Idempotency of the Hull-Formation \mathbf{H}^{γ}

By

VICTOR KLEE

Suppose E is a locally convex complete Hausdorff linear space (over the real field R) and F is the space of all continuous linear functionals on E. For $S \subset E$, S_F^{σ} will denote the smallest σ -algebra of subsets of S which includes all sets of the form $\{s \in S : \alpha < fs < \beta\}$ (for $f \in F, \alpha, \beta \in R$), and γS will denote the set of all probability measures defined over S_F^{σ} . For $\mu \in \gamma S$, the barycenter of μ (if one exists) is a point b_{μ} of E such that $fb_{\mu} = \int f_S d\mu$ for all $f \in F$; the set of all such barycenters will be denoted by $H^{\gamma}S$. The hull-formation H^{γ} is closely related to the operations of forming the convex hull con S and the closed convex hull cl con S; in particular, con $S \subset H^{\gamma}S \subset cl$ con S. It is known that $H^{\gamma}S = con S$ when E is finite-dimensional (RICHTER [9], RUBIN-WESLER [10], BONNICE-KLEE [2]), and $H^{\gamma}S = cl \ con \ S$ when S is weakly compact (BOURBAKI [3], CHOQUET [5], HEWITT-SAVAGE [6], BONNICE-KLEE [2]), so $H^{\gamma}(H^{\gamma}S) = H^{\gamma}S$ in both of these cases. On the other hand, various separable Banach spaces E contain unbounded countable closed sets S for which $H^{\gamma}(H^{\gamma}S) \neq H^{\gamma}S$ [2]. In [2] it is conjectured that $H^{\gamma}(H^{\gamma}S) = H^{\gamma}S$ whenever S is a bounded Borel set in a separable Banach space E. Though still unsettled, the conjecture is verified here under the supplementary hypothesis that the space $F(=E^*)$ is also separable in its norm topology. This applies to all separable reflexive spaces, and in particular to Hilbert space.

For each topological space $X, \mathscr{B}X$ will denote the set of all Borelian subsets of X (i.e., the σ -algebra generated by the open sets), $\mathscr{M}^p X$ the set of all probability measures defined over $\mathscr{B}X$, and \mathscr{M}^+X the set of all measures of the form $\alpha \mu$ for $\alpha > 0$ and $\mu \in \mathscr{M}^p X$. CX will denote the Banach space of all bounded continuous real-valued functions on X. For each $\mu \in \mathscr{M}^+X$, $\xi_{\mu} \in (CX)^*$ is defined as follows: $\xi_{\mu}\varphi = \int \varphi \, d\mu$ for all $\varphi \in CX$. There is a unique topology on \mathscr{M}^+X for which ξ is a homeomorphism into the space $(CX)^*$ in its weak* topology $\sigma((CX)^*, CX)$ (see BOURBAKI [4] for notation). This topology, the weak topology of \mathscr{M}^+X , has been studied by several authors, recently by VARADARAJAN [11, 12, 13]. A net (μ_n) in \mathscr{M}^+X is weakly convergent to $\mu \in \mathscr{M}^+X$ iff $(\int \varphi \, d\mu_n)$ converges to $\int \varphi \, d\mu$ for all $\varphi \in CX$. For metrizable X, other convergence criteria have been given by BILLINGSLEY [1].

Proposition 1. Suppose M is a metrizable space, S is a Borelian subset of M, and J is a Borelian subset of R. Then the set $\{\mu \in \mathcal{M}^+M : \mu S \in J\}$ is a Borelian subset of \mathcal{M}^+M .

Proof. It suffices to show that $\mathscr{A} = \mathscr{B}M$, where \mathscr{A} is the set of all $A \in \mathscr{B}M$ such that for each $\alpha \in R$ the four sets

 $\{\mu: \mu A < \alpha\}, \ \{\mu: \mu A \leq \alpha\}, \ \{\mu: \mu A \geq \alpha\}, \ \text{and} \ \{\mu: \mu A > \alpha\}$

are all Borelian subsets of $\mathcal{M}^+\mathcal{M}$. Since \mathscr{A} is obviously closed under complemen-

tation, to show that $\mathscr{A} = \mathscr{B}M$ it suffices to prove that \mathscr{A} includes all open sets and includes the union of each increasing sequence of members of \mathscr{A} .

