On the Barrier Problem for Sine Series with Independent Gaussian Coefficients

E.M. Cabaña

The barrier problem consisting in estimating the probability (1) is solved when the process $u(z)$ belongs to a class of sine series with independent coefficients. The solution is obtained by identifying the process u with the positions of a vibrating string forced by white noise, for which the same barrier problem has been solved in a previous paper ([2]).

0. Introduction

The present paper gives an estimate for the probability

$$
\begin{equation*}
P\left\{\max _{0 \leqq z \leqq \pi} u(z)>a\right\} \tag{1}
\end{equation*}
$$

that the process $u(z)$, defined as the sum of the series

$$
\begin{equation*}
u(z)=\sum_{n=1}^{\infty} X_{n} \sin n z \tag{2}
\end{equation*}
$$

with independent centered Gaussian coefficients X_{n}, overpasses the barrier $a(a>0)$ on the interval $(0, \pi)$.

It is assumed that there exists a constant M such that the variances $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$ satisfy the inequalities

$$
\begin{equation*}
\sigma_{n}^{2} \leqq \frac{M}{n^{2}} \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

It is well known that this condition implies the a.s. convergence of the series in (2), and also (by Billard's Theorem, cf. [3]) the a.s. continuity of the paths of the process $u(z)$, hence the probability in (1) is well defined.

Further assumptions are also imposed on the variances in order to obtain the required estimate; in fact, the process $u(z)$ is identified with the position $u(\pi, z)$ of a vibrating string forced by white noise, and the remaining assumptions are introduced in order to render the identification possible.

1. The Barrier Problem for the Vibrating String

Let $u(t, z)$ be the position at time t and abscissa z of a vibrating string of length L which starts from rest $\left(u(0, z)=u_{t}(0, z)=0,0 \leqq z \leqq L\right)$, is tied at both ends ($u(t, 0)=u(t, L)=0, t \geqq 0)$, and satisfies the equation

$$
u_{t t}(t, z)=u_{z z}(t, z)+\frac{\partial^{2}}{\partial t \partial z} \beta(t, z)
$$

where β represents an ordinary plane Brownian motion (and hence the forcing term is what we call a plane white noise). (See [1].)

We have obtained in [2] an estimate for the probability

$$
P\left\{\max _{0 \leqq z \leqq L} u(t, z)>a\right\}
$$

which can be modified with no additional trouble to cover the case in which β is related to a canonical measure $d \mu$ ([1], §1.2.), that is, when $d \mu$ takes the place of the Lebesgue measure along the length of the string, and the covariance of $\beta(A), \beta(B)$ for two given plane sets is consequently equal to $\iint_{A \cap B} d t d \mu(z)$.

The length L of the string and the time t in which the position $u(t, z)$ is observed will both be set equal to π, and the measure $d \mu$ will be assumed to be symmetric with respect to $\pi / 2$.

The formulation of the results in [2] adapted to a μ-Brownian motion is now the following, assuming the a.s. continuity (or at least the separability) of $u(t, \cdot)$:
(i) if $\phi_{a}\left(\sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{0}^{\infty} e^{-\frac{1}{2} \frac{y^{2}}{\sigma^{2}}} d y$ denotes the probability that a centered Gaussian variable be greater than a, and $\mu=\int_{0}^{L} d \mu(z)$, then

$$
P\left\{\sup _{0 \leqq z \leqq L} u(t, z)>a\right\} \leqq 4 \phi_{a}(t \mu),
$$

and
(ii) given any $\delta>0$, there exists a constant A_{δ} such that

$$
\begin{equation*}
P\left\{\sup _{0 \leqq z \leqq L} u(t, z)>a\right\} \leqq A_{\delta} \phi_{a}(g(t)+\delta), \tag{4}
\end{equation*}
$$

where $g(t)=\max _{0 \leqq z \leqq L} \operatorname{Var} u(t, z)$.
When the particular assumptions regarding L, t and $d \mu$ are applied, the inequality in (i) reduces to

$$
\begin{equation*}
P\left\{\max _{0 \leqq z \leqq \pi} u(\pi, z)>a\right\} \leqq 4 \phi_{a}(\pi \mu) \tag{5}
\end{equation*}
$$

