Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 85-93 (1972) © by Springer-Verlag 1972

Markov Additive Processes. I*

Erhan Çinlar

1. Introduction

Our notation and terminology follows Blumenthal and Getoor [1]. When referring to it we write, for example, BG II.7.4 to mean expression (or theorem or statement) (7.4) in chapter II of [1]. We recall some of the basic particulars as follows. If (F, \mathcal{F}) and (G, \mathcal{G}) are measurable spaces and a function $f: F \to G$ is measurable relative to \mathcal{F} and \mathcal{G} then we write $f \in \mathcal{F}/\mathcal{G}$; if $G = \mathbb{R}$, $\mathcal{G} = \mathbb{R}$ then we abbreviate this and write $f \in \mathcal{F}$; if $f \in \mathcal{F}$ is also bounded then we write $f \in b\mathcal{F}$. By $\sigma(\cdot)$ is meant the σ -algebra generated by (\cdot) . Let (F, \mathcal{F}) and (G, \mathcal{G}) be two measurable spaces. A mapping $N: F \times \mathcal{G} \to [0, 1]$ is called a transition probability from (F, \mathcal{F}) into (G, \mathcal{G}) if a) $A \to N(x, A)$ is a measure on \mathcal{G} for fixed $x \in F$, and b) $x \to N(x, A)$ is in $b\mathcal{F}$ for any fixed $A \in \mathcal{G}$. If N is a transition probability from (F, \mathcal{F}) into itself and $f \in b\mathcal{F}$, then we write

(1.1)
$$Nf(x) = N(x, f) = \int N(x, dy) f(y), \quad x \in F.$$

Then, $Nf \in b\mathcal{F}$ and $f \to Nf$ is a positive linear contraction on the Banach space (F, \mathcal{F}) with the supremum norm.

Let (E, \mathscr{E}) be a measurable space, T a subset of $[0, +\infty]$ containing the origin. Let Ω be an arbitrary set, \mathscr{M} a σ -algebra of subsets of Ω , $\{\mathscr{M}_t; t \in T\}$ an increasing family of sub- σ -algebras of \mathscr{M} , and P a probability measure on \mathscr{M} . Let $\{X_t; t \in T\}$ be a stochastic process over (Ω, \mathscr{M}, P) with values in (E, \mathscr{E}) and let $\{Y_t; t \in T\}$ be a stochastic process over (Ω, \mathscr{M}, P) with values in $(F, \mathscr{F}) = (\mathbb{R}^m, \mathscr{R}^m)$ for some $m \ge 1$. We define $\mathscr{K}_{s,t} = \sigma(X_u; u \in T, s \le u \le t)$ for $s, t \in T; \mathscr{K}_t = \mathscr{K}_{0,t}$ for $t \in T; \mathscr{H} = \sigma(X_u; u \in T)$; and similarly, $\mathscr{L}_t = \sigma(X_u, Y_u; 0 \le u \le t, u \in T)$ for $t \in T$, and put $\mathscr{L} = \sigma(X_u, Y_u; u \in T)$.

(1.2) Definition. A family $\{Q_{s,t}; s < t, s, t \in T\}$ of transition probabilities from (E, \mathscr{E}) into $(E \times F, \mathscr{E} \times \mathscr{F})$ is called a semi-Markov transition function on $(E, \mathscr{E}, \mathscr{F})$ provided that

$$Q_{s,t}(x, A \times B) = \int_{E \times F} Q_{s,u}(x, dy \times dz) Q_{u,t}(y, A \times (B-z))$$

for any s < u < t, s, u, $t \in T$, $x \in E$, $A \in \mathscr{E}$, $B \in \mathscr{F}$ where $B + a = \{b + a : b \in B\}$ for any $a \in F$.

Given a semi-Markov transition function $Q_{s,t}$ on $(E, \mathscr{E}, \mathscr{F})$ the formula

(1.3)
$$P_{s,t}(x, y; A \times B) = Q_{s,t}(x, A \times (B-y))$$

defines a Markov transition function $P_{s,t}$ on $(E \times F, \mathscr{E} \times \mathscr{F})$, which is translation invariant in the second variable and vice versa.

^{*} Supported in part by the National Science Foundation grant GK-4196.

⁷ Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 24

E. Çinlar:

(1.4) Definition. $(X, Y) = \{X_t, Y_t; t \in T\}$ is a Markov additive process with respect to $\{\mathcal{M}_t; t \in T\}$ and with semi-Markov transition function $Q_{s,t}$ provided that (X, Y) be a Markov process with respect to $\{\mathcal{M}_t; t \in T\}$ (in the sense of BG I.1.1) whose transition function $P_{s,t}$ satisfies (1.3).

