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Some Contraction Semigroups in Quantum Probability 

E. B. Davies 

w 1. Introduction 

In earlier papers [1-5] we have introduced and developed the idea of a quantum 
stochastic process, which is a generalisation to quantum mechanics of the classical 
Markov process of pseudo-Poisson type. In the paper [3] we showed how to 
construct quantum stochastic processes and characterised them in terms of their 
infinitesimal generators. In [4] we introduced the idea of irreducibility as a generali- 
sation of the classical notion, and proved that irreducible processes could be 
divided into recurrent and transient processes, and that every irreducible finite- 
dimensional process is recurrent with a unique equilibrium state. The proofs 
were functional-analytical modifications of the classical proofs of the same theo- 
rems for classical Markov chains. In [3, 5] we showed how quantum stochastic 
processes allow the resolution of some conceptual difficulties in the analysis of 
some recent experiments on the statistics of coherent photon beams. 

In this paper we study quantum stochastic process, or rather their associated 
semigroups, from rather a different point of view. The point of the work is to 
describe the Markov semigroups in more direct terms, which help to illuminate 
certain aspects of the theory of quantum stochastic processes, and to relate them 
to the time evolution of systems with an infinite number of degrees of freedom. 

We start by constructing a quantum stochastic process on a boson Fock space 
from two self-adjoint operators, one a Hamiltonian and the other a detection or 
decay rate. The evolution of the pure coherent states with respect to the semigroup 
of the process is explicitly calculated and shown to be the same as that obtained 
by reduction of the wave-packet from an isometric evolution on a larger Hilbert 
space. This establishes that the quantum stochastic processes studied in [3] as a 
description of the interaction of a photon field with a measuring apparatus, are 
determined by isometric semigroups if one includes a quantisation of the measuring 
apparatus. 

In the fourth section we carry out a similar procedure for the type of quantum 
stochastic process which we proposed in [4] as a model for the time evolution 
of radiating systems and again show that the evolution can be obtained by reduc- 
tion of the wave-packet from an isometric semigroup. In this case the larger 
Hilbert space is the tensor product of the given Hilbert space and a Hilbert space 
which is very like a Fock space. It seems reasonable to interpret this second Hilbert 
space as a simplification of that part of the quantised electromagnetic field asso- 
ciated with the outgoing photons. 

In the fifth section we describe how to construct a quantum stochastic process 
given a unitary representation of the real numbers and a one-parameter semigroup 
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of probability measures on the real line. It turns out that the isometric dilation of 
the process can again be explicitly determined by using coherent states. The 
semigroup of the process is given by a formula which is known in classical prob- 
ability theory as the formula for subordinating one stochastic process to another 
by randomising the evolution parameter. 

w 2. The Process Associated with a Quantum Field 

Let ~ be a Hilbert space describing the possible states of a quantum system 
with Hamiltonian H. Let D be a positive, bounded, self-adjoint operator on ~ ,  
to be interpreted as a detection, absorption or decay rate. Following the methods 
and terminology of [3] we construct a quantum stochastic process g on the 
boson Fock space o~ over ~ .  

To fix notation we write Y =  ~ ~(") where ~(")= |  and we let 
n=O s 

S,: |  be the usual symmetrisation projection. We define ~ =  ~('), 
r=O 

V= Ts (~-), V, = Ts (~,) and denote the number operator by N. We denote by A t  the 
strongly continuous contraction semigroup on 2C whose infinitesimal generator 
is - i H - � 8 9  and by B t the strongly continuous contraction semigroup on 9 

which is the restriction of the contraction semigroup on s | defined by 
n=O 

B, (01 | | 0.) = At 01 | | At 0.. (2.1) 

For each 0 s W  we define the coherent state ~ e f f  by 

~(")= (n!) -~ | 0 (2.2) 
so that 

(q~, ~ )  = exp {qS, 0 )  (2.3) 

and then define the state C(0)~ V by 

C (~b) = exp { - II ~, !l 2} ~ | ~-.  (2.4) 

It is shown in [7] that the linear span of the C@) where ~be~ut ~ is dense in V, which 
as usual is given the trace norm topology. 