Let G be an open subset of M. It is known (BILLINGSLEY [1], p. 252) that if a net μ_n in \mathcal{M}^+M is weakly convergent to $\mu \in \mathcal{M}^+M$, then $\liminf \mu_n G \ge \mu G$. Thus for each $\alpha \in R$ the set $\{\mu : \mu G \le \alpha\}$ is closed in \mathcal{M}^+M . Moreover,

$$\{\mu: \mu G < \alpha\} = \bigcup_{k=1}^{\infty} \{\mu: \mu G \leq \alpha - 1/k\},\$$

an F_{σ} set in \mathscr{M}^+M , and by complementation the sets $\{\mu: \mu G > \alpha\}$ and $\{\mu: \mu G \ge \alpha\}$ are also Borelian subsets of \mathscr{M}^+M . Hence \mathscr{A} includes all open subsets of M.

Finally, consider an increasing sequence $(A_i)_1^{\infty}$ of members of \mathscr{A} , and let $A = \bigcup_{i=1}^{\infty} A_i$. Then

$$\{\mu: \mu A \leq \alpha\} = \bigcap_{i=1}^{\infty} \{\mu: \mu A_i \leq \alpha\},\$$

a Borelian subset of \mathcal{M}^+M , and the subsets

 $\{\mu: \mu A < \alpha\}, \hspace{0.3cm} \{\mu: \mu A > \alpha\}, \hspace{0.3cm} \text{and} \hspace{0.3cm} \{\mu: \mu A \geqq \alpha\}$

are also Borelian by reasoning similar to that of the preceding paragraph. We conclude that $\mathscr{A} = \mathscr{B}M$.

We have spoken of *Borelian subsets* but not yet of Borel sets as the latter term will be used in a more absolute sense. Specifically, a *Borel set* is a homeomorph of a Borelian subset of the Hilbert cube and an *analytic* set is a metrizable space which is a continuous image of a Borel set. The necessary background material on Borel sets and analytic sets may be found in KURATOWSKI [7] and MACKEY [8]. We shall use some of this material without specific reference, especially the equivalence of the following three properties of a separable metrizable space S: S is a Borel set; S is homeomorphic with a Borelian subset of some complete metric space; S is a Borelian subset of every metric space in which it is topologically embedded.

The following result is related to one of VARADARAJAN [11; Theorem 3.5].

Proposition 2. If S is a Borel set, so are \mathcal{M}^+S and \mathcal{M}^pS .

Proof. Since $\mathscr{M}^p S$ is closed in $\mathscr{M}^+ S$, it suffices to consider $\mathscr{M}^+ S$. We assume without loss of generality that S is a Borelian subset of the Hilbert cube Q. By a criterion of BILLINGSLEY [1; p. 252], a net (μ_n) in $\mathscr{M}^+ S$ is weakly convergent to $\mu \in \mathscr{M}^+ S$ iff $(\int \varphi \, d\mu_n)$ converges to $\int \varphi \, d\mu$ for all $\varphi \in US$, the space of all bounded uniformly continuous real-valued functions on S. But of course the members of US can be extended to members of UQ = CQ, and it follows that \mathscr{M}^+S is homeomorphic with the set $\{\mu \in \mathscr{M}^+Q : \mu(Q \sim S) = 0\}$. Since \mathscr{M}^+Q is topologically complete by [11; Theorem 3.4] and hence is a Borel set, the desired conclusion follows from Proposition 1. []

Theorem. If E is a Banach space whose conjugate space F is (norm-)separable, then $H^{\gamma}(H^{\gamma}S) = H^{\gamma}S$ for each bounded Borel set S in E.

Proof. The subscript $_n$ will indicate the norm topology for subsets of E or F. Let $G = (F_n)^* = E^{**}$, the second conjugate of E_n , and let η denote the canonical embedding of E in G; i.e.,

$$\eta_x f = fx$$
 for all $x \in E$, $f \in F$.

