Z. Wahrscheinlichkeitstheorie verw. Geb. 23, 327-330 (1972) © by Springer-Verlag 1972

A Decomposition of Square Integrable Martingales

Dean Isaacson

§1. Introduction

It is well known that if $(M_t, \mathscr{F}_t)_{t \ge 0}$ is a continuous, square integrable martingale, then M_t can be written as an integral with respect to some Brownian motion if and only if $d \langle M \rangle_t$ is absolutely continuous with respect to Lebesgue measure [2]. It is also known that if $(M_t, \mathscr{F}_t)_{t \ge 0}$ and $(N_t, \mathscr{F}_t)_{t \ge 0}$ are continuous, square integrable martingales then M_t can be written uniquely as

$$M_t = \int_0^t \phi_s \, dN_s + \alpha_t \tag{1.1}$$

where $\langle \alpha, N \rangle_t \equiv 0$ [3]. Now if $(M_t, \mathscr{F}_t)_{t \geq 0}$ is a continuous, square integrable martingale with $\langle M \rangle_t$ absolutely continuous and if $(X_t, \mathscr{F}_t)_{t \geq 0}$ is a Brownian motion, one might ask whether

$$M_t = \int_0^t \phi_s \, dX_s.$$

That is, can M_t be written as an indefinite integral with respect to the given Brownian motion, X_t ? It is known that if M_t is a martingale with respect to the σ -fields, $\sigma(X_s; s \leq t)$, generated by the Brownian motion, X_t , then one can write $M_t = \int_0^t \phi_s dX_s$ [3]. However, the following example shows it is not true in general. Let X_t and Y_t be independent Brownian motions defined on $(\Omega_1 \times \Omega_2, \mathscr{F}_t^1 \times \mathscr{F}_t^2)$. Then $\langle X, Y \rangle_t \equiv 0$ and $\langle Y \rangle_t = \langle X \rangle_t = t$. We know by (1.1) that $Y_t = \int_0^t \phi_s dX_s + \alpha_t$ with $\langle \alpha, X \rangle_t \equiv 0$ is a unique decomposition of Y_t so we have $\alpha_t = Y_t$ and $\phi_s \equiv 0$. Hence Y_t can be written as an indefinite integral with respect to some Brownian motion (namely Y_t itself) but not with respect to X_t . In this paper we will use this sort of freedom in choosing the integrator to get a variation of the decomposition, (1.1),

§2. The Decomposition Theorem

Let $(M_t, \mathscr{F}_t)_{t \ge 0}$ and $(N_t, \mathscr{F}_t)_{t \ge 0}$ be continuous square integrable martingales. Let $\langle M \rangle_t$ be the natural increasing process arising in the Doob decomposition of M_t^2 . In this paper we will consider the following questions.

(i) Under what conditions can M_t be written as an indefinite integral with respect to N_t ? If one cannot use N_t itself as the integrator, what processes related to N_t are appropriate?

23 b Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 23

D. Isaacson:

(ii) What is the relationship between $\langle M, N \rangle_t \equiv 0$ and $d \langle M \rangle \perp d \langle N \rangle$? (Notation: $d \langle M \rangle \perp d \langle N \rangle$ if the measures are singular on $[0, \infty)$ for a.e. ω).

(iii) Is there an analogue to (1.1) with the α_t having the property $d\langle \alpha \rangle \perp d\langle N \rangle$?

In the remainder of this paper we will write $M_t = N_t$ when $P[M_t = N_t] = 1$ for all t.

Definition 1. We say (M_t, \mathscr{F}_t) and (M_t^*, \mathscr{F}_t) are similar square integrable martingales if $\langle M \rangle_t = \langle M^* \rangle_t$.

Definition 2. Two square integrable martingales (M_t, \mathscr{F}_t) and (N_t, \mathscr{F}_t) are said to be orthogonal if $\langle M, N \rangle_t \equiv 0$ a.s.

Definition 3. Two square integrable martingales (M_t, \mathscr{F}_t) and (N_t, \mathscr{F}_t) are said to be strongly orthogonal if $d \langle M \rangle \perp d \langle N \rangle$ a.s.

