Definition (1.4). This completes the proof. 

A second canonical construction will be given in Section 4; it will be a more 
intuitive one but is possible only under certain, however slight, restrictions. 

3. Characterization of the Additive Part Y 

Let (X, Y) be a Markov additive process over-(•, Jg, P) with X taking values 
in (E, g) and Y in (F, ~'), with parameter set T= [0, + oo]. We assume that, almost 
surely, t-.Yt is right continuous. We will first show that there exists a regular 
version QW of P{" ]::f} (w) on ~o. Then, by (1.8), Y is a process with independent 
increments on the probability space-(fL 5 ~ QW) for any fixed we ~. This enables us 
to use the well-known results about such processes to obtain a complete charac- 
terization of y thus generalizing Theorem i of [5]. Of course, the existence of a 
regular version Q is also of independent interest. 

Let ~ = E T • F r and define a mapping n: Q ~ ~ by putting 

(3.1.) ~o~(t)=(x,(~o), r,(~)), ter ,  ~oe~. 

For (5--(w,z)e~) define Y(t(&)=-w(t), ~(&)=z(t) for all teT. Define s 
a(f(t, 9; t~T), s  teT), and P=Pn -~. 

(3.2) Lemma. There exists a regular version Q. of P{" 13((} on 5s 

Proof. For s<t, B e g  we(2 let 

(3.3) # (w,B)=(P { Yo~ B[ f })(w ), 

(3.4) Gs, t (w, B) = (P { ~ - f ' s  e B f } )  (w) 
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be selected so that B ~/~ (w, B) and B ~ Gs, t (w, B) be both probability measures for 
any fixed w; (this is possible by the special nature of (IR m, ~m)). Let 

M~r,t =/~ {exp [i(Yt - Y~, Y)] 1~} 

for O<s<t,  y~F. Then, for any y~F, s < t < u  

(3.5) M~,t(w) M~,(w)=M~,u(w) 

for all w except in some null set N(s, t, u, y). By the right continuity of y t ~ M~, t is 
right continuous. Then, the results of Walsh [19] apply (though our Mr~,t are 
complex valued instead of his real-valued case, all the proofs go through with 
obvious modifications) to show that the exceptional set can be taken to be inde- 
pendent of s, t, u. So, there is a null set Ny such that (3.5) holds for all s, t, u whenever 
w(~Ny. Repeating this for each y in a suitably chosen countable set which is dense 
in F, and using the continuity properties of characteristic functions, we conclude 
that (3.5) holds for all s, t, u, y provided that w is not in a certain null set N. 

We have thus shown that there is a null set N such that, for w ~ N, 

:~ Gs, t (w, d y) Gt,, (w, B -  y) = Gs,, (w, B) 

for all s, t, u, B. We now re-define Q,,(w,B) for w e n  so that G~.,(w,{0})=l for 
all s, t. 

Then, if for fixed w ~-~ we define 

QJ (w, A) = L( (w, d Xo):I Go,t~ (w, d xl - Xo): I .... I Gt,_,,t, (w, d x,  - x ,_ 1) IA (X~,..., X,) 
g 

for each finite subset J = { q ,  ..., t,} of T = [ 0 ,  + w]  and set A e Y  J, it follows that 
{Qs(w, "); J is finite subset of T} is a projective system of measures over (F, ~ ) ,  
and by the Kolmogorov extension theorem, has a projective limit (~(w, .) on ~ r .  
For A e g  r and B e ~ r  and &=(w, z)-e~ we put 

(3.6) (~ (c5, A x B) = e~(A) (~(d), B) 

where ~ is the Dirac measure concentrated at w. Finally, let 0 (c.b, .) be the restric- 
tion to ~ of the unique extension of (~ (c5,-) onto g r x  y r .  There remains only to 
show that Q is the desired version. 

By their definitions (3.3), (3.4) the functions /t(., B) and Gs,~(', B) are both 
in ~ for any Be0N. Hence, being essentially a product of measurable functions, 
Qj(- ,A) is in f for any Aeons, j finite. By the monotone class theorem, since 
cylinders with base in o~Sgenerate ~-r, the function Q.(., A) is in ~(? for all Ae,~  "r. 
Then, (3.6) and a second application of the monotone class theorem give the ~-- 
measurability of 0 (', A) for any A e ~.  