There is a similar canonical embedding of F in the algebraic conjugate G# of G, by means of which the members of F may be regarded alternatively as linear functionals on E or on G. We shall make implicit use of this embedding though without any special notation for it. The space G will always be equipped here with its weak* topology $w = \sigma(G, F)$, and we use w also to denote the weak topology $\sigma(E, F)$ in E.

Let $m = \sup\{||x|| : x \in S\}$ and $W = \{g \in G : ||g|| \le m\}$. Since F is assumed to be norm-separable, W_w is compact and metrizable (e.g., BOURBAKI [4; p. 66]). The restriction η_S is a continuous biunique mapping of the Borel set S_n into the Borel set W_w , and hence $(\eta S)_w$ is a Borel set [7; p. 396]. Since η_S is a homeomorphism of S_w onto $(\eta S)_w$, S_w is a Borel set and $\gamma S = \mathcal{M}^p S_w$. By Proposition 2, γS is a Borel set under the weak topology of measures.

For each measure $\mu \in \gamma S$, $\mu \eta^{-1}$ is a measure on the σ -algebra $\mathscr{B}(\eta S)_w = (\eta S)_F^{\sigma}$, and since ηS lies in the compact convex set W, it follows from a theorem of BOURBAKI [3; p. 81] (see also [2; Theorem 4.3]) that $\mu \eta^{-1}$ admits a barycenter $\zeta_{\mu} \in W$. (This is a point of W such that for all $f \in F$, $\zeta_{\mu}(f) = \int f_S d\mu$.) Note that the transformation $\mu \to \zeta_{\mu}$ of γS into W_w is continuous. (This is immediate from the relevant definitions in conjuction with the fact that $f_S \in CS_w$ for each $f \in F$.) This continuity implies analyticity of the set $\zeta(\gamma S)$ of all barycenters in W of measures $\mu \eta^{-1}$ for $\mu \in \gamma S$. Note further that the set $(\eta E) \cap W$, being a continuous biunique image of the Borel set $\{x \in E : \|x\| \leq m\}_n$, must itself be a Borel set, whence of course the set $\zeta(\gamma S) \cap \eta E$ is analytic and the same is true of the set $\{\mu \in \gamma S : \zeta_{\mu} \in \eta E\}$ [7; p. 361]. In short, we have proved that with respect to the weak topology $w = \sigma(E, F)$ in E and the weak topology of measures in γS (= $\mathcal{M}^p S_w$), the set $T = H^\gamma S$ is analytic as is also the set δS of all measures in γS which admit barycenters in E. For each $\mu \in \delta S$, let $b(\mu) = \eta^{-1} \zeta_{\mu}$, the barycenter of μ ; then b is a continuous mapping of δS onto T_w .

We want to prove that $H^{\gamma}T \subset T$. Consider an arbitrary point $p \in H^{\gamma}T$, p being the barycenter of a probability measure ν defined over T_F^{σ} (= $\mathscr{B}T_w$). Define

$$A = \{(t, \mu) : \mu \in \delta S, t = b(\mu)\} \subset T \times \delta S.$$

Since b is continuous, A is a Borelian subset of $T \times \delta S$ [7; p. 291]. Now in the terminology of MACKEY [8], ν is a finite Borel measure in the analytic Borel space T_w and hence ν is standard [8; Theorem 6.1]. By the reasoning of [8; Theorem 6.3] (which remains valid when its S_2 is an analytic Borel space rather than a standard one), there exist a set $U \subset T$, a function ψ on U to δS , and a measure $\tau \in \gamma U$ such that

 U_w is a Borel set; for each $u \in U$, $(u, \psi u) \in A$; i.e., $b(\psi u) = u$; for each $Y \in T_F^{\sigma}$, $\psi Y = \tau(Y \cap U)$; for each Borelian subset D of δS , $\psi^{-1}D$ is a Borel set in U_w .

Then of course p is the barycenter of τ , and we will show that p is also the barycenter of a measure $\rho \in \gamma S$, thus completing the proof.