The value space X of the quantum stochastic process d ~ to be constructed has 
only one point, so the sample space X t defined in [3] is 

Xt=- 0 {(tl '  " " '  tn): 0 < t l <  "'" <tn<=t}" (2.5) 
n=O 

As in [3] we denote by z the point in X t corresponding to zero events and by 
S t, T~ the semigroups on V defined by 

S t (p) = g, (z, p); T, (p) = 8, ( X  t , p) .  (2.6) 

Since X has only one point a stochastic kernel on X can be defined as a positive 
linear map ~: V~ V. 
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Theorem 1. There exists a quantum stochastic process g on V,, X such that for 
all ~ and all p e V  

St(p)=B, pB* ; Tt(C(O))=C(A,t)). (2.7) 

ProoJ2 We construct E (') on 1/, and then pass to a limit as n ~ oo. 

The map p-~N~pN ~ is a bounded positive linear map of T~ |  
\ r = O  / 

( k )  k into T s |  . The unitary isomorphism of | with ~ |  | 
\ r =  1 / r =  1 \ r = O  / 

induces a positive isometric embedding eo fT  s ~ |  intoT~ | ~ |  . 

Finally there is a reduction d from T~ | |  into "Is |  such 
~ r = O  / /  r -  

that for all A ~ 2 '  r__~ o| ~ and p ET~ | r=~O |  

tr [A d (p)] = tr E(D | A) p].  

The reduction d is positive and bounded. The stochastic kernel N,~ is defined by 

% (p) = de (N ~ p g~). (2.8) 

As it stands Nn is a bounded positive linear map on T~ |  , but it is easily 
r ~ O  / 

seen that it leaves invariant the subspace 1/,. If R (~ is the operator on .y(r) 

R ( r ) = D @ I @ . - . @ I +  ... + I @ . . . @ I @ D  

then it is easy to check directly that for all ~ 

tr [ .~,(~|  ~p-)] = ~ <R 0") 0 (r), ~(r)). 
r=0 

By density arguments it follows that for all p ~ Vn 

[k ] tr [N, (p)] = tr R {r) p (2.9) 
L r - -  0 

so ~ R (r) is the total interaction rate o f ~  n. We comment here that the unbounded 
r = O  

positive self-adjoint operator R = R (r) is certainly well-defined on the domain 
~ s  of the number operator N. r=0 

If H o is the free Hamiltonian on f f  constructed from H and if Z is the infini- 
tesimal generator of the semigroup B, then 

~ o ~ = ~ z ~  
for all n = 0, 1, 2, ... and for all ~ in this domain 

ZO= - i H o O - � 8 9  O. (2.10) 
19' 
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Therefore by [3] there exists a quantum stochastic process g(') on V, with infini- 
tesimal generators - iH o - � 8 9  and ~r As n increases the processes g(') are com- 
patible in the sense of [3], so there exists a common extension g to V. ~ has an 
unbounded stochastic kernel ~ which extends all the ~4,. To compare this with [5] 
we point out that if 9f  = L 2 (X, p) and D is the operator obtained by multiplying 
by the positive bounded function 2 on X and if a(x) is the annihilation operator 
on ~- associated with a generic point x e X, then ~r is given formally by 

N(p)= ~ 2(x) a(x) p a(x)* p(dx). (2.11) 
X 

To verify Eq. (2.7) we introduce the projected coherent states ~ , e f f  defined by 

(~,)(~) = {(r,)-; |  ~ r<n 

and denote by W, Y the infinitesimal generators of the semigroups S t and T t on V 
respectively. For the rest of the proof we let ~ denote an arbitrary element of 
~ H = ~ - m - ~ D '  For such @, ~ , e ~ z  for all n so e-I1~ ~ , |  ~ - e ~ w  and 

2 ~ @  W{e-II ll2 + e  -H H (2.12) 

Moreover by [-3], @r c~ V, = ~w c~ V, and for all p in this domain 

Y(p) = W(p) + ~,  (p) (2.13) 
while 

~,(~,  | ~,-) = (Dt), ~> ~._ ~ | ~-_ ~. (2.14) 