Let (X, Y) be a Markov additive process with respect to $\{\mathcal{M}_t; t \in T\}$; then (X, Y) is a Markov additive process with respect to $\{\mathcal{L}_t; t \in T\}$ also. Following are some of the immediate consequences of the Definition (1.4). We omit the proofs (most of which may be found in [5]). Throughout we take $T = [0, +\infty]$; the results below need only trivial alterations for general T, and if $T = \{0, 1, ...\}$ most of these results are well known.

(1.5) The process $X = \{X_t; t \in T\}$ is a Markov process with respect to $\{\mathcal{M}_t\}$ with state space (E, \mathscr{E}) and transition function

$$K_{s,t}(x,A) = Q_{s,t}(x,A \times F);$$

 $s < t, x \in E, A \in \mathscr{E}$.

(1.6) For any $t \ge 0$, if $W \in b \sigma(X_u, Y_u - Y_t; u \ge t)$, then

 $E[W|\mathcal{M}_t] = E[W|X_t].$

(1.7) For any s < t and $f \in b \mathscr{F}$ we have

$$E[f(Y_t - Y_s)|\mathscr{K}] = E[f(Y_t - Y_s)|\mathscr{K}_{s,t}].$$

(1.8) For any integer $n \ge 1, 0 \le t_0 < t_1 < \cdots < t_n$, and $h_1, \dots, h_n \in b \mathscr{F}$ we have

$$E\left[\prod_{i=1}^{n}h_{i}(Y_{t_{i}}-Y_{t_{i-1}})|\mathscr{K}\right]=\prod_{i=1}^{n}E\left[h_{i}(Y_{t_{i}}-Y_{t_{i-1}})|\mathscr{K}\right],$$

that is, given the process X, Y is a process with independent increments.

(1.9) Let $A_t = E[Y_t - Y_0|\mathscr{K}]$. Then $A = \{A_t; t \ge 0\}$ is an additive functional of X. (1.10) Let $M_t^y = E[\exp[i(Y_t - Y_0, y)]|\mathscr{K}]$ where (y', y) is the usual inner product in F. Then, for any fixed $y \in F$, $\{M_t^y; t \ge 0\}$ is a multiplicative functional of X.

The name Markov additive process is supposed to suggest its two most important properties: (1.5) and (1.8). Ezhov and Skorohod [5] called it a Markov process with homogeneous second component and characterized the Y process by using characteristic functions under the assumption of continuity for $(y, t) \rightarrow M_t^y$ (cf. [5] Theorem 1). They also give a complete characterization of M_t^y , and therefore of $\{Y_t; t \ge 0\}$, in the case when X is a regular step process (with all states holding).

A more detailed account is given in [3] in a more modern setting; [3] can be read independent of this one. If the state space E is finite, what we have becomes what Neveu [12] called an *F*-process. In the discrete parameter case certain specific problems (such as central limit theorems, hitting times) associated with Markov additive processes were discussed by Volkov [18], Miller [10, 11], Keilson and Wishart [7, 8], Pyke [14], Pyke and Schaufele [15, 16], and Çinlar [2]. In the case of continuous time parameter, Fukushima and Hitsuda [6], Keilson and Wishart [7], and Pinsky [13] have given central limit theorems for the second component in the case where E is finite. In a different direction, where $F = \mathbb{R}$ and Y non-decreasing, a random time change (with Y as time) gives us semi-Markov processes. These were introduced by Lévy [9], Smith [17].

In the next section we show that, given a semi-Markov transition function $Q_{s,t}$, a Markov additive process (X, Y) exists if and only if the Markov process Xexists. In Section 3 we show the existence of a regular version of the conditional probability $P\{\cdot | \mathcal{K}\}$; and using it the process Y is characterized completely. In Section 4 we consider the construction of the conditional distribution of $Y_t - Y_s$ given \mathcal{K} directly from the transition function $Q_{s,t}$. When this construction is possible we have a nice canonical construction for the (X, Y) process.

2. Existence of Markov Additive Processes

Let $\{Q_{s,t}; s, t \in T\}$ be a semi-Markov transition function on $(E, \mathscr{E}, \mathscr{F})$ and define $P_{s,t}$ and $K_{s,t}$ as in (1.3) and (1.5) respectively.