Note that the function $\psi u | u \in U$ is Borel measurable by the last statement displayed above, and for each $X \in S_F^{\sigma}$ the function $\mu(X) | \mu \in \delta X$ is Borel measur-

able by Proposition 1. Thus the composition of these two functions is also Borel measurable, and we may define

$$\varrho(X) = \int_{u \in U} (\psi u) (X) d\tau(u) \quad \text{for all} \quad X \in S_F^{\sigma}.$$

We claim $\rho \in \gamma S$, for which it suffices to check countable additivity. Suppose $(X_i)_1^{\infty}$ is a sequence of pairwise disjoint members of S_F^{σ} . Then

$$\varrho\left(\bigcup_{i=1}^{\infty} X_{i}\right) = \int_{u \in U} (\psi u) \left(\bigcup_{1}^{\infty} X_{i}\right) d\tau\left(u\right) = \int_{u \in U} \left(\sum_{i=1}^{\infty} (\psi u) (X_{i})\right) d\tau\left(u\right)$$
$$= \sum_{i=1}^{\infty} \left(\int_{u \in U} (\psi u) (X_{i}) d\tau(u)\right) = \sum_{i=1}^{\infty} \varrho\left(X_{i}\right),$$

where the crucial interchange is justified by Fubini's theorem.

With ρ countably additive, it remains only to check that p is the barycenter of ρ , i.e., that $\int f_S d\rho = f_p$ for all $f \in F$. Consider an arbitrary partition of Sinto pairwise disjoint sets $X_1, \ldots, X_n \in S_F^{\sigma}$, and for each i let $\alpha_i = \inf f X$, $\beta_i = \sup f X$. Then

$$fp = \int_{u \in U} fu \, d\tau(u) = \int_{u \in U} (\int_{s \in S} fs \, d(\psi u) \, (s)) \, d\tau(u)$$
$$\leq \int_{u \in U} (\sum_{i=1}^{n} \beta_i(\psi u) \, (X_i)) \, d\tau(u) = \sum_{i=1}^{n} \beta_i \, \varrho(X_i)$$

and similarly

$$fp \geq \sum_{1}^{n} \alpha_i \varrho(X_i).$$

But then fp and $\int f_S d\rho$ lie together in the interval

$$\left[\sum_{1}^{n} \alpha_{i} \varrho\left(X_{i}\right), \sum_{1}^{n} \beta_{i} \varrho\left(X_{i}\right)\right],$$

and the length of this interval can be made arbitrarily small for appropriate choice of the X_i 's. []

Research supported by a grant from the National Science Foundation, USA (NSF-G18957).

References

- BILLINGSLEY, P.: Invariance principle for dependent random variables. Trans. Amer. math. Soc. 83, 250-268 (1956).
- [2] BONNICE, W., and V. KLEE: The generation of convex hulls. Math. Ann. (to appear).
- [3] BOURBAKI, N.: Integration, Chaps. I-IV. Paris: Hermann 1952.
- [4] Espaces vectoriels topologiques, Chaps. III-V. Paris: Hermann 1955.
- [5] CHOQUET, G.: Theory of capacities. Ann. Inst. Fourier 5, 131-295 (1955).
- [6] HEWITT, E., and L. J. SAVAGE: Symmetric measures on cartesian products. Trans. Amer. math. Soc. 80, 470-501 (1955).
- [7] KURATOWSKI, C.: Topologie I, 4th ed. Warsaw 1958.
- [8] MACKEY, G.: Borel structure in groups and their duals. Trans. Amer. math. Soc. 85, 134-165 (1957).

Z. Wahrscheinlichkeitstheorie, Bd. 1

- [9] RICHTER, H.: Parameterfreie Abschätzung und Realisierung von Erwartungswerten. Bl. Deutsch. Ges. Vers. Math. 3, 147-162 (1957).
- [10] RUBIN, H., and O. WESLER: A note on convexity in Euclidean n-space. Proc. Amer. math. Soc. 9, 522-523 (1958).
- [11] VARADARAJAN, V. S.: Weak convergence of measures on separable metric spaces, Sankhya. 19, 15-22 (1958).
- [12] Convergence of stochastic processes. Bull. Amer. math. Soc. 67, 276-280 (1961).
- [13] Measures on topological spaces (Russian). Mat. Sbornik, n. Ser. 55 (97), 35-100 (1961).

Department of Mathematics University of Washington Seattle 5, Washington (USA)

(Received July 17, 1962)