2. Representation of Sine Series

The process $u(\pi, z)$ can be expanded in a sine series

$$
\begin{equation*}
u(\pi, z) \sim \sum_{n=1}^{\infty} b_{n} \sin n z \tag{6}
\end{equation*}
$$

with

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} u(\pi, z) \sin n z d z
$$

and since $u(\pi, z)$ can be written in the integral form

$$
u(\pi, z)=\int_{\substack{\pi-z \leqq \zeta+\tau \leqq \pi+z \\ z-\pi \leqq \zeta-\tau \leqq \pi-z}} d \beta(\tau, \zeta)
$$

then

$$
b_{n}=\frac{2}{\pi} \iint d \beta(\tau, \zeta) \int_{|\pi-(\zeta+\tau)|}^{\pi-|\zeta-\tau|} \sin n z d z=\frac{4}{n \pi} \iint \sin n \zeta \sin n \tau d \beta(\tau, \zeta)
$$

thus the Fourier coefficients b_{n} are centered Gaussian variables with covariances

$$
\begin{align*}
\operatorname{Cov}\left(b_{m}, b_{n}\right) & =\frac{16}{m n \pi^{2}} \int_{0}^{\pi} \sin m t \sin n t d t \int_{0}^{\pi} \sin m z \sin n z d \mu(z) \\
& =\left\{\begin{array}{cl}
0 & \text { if } m \neq n \\
\frac{8}{n^{2} \pi} \int_{0}^{\pi} \sin ^{2} n z d \mu(z) & \text { if } m=n .
\end{array}\right. \tag{7}
\end{align*}
$$

We conclude that the Fourier series (6) has independent centered Gaussian coefficients with variances given by (7). In order to represent $u(z)$ by means of $u(\pi, z)$, that is, in order that the Gaussian process defined by (2) have the same distribution as $u(\pi, z)$, it is necessary and sufficient that

$$
\begin{equation*}
\sigma_{n}^{2}=\frac{8}{n^{2} \pi} \int_{0}^{\pi} \sin ^{2} n z d \mu(z) \tag{8}
\end{equation*}
$$

If a finite measure $d \mu$ such that (8) holds does exist, the condition (3) is fulfilled, and this justifies its assumption. Moreover, if we set

$$
h(z)=\int_{z}^{\pi / 2} d \mu(\zeta)
$$

and

$$
H(z)=\int_{0}^{z} h(\zeta) d \zeta
$$

a plain calculation shows that (8) implies

$$
\begin{equation*}
\sigma_{n}^{2}=-\frac{16}{\pi} \int_{0}^{\pi} H(z) \cos 2 n z d z \quad(n=1,2, \ldots) \tag{9}
\end{equation*}
$$

On the other hand, the variance function of the process $u(z)$ is

$$
V(z)=\operatorname{Var}(u(z))=\sum_{n=1}^{\infty} \sigma_{n}^{2} \sin ^{2} n z=\frac{1}{2} \sum_{n=1}^{\infty} \sigma_{n}^{2}-\frac{1}{2} \sum_{n=1}^{\infty} \sigma_{n}^{2} \cos 2 n z,
$$

thus

$$
\begin{equation*}
\sigma_{n}^{2}=-\frac{4}{\pi} \int_{0}^{\pi} V(z) \cos 2 n z d z \quad(n=1,2, \ldots) \tag{10}
\end{equation*}
$$

and it follows that if (8) holds, then $V(z)-4 H(z)$ vanish a.e. because $V(0)=H(0)=0$, and for all z in $(0, \pi / 2)$

$$
\begin{aligned}
& V\left(\frac{\pi}{2}-z\right)=V\left(\frac{\pi}{2}+z\right) \\
& H\left(\frac{\pi}{2}-z\right)=H\left(\frac{\pi}{2}+z\right)
\end{aligned}
$$

and this joined with (9) and (10) implies that all the Fourier coefficients of $V(z)-$ $4 H(z)$ vanish.

Conversely, if $V(z)$ has a.e. a non-increasing derivative $v(z)$, then the measure $d \mu=-d v / 4$ provides the representation (8).

3. Conclusions

Theorem 1. Let $u(z)$ be defined by (2) with independent centered Gaussian coefficients X_{n} having variances $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$ which satisfy (3). Furthermore the variance function $V(z)=\sum_{n=1}^{\infty} \sigma_{n}^{2} \sin ^{2} n z$ has a.e. a bounded non-increasing derivative
$v(z)$. Then

$$
P\left\{\max _{0 \leqq z \leqq \pi} u(z)>a\right\} \leqq 4 \phi_{a}\left(\frac{\pi v(0)}{2}\right)
$$

(where the function ϕ_{a} is defined above) and for each $\delta>0$ there exists a constant A_{δ} such that the same probability is also bounded by

$$
A_{\delta} \phi_{a}(V(\pi / 2)+\delta)
$$

The proof follows readily from the preceding context. The former assertion is a consequence of (5), with $d \mu=-d v / 4$, hence $\mu=\frac{v(0)-v(\pi)}{4}=\frac{v(0)}{2}$. For the latter one use (4) and notice that $V(\pi / 2)=\max _{0 \leqq z \leqq \pi} V(z)$.