We let \mathscr{T} be the class of all finite subsets of the parameter set T; and define $\varphi_J: E^T \to E^J, \psi_J: F^T \to F^J, \pi_J: E^T \times F^T \to E^J \times F^J$ to be the natural projections defined for $J \in \mathscr{T}$.

(2.1) **Theorem.** Let μ be a probability measure on $\mathscr{E} \times \mathscr{F}$ and put $\nu(A) = \mu(A \times F)$, $A \in \mathscr{E}$. Then, there exists a Markov additive process with the initial distribution μ and semi-Markov transition function $Q_{s,t}$ if and only if there exists a Markov process with the initial distribution ν and transition function $K_{s,t}$.

Proof. Necessity follows from the statement (1.5). To prove the sufficiency, suppose there exists a Markov process with the initial distribution v and transition function $K_{s,t}$. Then there is a Markov process of the function space type equivalent to it; that is, a Markov process $\hat{X} = \{\hat{X}_t; t \in T\}$ over the probability space $(E^T, \mathscr{E}^T, \hat{P})$ so that $\hat{X}_t = \varphi_{(t)}$ and \hat{P} is the limit of the projective system of probability measures $\{\hat{P}_t; t \in \mathcal{T}\}$ where

$$(2.2) \quad \hat{P}_J(A) = \int v(dx_0) \int K_{0,t_1}(x_0, dx_1) \int \cdots \int K_{t_{n-1},t_n}(x_{n-1}, dx_n) I_A(x_1, \dots, x_n)$$

for any $A \in \mathscr{E}^J$ if $J = \{t_1, \ldots, t_n\} \in \mathscr{T}$.

Let us define, for $A \in \mathscr{E}^J \times \mathscr{F}^J$, $J = \{t_1, \dots, t_n\} \in \mathscr{T}$,

$$(2.3) \quad P_J(A) = \int \mu(dx_0) \int P_{0,t_1}(x_0, dx_1) \int \cdots \int P_{t_{n-1},t_n}(x_{n-1}, dx_n) I_A(x_1, \dots, x_n).$$

This defines a projective system of probability measures $\{P_J; J \in \mathcal{T}\}$. Let P be the finitely additive set function on the (finite dimensional) cylinder sets C of $\mathcal{M} = \mathscr{E}^T \times \mathscr{F}^T$ defined by putting

(2.4)
$$P(C) = P_J(C_0) \quad \text{if } C = \pi_J^{-1}(C_0), \quad C_0 \in \mathscr{E}^J \times \mathscr{F}^J.$$

For any fixed cylinder set B of \mathscr{F} , the mapping $A \to P(A \times B)$ is finitely additive on the cylinder sets of \mathscr{E}^T . Further, since $K_{s,t}(x, A) = P_{s,t}(x, y; A \times F) = Q_{s,t}(x, A \times F)$ for all $s, t \in T, x \in E, A \in \mathscr{E}$, we have

$$P(A \times B) \leq P(A \times F^T) = P(A)$$

for any cylinder A of \mathscr{E}^T by (2.2) and (2.3). Hence, if the cylinders $A_n \downarrow \emptyset$ then $P(A_n \times B) \downarrow 0$ since $\hat{P}(A_n) \downarrow 0$. Thus, $A \to P(A \times B)$ is countably additive on the algebra of finite dimensional cylinders of \mathscr{E}^T , and therefore there is a unique measure $A \to Q(A, B)$ on \mathscr{E}^T which coincides with $A \to P(A \times B)$ on the cylinders of \mathscr{E}^T .

Now $B \to Q(A, B)$ is finitely additive for any cylinder A in \mathscr{E}^T . This implies, through the monotone class theorem, that $B \to Q(A, B)$ is finitely additive for any Ain \mathscr{E}^T . By the special nature of $(\mathbb{R}^m, \mathscr{R}^m)$, Kolmogorov extension theorem applies to show the existence of a measure $B \to P(A, B)$ on \mathscr{F}^T wich is the unique extension of $B \to Q(A, B)$ for each fixed $A \in \mathscr{E}^T$. Another application of the monotone class theorem shows that $A \to P(A, B)$ is a measure on \mathscr{E}^T for any $B \in \mathscr{F}^T$. Thus, by standard theorems, there is a unique measure \overline{P} on $\mathscr{M} = \mathscr{E}^T \times \mathscr{F}^T$ so that $\overline{P}(A \times B) =$ P(A, B) for all $A \in \mathscr{E}^T$, $B \in \mathscr{F}^T$. Obviously $\overline{P}(C) = P(C)$ for any cylinder $C \in \mathscr{M}$. Therefore, \overline{P} is the unique limit of the projective system $\{P_J; J \in \mathscr{F}\}$ defined by (2.3).