Using the fact that Y and W are closed operators and going to the limit as n --, oo 
gives C (0) e ~w c~ ~y and 

W{ C(O)} =e-Ihv'l12 Z ~ |  +e-ql~ ~ |  (2.15) 

Y{C(O)} = W{C(O)} + <D0, ~> ~ |  (2.16) 

On the other hand by direct calculation 

lim t-  j { C (At ~) - C (~k)} = lira t -1 {e- II A,o N~ B, ~ | (B t ~)-  } 
t ~ O  t ~ O  

=(DO, O) e-IIOll~ ( / |  +e-ILOIL2Z~| 

which implies that 

- 

(2,17) 

lim t -1 {C(At ~ ) -  C (~t)} = Y { C ( O ) } .  (2.18) 
t ~ O  

Since the semigroup A t leaves @_ iH- ~D invariant it follows by the theory of one- 
parameter semigroups that for all ~ ~ ~_  in-~n and all t->_ 0 

T~ { C (~O)} = C (A t ~t). 

This same formula is now valid for all O eJt  ~ by standard density arguments. 
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w 3. An Alternative Construction of the Semigroup T t 

The alternative construction of T t depends basically on Nagy's theorem [8], 
that every contraction semigroup on a Hilbert space can be obtained as the 
projection of a one-parameter unitary group on a larger Hflbert space. We give a 
constructive proof of this theorem in the case of interest since this makes the struc- 
ture of the larger Hilbert space rather clear. 

Proposition 2. Let At=ex  p { ( - i  H - � 8 9  D) t} be a contraction semigroup on the 
Hi/bert space ~ where D is a bounded positive operator. Choose a representation 

= L 2 (X, tl) such that D corresponds to multiplication by a bounded positive func- 
tion d on X. Then there exists a one-parameter semigroup of isometries V t on 
.Jr OL2(X • R +) such that for all ~ ) ~ ,  t/~LZ(X x IR +) and t>__O 

~ ( ~ | 1 7 4  (3.1) 

Proof. We define V t by the above formula, where 

rlt(x,s)=~, r l ( x , s - t  ) if s > t  (3.2) 
({At_~}(x)d-~(x) if 0 < s < t .  

Direct calculation shows that V t is a strongly continuous semigroup. By Eq. (4.4) 
of[3]  t 

[I v, (~ | ~)II ~- = I[ A, ~ II 2 + II ~ [I 2 + S ( D~ At-s ~., D~ At-s 4) ds 
s=0  

--IIAt~I[ 2 +  I1~[I 2 +  i tr[D(At-~r174 ds 
s=0  

= !1~112+ I1~112 

so V t is a one-parameter semigroup of isometries. 

We note that there is a standard procedure for extending a one-parameter 
semigroup of isometries to a one-parameter unitary group, [9], and by use of 
this we obtain Nagy's theorem. However, even as it stands we can interpret the 
summand LE(x x IR +) as being the space of single particle out-states of the 
measuring apparatus (see also [10]). 

We denote by ~,  ~ ' ,  ~ "  the boson Fock spaces over ~ ,  24 ~' and fig" - fig| oct", 
by V, V', V" the state spaces of those Fock spaces and by ku o , ku o, ~o the correspond- 
ing vacuum states, so that ~d'= % |  7/0 in the isomorphism J " = ~ |  We 
define r: V"--* V by the equation 

tr [Ar (p)] = tr [(A | I) p] (3.3) 

valid for all A e 6 ~ ( ~ )  and pc  V". It is clear that r is a bounded, positive, linear 
map which preserves the trace. On the other hand the injection q~ --, q5 | 7Jo of ~" 
into Y "  induces a positive isometric embedding e: V--+ V" and it is easy to see 
that re is the identity map on V 

Theorem 3. There exists a one-parameter isometric semigroup G t on ~ "  such 
that for all p ~ V and t > 0 

Tt(p) = r { Gt(e p) G* } . (3.4) 
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P r o o f  We define ~tr so that A t has an isometric extension U~ to ~,~G~r ~', 

using Proposition 2. We define G t as the isometric semigroup on L |  
given by .= o 

6,(r | " | r (u, r  | | ~.) 

and then restrict this to the invariant subspace ~ " .  An easy calculation shows 
that for all 4 e J f  and q E W '  

Gt {(4 @ ~)- } = { U, (4 | q)} - 

= {A t r @ ~/,} ~ (3.5) 

= (At 4)~ | th-. 

