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On the Barrier Problem for Sine Series 
with Independent Gaussian Coefficients 

E.M. Cabafia 

The barrier problem consisting in estimating the probability (i) is solved when 
the process u(z) belongs to a class of sine series with independent coefficients. 
The solution is obtained by identifying the process u with the positions of a vibrat- 
ing string forced by white noise, for which the same barrier problem has been 
solved in a previous paper ([2]). 

0. Introduction 

The present paper gives an estimate for the probability 

P{ max u(z)>a} (1) 
0_<z_<~z 

that the process u(z), defined as the sum of the series 

u (z) = ~ X. sin n z (2) 
n=l  

with independent centered Gaussian coefficients X., overpasses the barrier a (a > 0) 
on the interval (0, n). 

It is assumed that there exists a constant M such that the variances a. 2 = Var (X.) 
satisfy the inequalities 2 M 

a, < - ~ -  (n = 1, 2,...). (3) 

It is well known that this condition implies the a.s. convergence of the series 
in (2), and also (by Billard's Theorem, cf. [3]) the a.s. continuity of the paths 
of the process u(z), hence the probability in (1) is well defined. 

Further assumptions are also imposed on the variances in order to obtain 
the required estimate; in fact, the process u(z) is identified with the position 
u(n, z) of a vibrating string forced by white noise, and the remaining assumptions 
are introduced in order to render the identification possible. 

1. The Barrier Problem for the Vibrating String 

Let u(t, z) be the position at time t and abscissa z of a vibrating string of 
length L which starts from rest (u(O,z)=u,(O,z)=O, O<_z<_L), is tied at both 
ends (u (t, 0)= u(t, L)=0, t > 0), and satisfies the equation 

9 2 

urn(t, z)=Uzz(t, z)+ z) 
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where fl represents an ordinary plane Brownian motion (and hence the forcing 
term is what we call a plane white noise). (See [1].) 

We have obtained in [2] an estimate for the probability 

P{ max u(t, z)>a} 
"O<_z<~L 

which can be modified with no additional trouble to cover the case in which fl 
is related to a canonical measure d# ([1], w 1.2.), that is, when d# takes the place 
of the Lebesgue measure along the length of the string, and the covariance of 
fi(A), fl(B) for two given plane sets is consequently equal to ~ dt d#(z). 

A n B  

The length L of the string and the time t in which the position u(t, z) is observed 
will both be set equal to ~, and the measure d/~ will be assumed to be symmetric 
with respect to zc/2. 

The formulation of the results in [2] adapted to a #-Brownian motion is now 
the following, assuming the a.s. continuity (or at least the separability) of u(t, "): 

1 1 y2 

(i) if ~b~(o'2)=~0/5~o_ ~ ~ e 2~dy denotes the probability that a centered 

L 

Gaussian variable be greater than a, and # = ~ dp (z), then 
0 

P{ sup u(t, z)>a} <4~b~(t#), 
O<z<_L 

and 

(ii) given any ~ > 0, there exists a constant A~ such that 

P{ sup u(t,z)>a}<=A~dp~(g(t)+6), (4) 
O<_z<=L 

where g(t)= max Var u(t, z). 
O<_z<_L 

When the particular assumptions regarding L, t and d# are applied, the in- 
equality in (i) reduces to 

P{ max u(n, z)>a} <4~b~(rc#). (5) 
O__<z<~ 

2. Representation of Sine Series 

The process u(=, z) can be expanded in a sine series 

u (n, z) ~ ~ b. sin n z 
n = l  

with 
7[ 

b . = - -  5 u(~, z) sin nzdz, 
/~0 

and since u(~, z) can be written in the integral form 

u(=, z)= 5S r 
~ - z ~ + ~ + z  
z - ~ $ ~ - ~ - z  

(6) 
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then 
b 2 ~-I~-~1 4 

. = ~ -  II d fl (z, 0 5 sin n z dz =- fl  sin n ~ sin n r dfl(~, 0 
[ = - ( r  n / ~  

thus the Fourier coefficients b, are centered Gaussian variables with covariances 

Cov(bm,b,) = 16 ~osinmtsinntdt~sinmzsinnzd#(z)  
//n n g 2  0 

0 if m #: n (7) 

n~-~-n o ~ sin 2 n z dp (z) if m = n. 

