# A Decomposition of Square Integrable Martingales 

Dean Isaacson

## §1. Introduction

It is well known that if $\left(M_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ is a continuous, square integrable martingale, then $M_{t}$ can be written as an integral with respect to some Brownian motion if and only if $d\langle M\rangle_{t}$ is absolutely continuous with respect to Lebesgue measure [2]. It is also known that if $\left(M_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ and $\left(N_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ are continuous, square integrable martingales then $M_{t}$ can be written uniquely as

$$
\begin{equation*}
M_{t}=\int_{0}^{t} \phi_{s} d N_{s}+\alpha_{t} \tag{1.1}
\end{equation*}
$$

where $\langle\alpha, N\rangle_{t} \equiv 0$ [3]. Now if $\left(M_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ is a continuous, square integrable martingale with $\langle M\rangle_{t}$ absolutely continuous and if $\left(X_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ is a Brownian motion, one might ask whether

$$
M_{t}=\int_{0}^{t} \phi_{s} d X_{s} .
$$

That is, can $M_{t}$ be written as an indefinite integral with respect to the given Brownian motion, $X_{t}$ ? It is known that if $M_{t}$ is a martingale with respect to the $\sigma$-fields, $\sigma\left(X_{s}: s \leqq t\right)$, generated by the Brownian motion, $X_{t}$, then one can write $M_{t}=\int_{0}^{t} \phi_{s} d X_{s}$ [3]. However, the following example shows it is not true in general. Let $X_{t}$ and $Y_{t}$ be independent Brownian motions defined on $\left(\Omega_{1} \times \Omega_{2}\right.$, $\mathscr{F}_{t}^{1} \times \mathscr{F}_{t}^{2}$ ). Then $\langle X, Y\rangle_{t} \equiv 0$ and $\langle Y\rangle_{t}=\langle X\rangle_{t}=t$. We know by (1.1) that $Y_{t}=$ $\int_{0}^{t} \phi_{s} d X_{s}+\alpha_{t}$ with $\langle\alpha, X\rangle_{t} \equiv 0$ is a unique decomposition of $Y_{t}$ so we have $\alpha_{t}=Y_{t}$ and $\phi_{s} \equiv 0$. Hence $Y_{t}$ can be written as an indefinite integral with respect to some Brownian motion (namely $Y_{t}$ itself) but not with respect to $X_{t}$. In this paper we will use this sort of freedom in choosing the integrator to get a variation of the decomposition, (1.1).

## § 2. The Decomposition Theorem

Let $\left(M_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ and $\left(N_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ be continuous square integrable martingales. Let $\langle M\rangle_{t}$ be the natural increasing process arising in the Doob decomposition of $M_{t}^{2}$. In this paper we will consider the following questions.
(i) Under what conditions can $M_{t}$ be written as an indefinite integral with respect to $N_{t}$ ? If one cannot use $N_{t}$ itself as the integrator, what processes related to $N_{t}$ are appropriate?
(ii) What is the relationship between $\langle M, N\rangle_{t} \equiv 0$ and $d\langle M\rangle \perp d\langle N\rangle$ ? (Notation: $d\langle M\rangle \perp d\langle N\rangle$ if the measures are singular on [0, $\infty$ ) for a.e. $\omega$ ).
(iii) Is there an analogue to (1.1) with the $\alpha_{t}$ having the property $d\langle\alpha\rangle \perp d\langle N\rangle$ ?

In the remainder of this paper we will write $M_{t}=N_{t}$ when $P\left[M_{t}=N_{t}\right]=1$ for all $t$.

Definition 1. We say $\left(M_{t}, \mathscr{F}_{t}\right)$ and $\left(M_{t}^{*}, \mathscr{F}_{t}\right)$ are similar square integrable martingales if $\langle M\rangle_{t}=\left\langle M^{*}\right\rangle_{t}$.

Definition 2. Two square integrable martingales $\left(M_{t}, \mathscr{F}_{t}\right)$ and $\left(N_{t}, \mathscr{F}_{t}\right)$ are said to be orthogonal if $\langle M, N\rangle_{t} \equiv 0$ a.s.

Definition 3. Two square integrable martingales $\left(M_{t}, \mathscr{F}_{t}\right)$ and $\left(N_{t}, \mathscr{F}_{t}\right)$ are said to be strongly orthogonal if $d\langle M\rangle \perp d\langle N\rangle$ a.s.

Lemma 1. If $\left(M_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ and $\left(N_{t}, \mathscr{F}_{t}\right)_{t \geqq 0}$ are strongly orthogonal, then they are orthogonal.