Applying (1.8) to the Markov additive process (2, Y) over (O, 2 3, P) we have, 
in view of (3.3), (3.4), 

~( . ,B)=P{(~,  ..., ~)eBol:g} 

for any finite J = {s, ..., t} and cylinder set B e f i T  with base Bo e ffJ. Applying the 
monotone class theorem twice and noting (3.6) we see that 

O.(',A)=P{AI~F'}, A ~  
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(3.7) Theorem. There exists a regular version Q of P{-[JF} on ~.  

Proof. It is easy to show that the mapping u defined by (3.1) is in both o~(/3(? 
and La/s and further that, for any f ~ 3 r  (respectively f~L~), there is g ~  
(respectively g ~ 2 )  such that f=gorc .  

For  f~b~LP, g~b~LP, f = g o n ,  define 

(3.8) Q (~o,f) = 0 (n co, g) 

where 0 is the regular version of P { ' l f }  on 0~ constructed in Lemma(3.2) 
above. Noting that ro ~ (2 (co, f )  is the composition of rb ~ () (&, g) and co ~ & = rcco 
which are in ~? and ~/o~? respectively, we see that Q ( - , f ) e ~ .  For  fixed co-elL 
Q(co, ") is non-negative, and finitely additive. Further, if {f.} is a non-decreasing 
sequence of functions in b ~ and if f,, = g. o rr, f = lim f , e  b 2', f = g o ~r, then 

n 

lim g ,  = g o n  ~r I2, /3 (n f2) = 1 ; 

and 
lim Q (co, f,) = lim (~ (re co, g,) = 0 (r~ co, g) = Q (co, f ) .  

Therefore, Q (co,') is a measure on ~ .  

To complete the proof we need to show that, for any f ~ b ~  and h~b~,  

(3.9) ~f(co) Q(co, h) P(dco) = ~ f(co) h(co) P(dco). 

Let f=gorc, h=korc for g~b~?,, k~bS~. Then 

~ f Qh de= ~ (gon)(QkorO dP 
(3.10) 

=~g Qk d ( P u - 1 ) =  ~g Qk d/3 

since Qh(co)=Q(co, h)=Q(u  co, k)=Qkou(co) and P = P u - k  Since ge~ 
(3.11) Ig O.kdP= ~gkdP= ~ (go zr)(ko 7r)dP= ~fh dP. 

Now (3.10) and (3.11) give (3.9). 
For fixed w~t2, Y={Y,; t eT}  is a process with independent increments on 

the probability space(O, s Q (w,')). F rom well-known results we get the following 
characterization. We omit the proof (of. Doob [4], Chapter 8 and [5], Theorem 1). 

(3.12) Theorem. Suppose Y =  {Yt; t>___0} is right continuous. Then, 

Y, - Yo = A,  + Y /  + Y:  + Y:  , t > O 

where a(At; t>=O), a(Yt:; t>=O), tr(Y:; t>=O), a(Ytd; t>O) are conditionally inde- 
pendent given vT'=a(Xt;  t_>0) and the following hold: 

a) A = {A t; t__> 0} is an additive functional of the Markov process X. 
b) Y :=  {Y/; t>__0} is a purely discontinuous process whose jump times are 

fixed given ~,, or more precisely, 

Y/=Z v~ 1~0,,1(~) 
i 

where V1,V2, 1/3 . . . . .  are conditionally independent given ~ ,  and for each i, 
T~ is either a constant or a stopping time for X. 
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c) yc=  {y:; t=>0} is a Gaussian process on (IR m, ~l m) over(f2, ~q~, Q(co, .))for 
any co~O. 

d) yd = { ytd; t > 0} is a stochastically continuous L&y process with independent 
increments without a G aussian component over-(g2, ~ ,  Q go,.)). 

(3.13) Corollary. Let M~ be defined as in (1.10). 

a) The "fixed" discontinuities {Ti} described in (3.12b) are the points of dis- 
continuity of the non-decreasing function 

t--+ ~ [M~ldy. 
IlylJe[o, l] 

b) I f  N~ y = E [exp ['i(y, A t + Y: + Yta)] [X], y ~ F, then 

Nty(o))=exp[i(At(o)),y)_�89 ,y)+ S (eitX,,) 1 i(x,y) ] B,(o), dx)] 
1+ llxlI ~ : 

where Ct(co) is a non-negative definite symmetric operator on F and Bt(o),') is a 
measure on (F, ~ )  satisfying 

I ?  II - l + l l x l l  2 

Furthermore, {Ct; t>0} is a continuous additive functional of X for which Ct-C~ 
is non-negative for t > u; and {Bt (A); t > 0} is a non-decreasing continuous additive 
functional of X for each R e :  

We shall give a finer analysis of the structure of Y later after we introduce the 
proper machinery. 