Finally, let $\Omega = E^T \times F^T$ and for each $\omega = (\omega_1, \omega_2) \in \Omega$ define

$$X_t(\omega) = \varphi_{(t)}(\omega_1), \quad Y_t(\omega) = \psi_{(t)}(\omega_2).$$

Then, $(X, Y) = \{X_t, Y_t; t \in T\}$ is a Markov process over $(\Omega, \mathcal{M}, \overline{P})$ with state space $(E \times F, \mathscr{E} \times \mathscr{F})$ and transition function $P_{s,t}$. That (X, Y) is a Markov process over $(\Omega, \mathcal{M}, \overline{P})$ adapted to $\{\sigma(X_u, Y_u; u \leq t); t \in T\}$ with semi-Markov transition function $Q_{s,t}$ follows from Definition (1.4). This completes the proof.

A second canonical construction will be given in Section 4; it will be a more intuitive one but is possible only under certain, however slight, restrictions.

3. Characterization of the Additive Part Y

Let (X, Y) be a Markov additive process over (Ω, \mathcal{M}, P) with X taking values in (E, \mathscr{E}) and Y in (F, \mathscr{F}) , with parameter set $T = [0, +\infty]$. We assume that, almost surely, $t \to Y_t$ is right continuous. We will first show that there exists a regular version Q^w of $P\{\cdot | \mathcal{K}\}(w)$ on \mathscr{L} . Then, by (1.8), Y is a process with independent increments on the probability space $(\Omega, \mathscr{L}, Q^w)$ for any fixed $w \in \Omega$. This enables us to use the well-known results about such processes to obtain a complete characterization of Y, thus generalizing Theorem 1 of [5]. Of course, the existence of a regular version Q is also of independent interest.

Let $\hat{\Omega} = E^T \times F^T$ and define a mapping $\pi: \Omega \to \hat{\Omega}$ by putting

(3.1)
$$\pi \omega(t) = (X_t(\omega), Y_t(\omega)), \quad t \in T, \ \omega \in \Omega.$$

For $\hat{\omega} = (w, z) \in \hat{\Omega}$ define $\hat{X}_t(\hat{\omega}) = w(t)$, $\hat{Y}_t(\hat{\omega}) = z(t)$ for all $t \in T$. Define $\hat{\mathscr{L}} = \sigma(\hat{X}_t, \hat{Y}_t; t \in T)$, $\hat{\mathscr{K}} = \sigma(\hat{X}_t; t \in T)$, and $\hat{P} = P \pi^{-1}$.

(3.2) **Lemma.** There exists a regular version \hat{Q} of $\hat{P}\{\cdot | \hat{\mathcal{K}}\}$ on $\hat{\mathcal{L}}$.

Proof. For $s < t, B \in \mathcal{F}, w \in \hat{\Omega}$ let

(3.3)
$$\mu(w, B) = (\hat{P}\{Y_0 \in B \mid \hat{\mathcal{K}}\})(w),$$

(3.4)
$$G_{s,t}(w,B) = (\hat{P}\{\hat{Y}_t - \hat{Y}_s \in B \ \mathscr{K}\})(w)$$

be selected so that $B \to \mu(w, B)$ and $B \to G_{s,t}(w, B)$ be both probability measures for any fixed w; (this is possible by the special nature of $(\mathbb{R}^m, \mathscr{R}^m)$). Let

$$M_{s,t}^{y} = \hat{E} \{ \exp \left[i(Y_{t} - Y_{s}, y) \right] | \mathscr{K} \}$$

for $0 \leq s \leq t$, $y \in F$. Then, for any $y \in F$, s < t < u

(3.5)
$$M_{s,t}^{y}(w) M_{t,u}^{y}(w) = M_{s,u}^{y}(w)$$

for all w except in some null set N(s, t, u, y). By the right continuity of $Y, t \to M_{s,t}^y$ is right continuous. Then, the results of Walsh [19] apply (though our $M_{s,t}^y$ are complex valued instead of his real-valued case, all the proofs go through with obvious modifications) to show that the exceptional set can be taken to be independent of s, t, u. So, there is a null set N_y such that (3.5) holds for all s, t, u whenever $w \notin N_y$. Repeating this for each y in a suitably chosen countable set which is dense in F, and using the continuity properties of characteristic functions, we conclude that (3.5) holds for all s, t, u, y provided that w is not in a certain null set N.