Proof. For fixed $\omega$ use $d\langle M\rangle$ and $d\langle N\rangle$ to partition [0, $\infty$ ) into disjoint sets $A_{\omega}$ and $B_{\omega}$ such that $d\langle M\rangle\left[A_{\omega}\right]=0$ and $d\langle N\rangle\left[B_{\omega}\right]=0$. This can be done for a.e. $\omega$ by assumption. We know

$$
\left[E \int_{0}^{t}\left|H_{s} K_{s}\right| d\left|\langle M, N\rangle_{s}\right|\right]^{2} \leqq\left(E \int_{0}^{t} H_{s}^{2} d\langle M\rangle_{s}\right)\left(E \int_{0}^{t} K_{s}^{2} d\langle N\rangle_{s}\right)
$$

and $\langle M, N\rangle_{t}=\int_{0}^{t} \psi_{s} d\langle N\rangle_{s}$ (see [3]). Now let $H_{s}(\omega)=1_{A_{\omega}}(s)$ and $K_{s} \equiv 1$. Then

$$
\left[E \int_{0}^{t}\left|1_{A_{\omega}} \cdot 1\right| d\left|\langle M, N\rangle_{s}\right|\right]^{2} \leqq\left(E \int_{0}^{t} 1_{A_{\omega}} d\langle M\rangle_{s}\right)\left(E \int_{0}^{t} d\langle N\rangle_{s}\right)=0 .
$$

Hence

$$
E \int_{0}^{t} 1_{A_{\omega}}\left|\psi_{s}\right| d\langle N\rangle_{s}=E \int_{0}^{t} 1_{A_{\omega}} d\left|\langle M, N\rangle_{s}\right|=0 .
$$

Now $1_{A_{\omega}}=1$ a.e. $d\langle N\rangle$ so

$$
E \int_{0}^{t}\left|\psi_{s}\right| d\langle N\rangle_{s}=0
$$

Therefore $\left|\psi_{s}\right|=0$ a.e. $d\langle N\rangle$ so

$$
\langle M, N\rangle_{t}=\int_{0}^{t} \psi_{s} d\langle N\rangle_{s} \equiv 0
$$

Theorem. Let $M_{t}$ and $N_{t}$ be continuous square integrable martingales on ( $\mathscr{F}_{t}$ ). Then $M_{t}$ can be decomposed into an indefinite integral with respect to a process similar to $N_{t}$ and a process strongly orthogonal to $N_{t}$.

That is, $M_{\mathrm{t}}=\int_{0}^{t} \phi_{s} d N_{s}^{*}+R_{t}$ where $\langle R\rangle_{t} \perp\langle N\rangle_{\mathrm{t}}$. By symmetry $N_{t}$ can also be so decomposed with respect to $M_{t}$.

Proof. By Lebesgue's decomposition theorem we know $d\langle M\rangle=d\left\langle M^{1}\right\rangle+$ $d\left\langle M^{2}\right\rangle$ where $d\left\langle M^{1}\right\rangle \ll d\langle N\rangle$ and $d\left\langle M^{2}\right\rangle \perp d\langle N\rangle$.

Hence

$$
\left\langle M^{1}\right\rangle_{t}=\int_{0}^{t}\left(\frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}}\right) d\langle N\rangle_{s}
$$

Define

$$
N_{t}^{*}=\int_{0}^{t} \phi_{s}^{-1} d M_{s}+\int_{0}^{t} \psi_{s} d \bar{N}_{s}
$$

where $\phi_{s}^{-1}=0$ whenever

$$
\left(\frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}}\right)^{\frac{1}{2}}=0, \quad \phi_{s}^{-1}=\left(\frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}}\right)^{-\frac{1}{2}}
$$

otherwise, where

$$
\begin{aligned}
& \psi_{s}=0 \quad \text { when } \frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}} \neq 0 \\
& \psi_{s}=1 \quad \text { when } \quad \frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}}=0
\end{aligned}
$$

and where $\bar{N}_{s}$ is similar to $N_{s}$ and $\langle M, \bar{N}\rangle_{t} \equiv 0$ ([1], p. 450). Now

$$
\begin{aligned}
\left\langle N^{*}\right\rangle_{t} & =\int_{0}^{t} \phi_{s}^{-2} d\langle M\rangle_{s}+\int_{0}^{t} \psi_{s} d\langle N\rangle_{s} \\
& =\int_{0}^{t} \phi_{s}^{-2}\left(\frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}}\right) d\langle N\rangle_{s}+\int_{0}^{t} \psi_{s} d\langle N\rangle_{s}=\int_{0}^{t} d\langle N\rangle_{s}=\langle N\rangle_{t}
\end{aligned}
$$