Therefore if p = ~ |  ~- 

r { G t ( e p )  G*} = [1~,112 (A, 4)- | ~) ~ -  
so 

r {Gt(e C(r 6 " }  =o:, C(At 4). 

Taking traces of both sides gives a t = 1, so by Eq. (2.7), Eq. (3.4) is valid for all 
states of the form p = C (4). Its general validity now follows from the fact that the 
linear span of such states is dense in V, 1-7]. 

w 4. The Process Associated with a Radiating System 

We consider here the class of quantum stochastic processes studied in detail 
in [4]. We suppose that ~4 ~ is a separable Hilbert space and that the value space X 
is a compact metric space with a finite measure p. The process g is constructed 
as in [4] from a Hamiltonian H o on ~ and a strongly continuous family A x of 
operators on J f  parametrised by x e X. The stochastic kernel c~ of N is given by 

f~ (E, p) = ~ A x p A * # ( d x )  (4.1) 
E 

so that the total interaction rate R is 

R = S A* A x I~(dx). (4.2) 
x 

The semigroup B t on ~f~ is the strongly continuous semigroup whose infinitesimal 
generator is Z = i H  0 - � 8 9  R. If z is the point of X t corresponding to no events then 
as in [3] 

St (P) = gt (z, p) = B t p B* (4.3) 

for all p in V = z s ( J f  ). Finally as in [3,4] we define the semigroup T t on V b y  

T t (p) = ~ (Xt, p). (4.4) 

We comment  that the processes of Section 2 are not of this class because the 
annihilation operators occurring in Eq. (2.11) are not bounded, even on the single 
particle subspace. 

In order to construct the unitary group corresponding to the process N we 
have to introduce some new Hilbert spaces. If 0 < t < ~ then the sample space X t 
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defined in [4] carries a measure/~,  the product measure constructed from p on 
each component X and Lebesgue measure on each time component. We assign 
the measure unity to the point z~X~. A similar measure Poo can be defined on the 
subset Yoo of X~o consisting of the sequences co e Xoo of finite length. We define x/g' 
as the Hilbert space L 2 (Yoo, Y~, #oo) of square-integrable functions on Yoo with values 
in 2/f and let V' be the state space of J/f'. 

Lemma4.  There exist positive trace-preserving linear maps e: V ~ V '  and 
r: V'-- ,Vsuch that r e (p )=p  for all peV .  

Proof. We define an isometric injection r ~ 0 ~ of 24( into ~ut~ by letting 0 ~ = 0 
and o ~% -- 0 for all other co e Yoo. The map e: V ~  V' is defined as the unique positive 
linear isometric embedding of V into V' such that e ( 0 | 1 6 2 1 7 6 1 7 4  ~ for all 
0eW.  For  each A e S r  let A o be the operator in ~ ( ~ ' )  defined by (A o 4/)o~= 
A (44o) for all Oegff' and all co| Yoo. The map r: V'~ V is then defined by the equation 

tr [A r(p)] = tr [A o p] (4.5) 

valid for all Aes176 and peV ' .  The verification of the required formulae is 
immediate. We observe that if 4/e~(f' then 

r ( 0 e r  .[ #,% | 0,2/~o (dco) �9 (4.6) 
r 

Theorem 5. There exists a one-parameter isometric semigroup G t on .9r ' such that 

T t (p) = r { Gt (e p) G* } (4.7) 
for all p e V a n d  t>O. 

Definition. We call such a semigroup an isometric dilation of T t. 