We have thus shown that there is a null set N such that, for $w \notin N$,

$$\int G_{s,t}(w, dy) G_{t,u}(w, B-y) = G_{s,u}(w, B)$$

for all s, t, u, B. We now re-define $G_{s,t}(w, B)$ for $w \in N$ so that $G_{s,t}(w, \{0\}) = 1$ for all s, t.

Then, if for fixed $w \in \hat{\Omega}$ we define

$$Q_J(w, A) = \int_{\mu} (w, dx_0) \int G_{0, t_1}(w, dx_1 - x_0) \int \cdots \int G_{t_{n-1}, t_n}(w, dx_n - x_{n-1}) I_A(x_1, \dots, x_n)$$

for each finite subset $J = \{t_1, ..., t_n\}$ of $T = [0, +\infty]$ and set $A \in \mathscr{F}^J$, it follows that $\{Q_J(w, \cdot); J \text{ is finite subset of } T\}$ is a projective system of measures over (F, \mathscr{F}) , and by the Kolmogorov extension theorem, has a projective limit $\overline{Q}(w, \cdot)$ on \mathscr{F}^T . For $A \in \mathscr{E}^T$ and $B \in \mathscr{F}^T$ and $\hat{\omega} = (w, z) \in \hat{\Omega}$ we put

(3.6)
$$\tilde{Q}(\hat{\omega}, A \times B) = \varepsilon_w(A) \, \overline{Q}(\hat{\omega}, B)$$

where ε_w is the Dirac measure concentrated at w. Finally, let $\hat{Q}(\hat{\omega}, \cdot)$ be the restriction to $\hat{\mathscr{L}}$ of the unique extension of $\tilde{Q}(\hat{\omega}, \cdot)$ onto $\mathscr{E}^T \times \mathscr{F}^T$. There remains only to show that \tilde{Q} is the desired version.

By their definitions (3.3), (3.4) the functions $\mu(\cdot, B)$ and $G_{s,t}(\cdot, B)$ are both in $\hat{\mathcal{X}}$ for any $B \in \mathcal{F}$. Hence, being essentially a product of measurable functions, $Q_J(\cdot, A)$ is in $\hat{\mathcal{X}}$ for any $A \in \mathcal{F}^J$, J finite. By the monotone class theorem, since cylinders with base in \mathcal{F}^J generate \mathcal{F}^T , the function $\overline{Q}(\cdot, A)$ is in $\hat{\mathcal{X}}$ for all $A \in \mathcal{F}^T$. Then, (3.6) and a second application of the monotone class theorem give the $\hat{\mathcal{X}}$ measurability of $\hat{Q}(\cdot, A)$ for any $A \in \hat{\mathcal{L}}$.

Applying (1.8) to the Markov additive process (\hat{X}, \hat{Y}) over $(\hat{\Omega}, \hat{\mathscr{L}}, \hat{P})$ we have, in view of (3.3), (3.4),

$$\overline{Q}(\boldsymbol{\cdot}, B) = \widehat{P}\{(\widehat{Y}_s, \dots, \widehat{Y}_t) \in B_0 | \hat{\mathscr{K}}\}$$

for any finite $J = \{s, ..., t\}$ and cylinder set $B \in \mathscr{F}^T$ with base $B_0 \in \mathscr{F}^J$. Applying the monotone class theorem twice and noting (3.6) we see that

$$\hat{Q}(\cdot, A) = \hat{P}\{A \mid \hat{\mathcal{K}}\}, \quad A \in \hat{\mathcal{L}}.$$

E. Çinlar:

(3.7) **Theorem.** There exists a regular version Q of $P\{\cdot | \mathcal{K}\}$ on \mathcal{L} .

Proof. It is easy to show that the mapping π defined by (3.1) is in both \mathscr{K}/\mathscr{K} and \mathscr{L}/\mathscr{L} ; and further that, for any $f \in \mathscr{K}$ (respectively $f \in \mathscr{L}$), there is $g \in \mathscr{K}$ (respectively $g \in \mathscr{L}$) such that $f = g \circ \pi$.