Hence $N_{t}^{*}$ is similar to $N_{t}$. Consider

$$
\int_{0}^{t} \phi_{s} d N_{s}^{*}=\int_{0}^{t} \phi_{s} \phi_{s}^{-1} d M_{s}+\int_{0}^{t} \phi_{s} \psi_{s} d \bar{N}_{s}=\int_{0}^{t}\left(1-\psi_{s}\right) d M_{s}+0
$$

Hence

$$
M_{t}=\int_{0}^{t} \phi_{s} d N_{s}^{*}+\int_{0}^{t} \psi_{s} d M_{s} .
$$

Now

$$
\begin{aligned}
\left\langle\int_{0}^{t} \psi_{s} d M_{s}\right\rangle & =\int_{0}^{t} \psi_{s} d\langle M\rangle_{s}=\int_{0}^{t} \psi_{s} d\left\langle M^{1}\right\rangle_{s}+\int_{0}^{t} \psi_{s} d\left\langle M^{2}\right\rangle_{s} \\
& =\int_{0}^{t} \psi_{s} \frac{d\left\langle M^{1}\right\rangle_{s}}{d\langle N\rangle_{s}} d\langle N\rangle_{s}+\left\langle M^{2}\right\rangle_{t}=\left\langle M^{2}\right\rangle_{t} .
\end{aligned}
$$

By choosing $R_{t}=\int_{0}^{t} \psi_{s} d M_{s}$ we have $\langle R\rangle_{t} \perp\langle N\rangle_{t}$.
Corollary. If $\left(M_{t}, \mathscr{F}_{t}\right)$ and $\left(N_{t}, \mathscr{F}_{t}\right)$ are square integrable martingales, then $d\langle M\rangle \perp d\langle N\rangle$ a.s. if and only if $\left\langle M, N^{*}\right\rangle_{t} \equiv 0$ a.s. for all processes, $N_{t}^{*}$, that are similar to $N_{t}$. Also $d\langle M\rangle \ll d\langle N\rangle$ if and only if $M_{t}=\int_{0}^{t} \phi_{s} d N_{s}^{*}$ for some process, $N_{t}^{*}$, similar to $N_{t}$.

Proof. (i) If $d\langle M\rangle \perp d\langle N\rangle$ then Lemma 1 shows $\left\langle M, N^{*}\right\rangle_{t} \equiv 0$.
(ii) By the theorem we know $M_{t}=\int_{0}^{t} \phi_{s} d N_{s}^{*}+R_{t}$ where $d\langle R\rangle \perp d\langle N\rangle$. Now $\left\langle M, N^{*}\right\rangle_{l}=\int_{0}^{t} \phi_{s} d\langle N\rangle_{s}$. Hence if $\int_{0}^{t} \phi_{s} d\langle N\rangle_{s}=0$, then the above decomposition is $M_{t}=R_{t}$ so $d\langle M\rangle \perp d\langle N\rangle$.
(iii) We know $M_{t}=\int_{0}^{t} \phi_{s} d N_{s}^{*}+R_{t}$. Hence $\langle M\rangle_{t}=\int_{0}^{t} \phi_{s}^{2} d\langle N\rangle_{s}+\langle R\rangle_{t}$ where $d\langle R\rangle \perp d\langle N\rangle$. Therefore $d\langle M\rangle=d\left[\int \phi_{s}^{2} d\langle N\rangle_{s}\right]+d\langle R\rangle$ which is the unique Lebesgue decomposition of $d\langle M\rangle$ so if $d\langle M\rangle \ll d\langle N\rangle$, we get $d\langle R\rangle=0$. Hence $R_{t} \equiv C$ which in this case is the constant zero.
(iv) If $M_{t}=\int_{0}^{t} \phi_{s} d N_{s}^{*}$ then $\langle M\rangle_{t}=\int_{0}^{t} \phi_{s}^{2} d\langle N\rangle_{s}$ so $d\langle M\rangle \ll d\langle N\rangle$.

## References

1. Doob, J. L.: Stochastic Processes. New York: Wiley 1953.
2. Fisk, D. L.: Sample Quadratic Variation of Sample Continuous, Second Order Martingales, Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 273-278 (1966).
3. Meyer, P. A.: Séminaire de Probabilités, I. Berlin-Heidelberg-New York: Springer 1967.

Dean Isaacson<br>Department of Statistics<br>Iowa State University<br>Snedecor Hall<br>Ames, Iowa 50010<br>USA