Proof. Let t > 0 be given and let me Yoo be the sequence co = (xi, ti)7= 1. Let m 
be the first index with tm+l>t  and let col~Yoo, c o 2 e X t  be the sequences col= 
(xi, t i -  t)~=m+l and co2 = (Xi ,  ti)~n=l �9 We then define Gt 0 e sq  ~' for any 0sour " by 

(Gt 0)0 = Btl Axl ... Bt,,-tm_, Ax,, Bt_tm t)~l. (4.8) 

We calculate the norm of G t ~, by using Eq. (4.13) of [3] together with the observa- 
tion that the measure ~oo is the product of the measures #~ and/~, under the Borel 
isomorphism of Yoo with Yoo x X~ defined in [3]. 

I](Gt0)o~llZ#oo(dco) = ~ ~ tr[{Bt, Ax~ ...Bt_t l//ol}@{Bt, Ax~ ...Bt_t,~toa} -] 
g~ Y~ Xt 

�9 p,(dco2) ~ (dcoO 

= ~ tr[gt(Xt, ~,|  Poo(dcoO 
Y~ 

= ~ IlOo,lle#~(dcol)=lt~'ll ~. 
Y~o 

Therefore GtOEL2(Yo~,~,,t.t~) and [IG~@ll = IlOll. The verification that G t is a 
strongly continuous semigroup on 2/f' is now straightforward. 
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We now have to verify Eq. (4.7) and it is sufficient to do this for pure states p 
since both sides of the equation are continuous and linear in p. But if O e ~  and 
P = ~ |  then 

r { G, (e p) G* } = r {(G, ~o) | (G~ 0 ~ } 

= ~ {B,, Axl. . .  Bt_,," ~} @ {Btl Axl.. .  Bt_,," $}- #t(do~2) 
Xt 

= T ~ ( g , |  

by Eq.(4.6), and Eq.(4.13) of [3]. 

We comment again that the isometric semigroup G t can be replaced by a one- 
parameter unitary group, by [9]. Secondly W' can be regarded as the tensor 
product of ~ and the Fock space over L 2 (X • (0, ~)), except that it is not specified 
whether the Fock space should be of boson or fermion type. 

w 5. Subordinated Quantum Processes 

Let G denote the additive group of the real line and F its dual group, also iso- 
morphic to the real line, with the coupling (7, g) = e-i~g. Let/~t, t > 0 be a weakly 
continuous one-parameter semigroup of probability measures on G and let 
be a unitary representation of G on a separable Hilbert space v f  with state space V. 
Then the equation 

~(p)= .f ~gp ~ ~,,(ag) (5.1) 
G 

defines a strongly continuous one-parameter semigroup of contractions on V. 
This semigroup preserves positivity and trace. The equation is an obvious modifica- 
tion of the formula in classical probability theory for subordinating one stochastic 
process to another by randomising the evolution parameter [11]. In this section 
we show that T~ is the semigroup of a quantum stochastic process and obtain an 
explicit equation for an isometric dilation of T t. We start with the associated process, 
obtain its isometric dilation and only prove that T t is the semigroup of the process 
at the end of the argument. This could alternatively be shown much earlier by 
examination of the infinitesimal generators but it would involve some rather 
delicate domain questions which we prefer to avoid. 

The arguments we present below can be generalised to any locally compact 
abelian group G by using the results in [12] but we have chosen to avoid the extra 
complication of statement necessary to do so. 

We first summarise the L6vy-Khintchine formula for the semigroup/~t in the 
Hilbert space valued cocycle terminology of [12]. The semigroup Pt is determined 
by a continuous character a: F ~  ti; and a measure # on G such that # (e) = 1 and 

l(7,g) -112 #(dg)< oo (5.2) 

for all TeE, in the following manner. Let J l  be the HUbert space L 2 (G, #) and define 
the unitary representation U of F on • by 

(Ur ~9) (g) = (7, g) 0(g) (5.3) 
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and the element 6~ e 2U by 

~(7, g)  - 1 if g=~e (5.4) 
3 7 ( g ) = ( a ( 7 )  if g = e .  