For $f \in b \mathscr{L}$, $g \in b \mathscr{\hat{L}}$, $f = g \circ \pi$, define

(3.8)
$$Q(\omega, f) = Q(\pi \, \omega, g)$$

where \hat{Q} is the regular version of $\hat{P}\{\cdot | \hat{\mathscr{K}}\}$ on $\hat{\mathscr{L}}$ constructed in Lemma (3.2) above. Noting that $\omega \to Q(\omega, f)$ is the composition of $\hat{\omega} \to \hat{Q}(\hat{\omega}, g)$ and $\omega \to \hat{\omega} = \pi \omega$ which are in $\hat{\mathscr{K}}$ and $\mathscr{K}/\hat{\mathscr{K}}$ respectively, we see that $Q(\cdot, f) \in \mathscr{K}$. For fixed $\omega \in \Omega$, $Q(\omega, \cdot)$ is non-negative, and finitely additive. Further, if $\{f_n\}$ is a non-decreasing sequence of functions in $b\mathscr{L}$ and if $f_n = g_n \circ \pi$, $f = \lim_{n \to \infty} f_n \in b\mathscr{L}$, $f = g \circ \pi$, then

 $\lim g_n = g \quad \text{on } \pi \Omega, \quad \hat{P}(\pi \Omega) = 1;$

and

$$\lim Q(\omega, f_n) = \lim \hat{Q}(\pi \, \omega, g_n) = \hat{Q}(\pi \, \omega, g) = Q(\omega, f)$$

Therefore, $Q(\omega, \cdot)$ is a measure on \mathscr{L} .

To complete the proof we need to show that, for any $f \in b \mathscr{K}$ and $h \in b \mathscr{L}$,

(3.9)
$$\int f(\omega) Q(\omega, h) P(d\omega) = \int f(\omega) h(\omega) P(d\omega).$$

Let $f = g \circ \pi$, $h = k \circ \pi$ for $g \in b \hat{\mathcal{K}}$, $k \in b \hat{\mathcal{L}}$. Then

(3.10)
$$\int f Q h dP = \int (g \circ \pi) (\hat{Q} k \circ \pi) dP$$
$$= \int g \hat{Q} k d(P \pi^{-1}) = \int g \hat{Q} k d\hat{P}$$

since $Qh(\omega) = Q(\omega, h) = \hat{Q}(\pi \omega, k) = \hat{Q}k \circ \pi(\omega)$ and $\hat{P} = P\pi^{-1}$. Since $g \in \hat{\mathcal{K}}$,

(3.11)
$$\int g \hat{Q} k \, d\hat{P} = \int g k \, d\hat{P} = \int (g \circ \pi) (k \circ \pi) \, dP = \int f h \, dP$$

Now (3.10) and (3.11) give (3.9).

For fixed $w \in \Omega$, $Y = \{Y_i; t \in T\}$ is a process with independent increments on the probability space $(\Omega, \mathcal{L}, Q(w, \cdot))$. From well-known results we get the following characterization. We omit the proof (cf. Doob [4], Chapter 8 and [5], Theorem 1).

(3.12) **Theorem.** Suppose $Y = \{Y_t; t \ge 0\}$ is right continuous. Then,

$$Y_t - Y_0 = A_t + Y_t^f + Y_t^c + Y_t^d, \quad t \ge 0$$

where $\sigma(A_t; t \ge 0)$, $\sigma(Y_t^f; t \ge 0)$, $\sigma(Y_t^c; t \ge 0)$, $\sigma(Y_t^d; t \ge 0)$ are conditionally independent given $\mathscr{K} = \sigma(X_t; t \ge 0)$ and the following hold:

a) $A = \{A_t; t \ge 0\}$ is an additive functional of the Markov process X.

b) $Y^f = \{Y_t^f; t \ge 0\}$ is a purely discontinuous process whose jump times are fixed given \mathcal{K} , or more precisely,

$$Y_t^f = \sum_i V_i \mathbf{1}_{[0,t]}(T_i)$$

where $V_1, V_2, V_3, ...,$ are conditionally independent given \mathcal{K} , and for each *i*, T_i is either a constant or a stopping time for X.

c) $Y^c = \{Y_t^c; t \ge 0\}$ is a Gaussian process on $(\mathbb{R}^m, \mathscr{R}^m)$ over $(\Omega, \mathscr{L}, Q(\omega, \cdot))$ for any $\omega \in \Omega$.

d) $Y^d = \{Y_t^d; t \ge 0\}$ is a stochastically continuous Lévy process with independent increments without a Gaussian component over $(\Omega, \mathcal{L}, Q(\omega, \cdot))$.