We conclude that the Fourier series (6) has independent centered Gaussian 
coefficients with variances given by (7). In order to represent u(z) by means of 
u(n, z), that is, in order that the Gaussian process defined by (2) have the same 
distribution as u(rc, z), it is necessary and sufficient that 

2 8 ~ .  2 zd#(z) .  (8) a n = ~ ~ sin n 
n TC o 

Ifa  finite measure dp such that (8) holds does exist, the condition (3) is fulfilled, 
and this justifies its assumption. Moreover, if we set 

~/2 

h(z)= J" dlu(O 
z 

and 
z 

H(z)-- ~ h(O d~, 
o 

a plain calculation shows that (8) implies 

2 16 SH(z)cos2nzdz  O" n - -  
7g 0 

(n = 1, 2,...). (9) 

On the other hand, the variance function of the process u(z) is 

V(z)= Var(u(z)) = ~ a 2 sin z n z-- �89 ~ a2 _ �89 o.2 cos 2n z, 
n = l  n = l  n = l  

thus 

2 - ~ S  o V(z)cos2nzdz (n=1 ,2  . . . .  ) (10) 

and it follows that if(8) holds, then V(z) - 4H(z) vanish a.e. because V(0) = H(0) = 0, 
and for all z in (0, re/2) 

7~ TC 

16" 
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and this joined with (9) and (10) implies that all the Fourier coefficients of V ( z ) -  
4H(z) vanish. 

Conversely, if V(z) has a.e. a non-increasing derivative v (z), then the measure 
d~ = - d v / 4  provides the representation (8). 

3. Conclusions 

Theorem 1. Let u(z) be defined by (2) with independent centered Gaussian 
coefficients X .  having variances a~=Var(X.)  which satisfy (3). Furthermore the 

sin 2 n z has a.e. a bounded non-increasing derivative variance function V(z)= a. 2 

v(z). Then "= ~ 

(where the function ~, is defined above) and for each tS>O there exists a constant 
Ao such that the same probability is also bounded by 

A~(o ,(V(zr/2) + 5). 

The proof follows readily from the preceding context. The former assertion 
v(0)- v(zr) v(0) 

is a consequence of (5), with d~ t=-dv /4 ,  hence # =  4 2 For 

the latter one use (4) and notice that V(lr/2)= max V(z). 
O < z < ~  

Theorem 2. Let u(z) and V(z) be defined as in Theorem 1 and let V(z) have a.e. 
a derivative v (z) of bounded variation with canonical decomposition 

v(z)= ~(z)-  v_ (z) 

as a difference of two non-increasing functions. The symmetry of V with respect 
to ~z/2 implies that for O< z<  Tz/2 

and ~, v_ will be chosen satisfying the analogous property. Then for non-negative 
?t, a such that ?t + a = a, 

and for each 6 >0  there exists a constant A~ such that the same probability is also 
bounded by 

with 
z z 

V(z)= iv(0d~, v(z)= ~v(Odr 
0 0 
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Let us define the sequences 

-2 = _ sin 2 n z d~ (z), 
f n  n 7~ 0 

2 
_g2 = - . .~-_ ~ sin 2 n zdv(z), 

and notice that,  since the equalities 

~z 

sm2.zdv( ) 
/'/ 7~ o 

hold, then 
2 - - 2  2 

O'n - -  fin - -  f n  �9 

Let us consider  now a new sequence X n of independent  centered Gauss ian  
variables,  also independent  of the sequence Xn, with variances Var(_X_n)=O -2, 
and let us set 

u (z) = ~ X n sin n z, 
n = l  

therefore 

fi(z)=u(z) + u(z)= ~ (Xn + X_n) sin n z 
n= 1 

has coefficients X n = X ,  + X_, with variances -2 (7" n . 

We finally not ice  that  

{om<_ax~ u(z)>a} ( o ~ z ~  = max  fi(z)>fi} u {omaX . . . .  [-u(z)]>a}_ 

and use the est imates of  T h e o r e m  1 for the probabil i t ies  of  the events at the right 
hand  side of  the inclusion. 
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