Then 6 is a continuous cocycle on W for the representation U, that is 

3,1+ ,2 = U,1 3,2 + 6~1 (5.5) 

for all 71,72 eF. One sees immediately that  

ILa, II 2 = f 1(7, g) -112 ~(dg)+ 1~(7)12. (5.6) 
G 

There exist continuous real valued functions qS, and 42 on F such that if ~b(7)= 
q~l (7) + i 42 (7) then 

f (7, g) I~t (dg) = exp [ -  t 0 (7)] (5.7) 
G 

for all 7eF and t >  0. Moreover  ~b and 6 are related by the equations 

(a  (70, a ( -  72)> = - 4 (7, + 72) + q~ (7,) + 4 (72) (5.8) 
and 

1 c5 ~ba (7) = ~ ( ( 7 ) ,  6 (7)) (5.9) 

We work throughout  with a spectral decomposit ion of ~,~ with respect to the 
representation n of G. Concretely suppose H =  L 2 (A) where 

% ~,)(;o)= (7~, g) 0(Tt) (5.10) 

for all ~ ~ U (A), where 7: A ~ F is a suitable measurable f u n c t i o n -  and where we 
can take A _  F if the representation is multiplicity free. For  technical reasons we 
suppose until nearly the end of the section that  7 (A) has compact  closure in F, so 
that the vectors {3(7x): 2eA} are uniformly bounded in norm. 

L e m m a  6. The equation 

Bt ~ = ~ ng O #t(dg) (5.11) 
G 

defines a strongly continuous one-parameter contraction semigroup on ~ with 
infinitesimal generator Z = i  H - � 8 9  R where 

(R ~) (2) = I I 6 (7)~)ll 2 ~ (2), (5.12) 

(U O) (7t) = - 02 (Tz) ~ (7t) (5.13) 

Jbr all O e J f  and almost every 7teA. 

Proof. All the statements are immediate consequences of the equations 

(Bt ~, q> = 5 (rig ~, rl) ,ut(dg) 
G 

= 5 5 (Ya,g) ~;. r/a d2,ut(dg) (5.14) 
G A 

= ~ e - ' ~ * )  ~. r/~- dTt 
A 
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valid for all 4, r/E Yf and all t > 0. Note that because of our technical assumption, 
R is a bounded operator. 

Lemma 7. I f  S: ~ f  --* Y f  is defined by 

(S 0)(2) = ~ (7~) ~' (2) (5.15) 
then the equation 

N(E,p)= ~xE(g)(~g--1)p(~g--1)*12(dg)+xE(e)SpS* (5.16) 

where Ec_G and pc  V, defines a bounded stochastic kernel with total interaction 
rate R. 

Proof. Let p s V  + have spectral resolution 

OD 

n = l  

where (~m,~,)=6m, and let 

k=sup  {116(Ta)]lz: 2~A} < ~ .  

The following estimates establish both that if(E, p) is well defined as a trace- 
class operator and that its total interaction rate is R. 

tr [-ff (E, p)-] -<_ tr [~q (G, p)] 

= 2 II g .-r tiSr 2} 
n = l  G 

= ~ ~,{ j' .~ l(7;.,g) -1121~,(~,)12 P(dg) d;~+ J' 1'~(7~)12 I~.(;)[ 2d~} 
n = l  A G A 

= F ~.{ ~ 116(~x)ll 21~,(,~)12 d~} 
n ; 1  A 

n = l  

= tr [R p] < k tr [p]  < oo. 

Since B t and (~ are compatible there exists a quantum stochastic process g 
on G, V which has them as infinitesimal generators by Theorem 4.7 of [3]. We can 
then apply the work of the last section to obtain an isometric dilation of this 
process. 