(3.13) **Corollary.** Let M_t^y be defined as in (1.10).

a) The "fixed" discontinuities $\{T_i\}$ described in (3.12b) are the points of discontinuity of the non-decreasing function

$$t \to \int_{\|y\| \in [0,1]} |M_t^y| \, dy.$$

b) If $N_t^y = E\left[\exp\left[i(y, A_t + Y_t^c + Y_t^d)\right] | \mathcal{K}\right], y \in F$, then

$$N_{t}^{y}(\omega) = \exp\left[i(A_{t}(\omega), y) - \frac{1}{2}(C_{t}(\omega), y, y) + \int \left(e^{i(x, y)} - 1 - \frac{i(x, y)}{1 + \|x\|^{2}}\right) B_{t}(\omega, dx)\right]$$

where $C_t(\omega)$ is a non-negative definite symmetric operator on F and $B_t(\omega, \cdot)$ is a measure on (F, \mathcal{F}) satisfying

$$\int \frac{\|x\|^2}{1+\|x\|^2} B_t(\omega, dx) < \infty.$$

Furthermore, $\{C_t; t>0\}$ is a continuous additive functional of X for which $C_t - C_u$ is non-negative for $t \ge u$; and $\{B_t(A); t>0\}$ is a non-decreasing continuous additive functional of X for each $A \in \mathcal{F}$.

We shall give a finer analysis of the structure of Y later after we introduce the proper machinery.

4. A Canonical Construction

Suppose we are given an integer *m*, a measurable space (E, \mathscr{E}) , and a semi-Markov transition function $\{Q_{s,t}; 0 \leq s < t \leq +\infty\}$ on $(E, \mathscr{E}, \mathscr{F})$. Our object is to construct a Markov additive process (X, Y) with these elements so as to render the structure presented in Section 3 clear. This we will be able to do under certain conditions.

Define

(4.1)
$$K_{s,t}(x,A) = Q_{s,t}(x,A \times F),$$

(4.2)
$$L_{s,t}^{y}(x,A) = \int e^{i(y',y)} Q_{s,t}(x,A \times dy'), \quad y \in F.$$

We assume the following hold:

(4.3) a) There exists a probability space $(\Omega^0, \mathscr{K}^0, P^0)$ and functions $X_t \in \mathscr{K}^0/\mathscr{E}$ such that $X = \{X_t; t \ge 0\}$ is a Markov process over $(\Omega^0, \mathscr{K}^0, P^0)$ with transition function $K_{s,t}$;

b) For each $x \in E$, $\{x\} \in \mathscr{E}$; and there is a countable family $\mathscr{B} \subset \mathscr{E}$ such that $\sigma(\mathscr{B}) = \mathscr{E}$;

c) For any countable set T which is dense in [s, t] we have $\sigma(X_u; s \le u \le t) = \sigma(X_u; u \in T)$.

E. Çinlar:

For any fixed $y \in F$, $\{L_{s,t}^{t}; 0 \leq s < t \leq +\infty\}$ is a semi-group of transition operators which is subordinate to $\{K_{s,t}; 0 \leq s < t \leq +\infty\}$. By (4.3a) we have a Markov process X, and conditions (4.3b) and (4.3c) insure the existence of a multiplicative functional $\{M_{t}^{y}; t \geq 0\}$ of X which generates $\{Q_{s,t}^{y}\}$ (cf. BG III.2.3 for the detailed description whose adaptation to the present case we omit).

For fixed $\omega^0 \in \Omega^0$, construct a probability measure $Q(\omega^0, \cdot)$ on $\Omega^1 = F^{[0, +\infty]}$, $\mathscr{K}^1 = \mathscr{F}^{[0, +\infty]}$ and functions $Y_t: \Omega^1 \to F, Y_t \in \mathscr{K}^1/\mathscr{F}$, so that

$$\int Q(\omega^0, d\omega^1) \exp\left[i\left(Y_t(\omega^1) - Y_0(\omega^1), y\right)\right] = M_t^y(\omega^0)$$

for each $y \in F$; $t \ge 0$. Since M_t^y is a multiplicative functional which is a characteristic function in y, this is possible.

Finally let

$$\Omega = \Omega^0 \times \Omega^1, \qquad \mathcal{M} = \mathcal{K}^0 \times \mathcal{K}^1,$$

and define P as the unique probability measure on \mathcal{M} which satisfies

$$P(A \times B) = \int_{A} P^{0}(d\omega^{0}) Q(\omega^{0}, B)$$

for each $A \in \mathscr{H}^0$, $B \in \mathscr{H}^1$. Extend the definitions of X_t and Y_t onto Ω in the natural manner. Then, $(X, Y) = \{X_t, Y_t; t \ge 0\}$ is a Markov additive process over (Ω, \mathcal{M}, P) with Q as the semi-Markov transition function. (We omit the proof.)