4. A Canonical Construction 

Suppose we are given an integer m, a measurable space (E, ~), and a semi- 
Markov transition function {Q~,,; O<=s<t< + ec} on (E,g,~-). Our object is to 
construct a Markov additive process (X, Y) with these elements so as to render 
the structure presented in Section 3 clear. This we will be able to do under certain 
conditions. 

Define 

(4.1) Ks,,(x,A)=Q~a(x,A xF) ,  

(4.2) L~,t(x,A)= ~ei~'"Y)Q,,,(x,A xdy'), yeF. 

We assume the following hold: 

(4.3) a) There exists a probability space (~o, ,~O, pO) and functions X t e ~ ~  
such that X = {Xt; t > 0} is a Markov process over (f2 ~ ~ o ,  pO) with transition 
function Ks,,; 

b) For each xeE, {x}e~; and there is a countable family N e d  ~ such that 
o-(~)  = e ;  

c) For any countable set T which is dense in Is, t] we have a(X,; s<u<t)= 
a(X,;  u~ T). 
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For any fixed y6F, {L~,t; O<s<t<= + oo} is a semi-group of transition opera- 
tors which is subordinate to {K~,t; 0 = s < t <  + ~}.  By (4.3a) we have a Markov 
process X, and conditions (4.3 b) and (4.3 c) insure the existence of a multiplicative 
functional {M~r; t_>0} of X which generates {Q~,,} (cf. BG III.2.3 for the detailed 
description whose adaptation to the present case we omit). 

For fixed ~o~ ~ construct a probability measure Q(oP, .) on f2 ~ = F  t~ 
jd~=ffto,++] and functions Yt: f2t ~ F ,  Yt~offl/o~, so that 

Q (c~ ~ do)) exp [i(Yt ( ~o~ ) - Yo (o)~), y)] = Ut ~ (c~ ~ ) 

for each yeF; t>O. Since Mf is a multiplicative functional which is a charac- 
teristic function in y, this is possible. 

Finally let 
f2 = f2 ~ x f2 l, d / /=  Jd ~ x X i, 

and define P as the unique probability measure on J / /which satisfies 

P(A x B)= ~ P~176 Q(o9 ~ B) 
A 

for each Ae;Cd ~ B e ~  1. Extend the definitions of X, and Yt onto f2 in the natural 
manner. Then, (X, Y) = {X, Yt; t > 0} is a Markov additive process over (f2, d///, P) 
with Q as the semi-Markov transition function. (We omit the proof.) 

We close this account with some examples. 

(4.4) Example. Let X be a regular step process over (f2, ~/, P) with state space 
(E, ~) and suppose t ~ Y~ is right-continuous, non-decreasing. Then, in the decom- 
position given in (3.12) the Yt c term is missing and each of t ~ At, t ~ Y~f, t ~ Yt d is 
non-decreasing. Define 

"ct=inf {s: Y~ > t}. 

Then, if we define X, = X,,, we obtain a process which is in general non-Markovian. 
Such a process is called a semi-Markov process (cf. [3, 9, 14, t7]). 

(4.5) Example. Let Y be a Brownian motion over (f2, J//, P) with state space (IR, ~). 
Let X be a diffusion on (IR, ~)  obtained from Ythrough a stochastic integral. Then 
X is a Markov process and (X, Y) is a Markov additive process. If the diffusion X 
is observed, then Y can be written 

Y t =  A t + Yt r 

where {A+} is an additive functional of X and Yt c is obtained from a Brownian 
motion I 7 independent of X via the time change 

r :=  

where {Bt} is a continuous non-decreasing additive functional of the diffusion X. 

This example may be helpful if the same Brownian motion Y is used to define 
two diffusions X l, X z and X t can be observed. Then, given X a, we first consider 
the conditional structure of Y and then use this to make inferences about X z. 
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