Theorem 8. The stochastic process g has an isometric dilation G~ on I_) (A, ~ )  
where ~ is the boson Fock space over L2(G x (0, oe)). The isometric semigroup G t 
is given by 

(G t ~) (2) = Gt, z {~O (2)} (5.17) 

for all O e ~  where Gt, ~ is the canonical transformation on o~ such that 

Gt, ~ ( 4 ~) = e-t4'(~) (gt, ;~ + Rt 4) ~ (5.18) 
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for all coherent states 4 ~ ~o ~, where gt,~eI~ (G x (0, oe)) is given by 

g,, ~ = 6~ | Z [0, t] (5.19) 

and where R~ is the isometric semigroup on L 2 (0, o~) 

( R t 4 ) ( s ) = { ~ ( ;  - t )  ififS>ts<t. (5.20) 

Proof Let Z t = U {G x (0, t)}" where each subset is given the measure obtained 
n=0 

form /2 on the G coordinates and Lebesgue measure on the time coordinates. 
Then Y~ ___ Z~o and by symmetrisation we can identify L 2 (Y~) with L~y m (Z~o) = 
Therefore 

~ ' - -  L2 (Y~,~)~L2ym(Z~o x A)= L2 (A ,~ ) .  (5.21) 

If we put A x = ~z x -  1 if x 4: e and A e = S then noting that 

(A x 0)(2) = 6,~ (x) 0 (2) (5.22) 

for all 0eL2(A), and using the notation of Theorem 5 we obtain 

(a t tfi)(0), 2) = Btl Ax ... Axm B z_ tm t) (o)1,2) 
(5.23) 

= e- t,(,~) 6,~ (X 1) , . .  ~.~,~ (Xm) @ (0)1' '~) 

for all O~L 2 (Y~o x A). Symmetrising the wave functions gives a similar equation 
for all @Sg2ym(/oo X A). NOW the one parameter semigroup of isometries R t on 
L 2 (0, oo) induces a one-parameter semigroup of isometries, which we call R[ ,  on 
L~ym(Zo~ x A). The isomorphism 

L2(0, oo)"~ L2 (0, t)@RtL2(O, co) (5.24) 

induces a similar isomorphism 

L2ym(Zoo x A)~L2ym(Zz x A)@R[" L2ym (Zoo x A) (5.25) 

which allows Eq. (5.23) to be rewritten as 

so that 
1 

= e - ' * ( ~ ) ( ~  ~~ @ ( e t  4) ~ \~t, )J 

Theorem 9. The semigroup T t of the process E t is given by the equation 

G 
(5.26) 
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Proof Let 4, t/E Jr and let A be the opera tor  on L 2 (A, i f )  given by 

A A 

so that A = ( t / | 1 7 4  Then by Eq.(4.7) 

<Tt(~ | ~) t / , t / )=  ( A G t ( ~ e  7J0), Gt({ |  7Jo)) 

= 5 5 ix ~z' fix fix' e-t4'(v'O-tO(~T' (g~a,  g2z ' )  d)~ d)c' 
A A 

= J 5 {a ~z' ~/z t/z' exp [ - t ~b (Ya)- t ~b (Tz,) + t (by,,  a~., ) ]  d2 d2' 
A A 

= ~ ~ ~a ~z' ~/z t/a' exp [ - t 4 (Ya - 7a,)] d2 d2' 
A A 

A A G  

= ~. (rcg~, I15 (rcg{, 1'15- 14(dg) 
G 

=l 
G 

g (~zg({| ~)ng r/, t / ) /4(dg).  

We have now shown that  

tr [ T t (p) B] = ~ tr [n~ p ~* B] la t (dg) 
G 

whenever p = ~ | ~ and B =t / |  The general result now follows by the usual 
linearity arguments.  

We conclude by indicating how one would prove Theorems 8 and 9 without  

the assumption we made that  7 (A) has compact  closure in F. One takes A = ~ A, 
n = l  

where A, form an increasing sequence of Borel sets such that 7 (An) have compact  
closures in F. The arguments  of this section then apply to each of  the increasing 
sequence of Hilbert spaces W, = L 2 (An). The required results then follow by taking 
inductive limits, making use in particular of Theorem 5.3 of [33 to obtain a quan- 
tum stochastic process with unbounded  interaction rate on V as an inductive 
limit of processes with bounded  interaction rates on Vn = ~s(JF,) for n =  1, 2 , . . . .  

The author would like to thank J. T. Lewis for his valuable suggestions during the course of this 
work, and for clarifying to him its relationship to the study of the Langevin equation in [6]. 
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