Lemma 1. If $(M_t, \mathscr{F}_t)_{t \ge 0}$ and $(N_t, \mathscr{F}_t)_{t \ge 0}$ are strongly orthogonal, then they are orthogonal.

Proof. For fixed ω use $d\langle M \rangle$ and $d\langle N \rangle$ to partition $[0, \infty)$ into disjoint sets A_{ω} and B_{ω} such that $d\langle M \rangle [A_{\omega}] = 0$ and $d\langle N \rangle [B_{\omega}] = 0$. This can be done for a.e. ω by assumption. We know

$$\left[E\int_{0}^{t}|H_{s}K_{s}|d|\langle M,N\rangle_{s}|\right]^{2} \leq \left(E\int_{0}^{t}H_{s}^{2}d\langle M\rangle_{s}\right)\left(E\int_{0}^{t}K_{s}^{2}d\langle N\rangle_{s}\right)$$

and $\langle M, N \rangle_t = \int_0^t \psi_s d \langle N \rangle_s$ (see [3]). Now let $H_s(\omega) = \mathbb{1}_{A_\omega}(s)$ and $K_s \equiv \mathbb{1}$. Then

$$\left[E\int_{0}^{t}|1_{A_{\omega}}\cdot 1|d|\langle M,N\rangle_{s}|\right]^{2} \leq \left(E\int_{0}^{t}1_{A_{\omega}}d\langle M\rangle_{s}\right)\left(E\int_{0}^{t}d\langle N\rangle_{s}\right) = 0.$$

Hence

$$E\int_{0}^{t} \mathbf{1}_{A_{\omega}} |\psi_{s}| d\langle N \rangle_{s} = E\int_{0}^{t} \mathbf{1}_{A_{\omega}} d |\langle M, N \rangle_{s}| = 0.$$

Now $1_{A_{\omega}} = 1$ a.e. $d \langle N \rangle$ so

$$E\int_{0}^{1} |\psi_{s}| d\langle N \rangle_{s} = 0.$$

Therefore $|\psi_s| = 0$ a.e. $d \langle N \rangle$ so

$$\langle M,N\rangle_t = \int_0^t \psi_s d\langle N\rangle_s \equiv 0.$$

Theorem. Let M_t and N_t be continuous square integrable martingales on (\mathcal{F}_t) . Then M_t can be decomposed into an indefinite integral with respect to a process similar to N_t and a process strongly orthogonal to N_t .

That is, $M_t = \int_0^t \phi_s dN_s^* + R_t$ where $\langle R \rangle_t \perp \langle N \rangle_t$. By symmetry N_t can also be so decomposed with respect to M_t .

Proof. By Lebesgue's decomposition theorem we know $d\langle M \rangle = d\langle M^1 \rangle + d\langle M^2 \rangle$ where $d\langle M^1 \rangle \ll d\langle N \rangle$ and $d\langle M^2 \rangle \perp d\langle N \rangle$.

Hence

$$\langle M^1 \rangle_t = \int_0^t \left(\frac{d \langle M^1 \rangle_s}{d \langle N \rangle_s} \right) d \langle N \rangle_s.$$

Define

$$N_t^* = \int_0^t \phi_s^{-1} dM_s + \int_0^t \psi_s d\overline{N}_s$$

where $\phi_s^{-1} = 0$ whenever

$$\left(\frac{d\langle M^1\rangle_s}{d\langle N\rangle_s}\right)^{\frac{1}{2}} = 0, \quad \phi_s^{-1} = \left(\frac{d\langle M^1\rangle_s}{d\langle N\rangle_s}\right)^{-\frac{1}{2}}$$

otherwise, where

$$\psi_s = 0$$
 when $\frac{d\langle M^1 \rangle_s}{d\langle N \rangle_s} \neq 0$
 $\psi_s = 1$ when $\frac{d\langle M^1 \rangle_s}{d\langle N \rangle_s} = 0$

and where \overline{N}_s is similar to N_s and $\langle M, \overline{N} \rangle_t \equiv 0$ ([1], p. 450). Now

$$\langle N^* \rangle_t = \int_0^t \phi_s^{-2} d\langle M \rangle_s + \int_0^t \psi_s d\langle N \rangle_s$$

$$= \int_0^t \phi_s^{-2} \left(\frac{d\langle M^1 \rangle_s}{d\langle N \rangle_s} \right) d\langle N \rangle_s + \int_0^t \psi_s d\langle N \rangle_s = \int_0^t d\langle N \rangle_s = \langle N \rangle_t.$$