Theorem 2. Let $u(z)$ and $V(z)$ be defined as in Theorem 1 and let $V(z)$ have a.e. a derivative $v(z)$ of bounded variation with canonical decomposition

$$
v(z)=\bar{v}(z)-\underline{v}(z)
$$

as a difference of two non-increasing functions. The symmetry of V with respect to $\pi / 2$ implies that for $0 \leqq z \leqq \pi / 2$

$$
v\left(\frac{\pi}{2}-z\right)+v\left(\frac{\pi}{2}+z\right)=0
$$

and \bar{v}, \underline{v} will be chosen satisfying the analogous property. Then for non-negative \bar{a}, \underline{a} such that $\bar{a}+\underline{a}=a$,

$$
P\left\{\max _{0 \leqq z \leqq \pi} u(z)>a\right\} \leqq 4 \phi_{\bar{a}}\left(\frac{\pi \bar{v}(0)}{2}\right)+4 \phi_{\underline{a}}\left(\frac{\pi \underline{v}(0)}{2}\right)
$$

and for each $\delta>0$ there exists a constant A_{δ} such that the same probability is also bounded by

$$
A_{\delta}\left[\phi_{\bar{a}}\left(\bar{V}\left(\frac{\pi}{2}\right)+\delta\right)+\phi_{\underline{a}}\left(\underline{V}\left(\frac{\pi}{2}\right)+\delta\right)\right]
$$

with

$$
\bar{V}(z)=\int_{0}^{z} \bar{v}(\zeta) d \zeta, \quad \underline{V}(z)=\int_{0}^{z} v(\zeta) d \zeta
$$

Let us define the sequences

$$
\begin{aligned}
& \bar{\sigma}_{n}^{2}=-\frac{2}{n^{2} \pi} \int_{0}^{\pi} \sin ^{2} n z d \bar{v}(z), \\
& \underline{\sigma}_{n}^{2}=-\frac{2}{n^{2} \pi} \int_{0}^{\pi} \sin ^{2} n z d \underline{v}(z),
\end{aligned}
$$

and notice that, since the equalities

$$
\sigma_{n}^{2}=-\frac{2}{n^{2} \pi} \int_{0}^{\pi} \sin ^{2} n z d v(z)
$$

hold, then

$$
\sigma_{n}^{2}=\bar{\sigma}_{n}^{2}-\underline{\sigma}_{n}^{2}
$$

Let us consider now a new sequence \underline{X}_{n} of independent centered Gaussian variables, also independent of the sequence X_{n}, with variances $\operatorname{Var}\left(\underline{X}_{n}\right)=\underline{\sigma}_{n}^{2}$, and let us set

$$
\underline{u}(z)=\sum_{n=1}^{\infty} \underline{X}_{n} \sin n z
$$

therefore

$$
\bar{u}(z)=u(z)+\underline{u}(z)=\sum_{n=1}^{\infty}\left(X_{n}+\underline{X}_{n}\right) \sin n z
$$

has coefficients $\bar{X}_{n}=X_{n}+\underline{X}_{n}$ with variances $\bar{\sigma}_{n}^{2}$.
We finally notice that

$$
\left\{\max _{0 \leqq z \leqq \pi} u(z)>a\right\} \subset\left\{\max _{0 \leqq z \leqq \pi} \bar{u}(z)>\bar{a}\right\} \cup\left\{\max _{0 \leqq z \leqq \pi}[-\underline{u}(z)]>a\right\}
$$

and use the estimates of Theorem 1 for the probabilities of the events at the right hand side of the inclusion.

References

1. Cabaña, E.M.: The vibrating string forced by white noise. Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 111-130 (1970).
2. Cabaña, E. M.: On barrier problems for the vibrating string. Z. Wahrscheinlichkeitstheorie verw. Geb. 22, 13-24 (1972).
3. Kahane, J.P.: Some random series of functions. Heath Mathematical Monographs. Lexington, Mass.: Heath 1968.

E. M. Cabaña
Instituto de Matematíca y Estadística
Universidad de la República
Av. J. Herrera y Reissig 565
Montevideo, Uruguay