We close this account with some examples.

(4.4) Example. Let X be a regular step process over (Ω, \mathcal{M}, P) with state space (E, \mathscr{E}) and suppose $t \to Y_t$ is right-continuous, non-decreasing. Then, in the decomposition given in (3.12) the Y_t^c term is missing and each of $t \to A_t$, $t \to Y_t^f$, $t \to Y_t^d$ is non-decreasing. Define

$$\tau_t = \inf\{s: Y_s > t\}.$$

Then, if we define $\hat{X}_t = X_{\tau_t}$, we obtain a process which is in general non-Markovian. Such a process is called a semi-Markov process (cf. [3, 9, 14, 17]).

(4.5) *Example.* Let Y be a Brownian motion over (Ω, \mathcal{M}, P) with state space $(\mathbb{R}, \mathcal{R})$. Let X be a diffusion on $(\mathbb{R}, \mathcal{R})$ obtained from Y through a stochastic integral. Then X is a Markov process and (X, Y) is a Markov additive process. If the diffusion X is observed, then Y can be written

$$Y_t = A_t + Y_t^c$$

where $\{A_t\}$ is an additive functional of X and Y_t^c is obtained from a Brownian motion \tilde{Y} independent of X via the time change

$$Y_t^c = \tilde{Y}_{B_t}$$

where $\{B_t\}$ is a continuous non-decreasing additive functional of the diffusion X.

This example may be helpful if the same Brownian motion Y is used to define two diffusions X^1 , X^2 and X^1 can be observed. Then, given X^1 , we first consider the conditional structure of Y and then use this to make inferences about X^2 .

References

- 1. Blumenthal, R. M., Getoor, R. K.: Markov Processes and Potential Theory. New York: Academic Press 1968.
- 2. Çinlar, E.: Markov renewal theory. Advances appl. Probab. 1, 123-187 (1969).
- Çinlar, E.: Markov Additive Processes II. Z. Wahrscheinlichkeitstheorie verw. Geb. 24, 95-121 (1972).
- 4. Doob, J. L.: Stochastic Processes. New York: Wiley 1953.
- 5. Ezhov, I. I., Skorohod, A. V.: Markov processes with homogeneous second component: I. Teor. Verojatn. Primen. 14, 1-13 (1969).
- Fukushima, M., Hitsuda, M.: On a class of Markov processes taking values on lines and the central limit theorem. Nagoya math. J. 30, 47-56 (1967).
- Keilson, J., Wishart, D. M. G.: A central limit theorem for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60, 547-567 (1964).
- Keilson, J., Wishart, D. M. G.: Boundary problems for additive processes defined on a finite Markov chain. Proc. Cambridge philos. Soc. 61, 173-190 (1965).
- 9. Lévy, P.: Processus semi-markoviens. Proc. Int. Congr. Math. (Amsterdam) 3, 416-426 (1954).
- 10. Miller, H. D.: A convexity property in the theory of random variables defined on a finite Markov chain. Ann. math. Statistics **32**, 1260–1270 (1961).
- 11. Miller, H. D.: Absorbtion probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge philos. Soc. 58, 286–298 (1962).
- 12. Neveu, J.: Une généralisation des processus à accroissements positifs indépendants. Abh. math. Sem. Univ. Hamburg 25, 36-61 (1961).
- Pinsky, M.: Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 101-111 (1968).
- Pyke, R.: Markov renewal processes: definitions and preliminary properties. Ann. math. Statistics 32, 1231-1242 (1961).
- Pyke, R., Schaufele, R.: Limit theorems for Markov renewal processes. Ann. math. Statistics 35, 1746-1764 (1964).
- Pyke, R., Schaufele, R.: The existence and uniqueness of stationary measures for Markov renewal processes. Ann. math. Statistics 37, 1439–1462 (1966).
- 17. Smith, W. L.: Regenerative stochastic processes. Proc. roy. Soc. London, Ser. A, 232, 6-31 (1955).
- Volkov, I. S.: On probabilities for extreme values of sums of random variables defined on a homogeneous Markov chain with a finite number of states. Teor. Verojatn. Primen 5, 338-352 (1960).
- Walsh, J.B.: The perfection of multiplicative functionals. Lecture Notes Math. 258: Séminaire de Probabilités VI, 233-242 (1972).

E. Çinlar Department of Industrial Engineering Northwestern University Evanston, Illinois 60201 USA

(Received October 1, 1970 / in revised form May 15, 1972)