Hence N_t^* is similar to N_t . Consider

$$\int_{0}^{t} \phi_{s} dN_{s}^{*} = \int_{0}^{t} \phi_{s} \phi_{s}^{-1} dM_{s} + \int_{0}^{t} \phi_{s} \psi_{s} d\overline{N}_{s} = \int_{0}^{t} (1 - \psi_{s}) dM_{s} + 0.$$

Hence

$$M_t = \int_0^t \phi_s dN_s^* + \int_0^t \psi_s dM_s.$$

Now

$$\left\langle \int_{0}^{t} \psi_{s} dM_{s} \right\rangle = \int_{0}^{t} \psi_{s} d\langle M \rangle_{s} = \int_{0}^{t} \psi_{s} d\langle M^{1} \rangle_{s} + \int_{0}^{t} \psi_{s} d\langle M^{2} \rangle_{s}$$
$$= \int_{0}^{t} \psi_{s} \frac{d\langle M^{1} \rangle_{s}}{d\langle N \rangle_{s}} d\langle N \rangle_{s} + \langle M^{2} \rangle_{t} = \langle M^{2} \rangle_{t}.$$

By choosing $R_t = \int_{0}^{1} \psi_s dM_s$ we have $\langle R \rangle_t \perp \langle N \rangle_t$.

Corollary. If (M_t, \mathscr{F}_t) and (N_t, \mathscr{F}_t) are square integrable martingales, then $d \langle M \rangle \perp d \langle N \rangle$ a.s. if and only if $\langle M, N^* \rangle_t \equiv 0$ a.s. for all processes, N_t^* , that are similar to N_t . Also $d\langle M \rangle \ll d\langle N \rangle$ if and only if $M_t = \int_0^t \phi_s dN_s^*$ for some process, N_t^* , similar to N_t .

Proof. (i) If $d\langle M \rangle \perp d\langle N \rangle$ then Lemma 1 shows $\langle M, N^* \rangle_t \equiv 0$.

(ii) By the theorem we know $M_t = \int_0^t \phi_s dN_s^* + R_t$ where $d\langle R \rangle \perp d\langle N \rangle$. Now $\langle M, N^* \rangle_t = \int_0^t \phi_s d\langle N \rangle_s$. Hence if $\int_0^t \phi_s d\langle N \rangle_s = 0$, then the above decomposition is $M_t = R_t$ so $d\langle M \rangle \perp d\langle N \rangle$.

(iii) We know $M_t = \int_0^t \phi_s dN_s^* + R_t$. Hence $\langle M \rangle_t = \int_0^t \phi_s^2 d\langle N \rangle_s + \langle R \rangle_t$ where $d\langle R \rangle \perp d\langle N \rangle$. Therefore $d\langle M \rangle = d[\int \phi_s^2 d\langle N \rangle_s] + d\langle R \rangle$ which is the unique Lebesgue decomposition of $d\langle M \rangle$ so if $d\langle M \rangle \ll d\langle N \rangle$, we get $d\langle R \rangle = 0$. Hence $R_t \equiv C$ which in this case is the constant zero.

(iv) If
$$M_t = \int_0^t \phi_s dN_s^*$$
 then $\langle M \rangle_t = \int_0^t \phi_s^2 d\langle N \rangle_s$ so $d\langle M \rangle \ll d\langle N \rangle$.

References

- 1. Doob, J. L.: Stochastic Processes. New York: Wiley 1953.
- Fisk, D. L.: Sample Quadratic Variation of Sample Continuous, Second Order Martingales, Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 273-278 (1966).
- 3. Meyer, P. A.: Séminaire de Probabilités, I. Berlin-Heidelberg-New York: Springer 1967.

Dean Isaacson Department of Statistics Iowa State University Snedecor Hall Ames, Iowa 50010 USA

(Received May 10, 1972)