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Summary. Extensions of classical extreme value theory to apply to sta- 
tionary sequences generally make use of two types of dependence restric- 
tion: 

(a) a weak "mixing condition" restricting long range dependence 
(b) a local condition restricting the "clustering" of high level ex- 

ceedances. 
The purpose of this paper is to investigate extremal properties when the 

local condition (b) is omitted. It is found that, under general conditions, the 
type of the limiting distribution for maxima is unaltered. The precise 
modifications and the degree of clustering of high level exceedances are 
found to be largely described by a parameter here called the "extremal 
index" of the sequence. 

1. Introduction 

Classical Extreme Value Theory discusses the possible limiting laws for the 
maximum 

M,=max( (1 ,  ~2 "'" ~n) (1.1) 

of n independent identically distributed (i.i.d.) random variables (r.v.) as n ~ oe. 
Specifically it is shown that if M, has a non-degenerate limiting distribution G 
i.e. if 

P { a , ( M , - b , ) < x }  ~ , G(x) (1.2) 

for some constants a ,>0 ,  b, then G must be one of the following classical 
types (in the sense that G ( x ) = H ( a x + b )  for some a>0 ,  b where H is one of the 
listed distributions): 
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T y p e I  H ( x ) = e x p ( - e  -~) - o o < x < o o  

Type II H ( x ) = e x p ( - x  -~) x > 0  (c~>0) 

= 0  x < 0  

Type III H ( x ) = e x p ( - ( - x )  ~) x<__O (c~>0) 

=1 x > 0  

It may be shown that this result remains true (cf. [-8, 9]) if the condition that 
the ~ be i.i.d, is replaced by the requirement that they form a stationary 
sequence satisfying a very weak dependence restriction. This restriction, here 
referred to as the distributional mixing condition D(u,) is defined as follows. 

Write Fii..,i,(x 1 ... x , )=  P {~l<=X 1 ... ~i < x,} for the joint distribution func- 
tion of ~i~...~i,, and, for brevity, F i .... i ,(u)=F~,. . . in(u,u. . .u ) for each 
n, ia ... i,, u. Let {u,} be a sequence of constants. Then the sequence {~,} is said 
to satisfy D(u,) if for each n, l and each choice of integers i~ ... iv, j~ ""Jr" such 
that 

l < = i l < i 2 . . . < i v < j l  ...<jp,<=n, ji--ip>=l 

we have 

where ~.,l --->0 as n~ for some sequence {l.} with l.=o(n). 
In spite of the slightly complicated definition this condition is clearly much 

weaker than the standard forms of mixing condition (such as strong mixing) in 
that it requires only approximate independence of events A "from the past" 
and B "from the future" having the special, simple forms 

p p' 

A= N B =  
r=l s=l 

The specific form of the theorem referred to above (proved in [8, 9]), is as 
follows. 

Theorem 1.1. Let {~,} be a stationary sequence such that M , = m a x { ~  1 ... ~,} has 
a non-degenerate limiting distribution G as in (1.2)for some constants a ,>0 ,  b,. 
Suppose that D(u,) holds for all sequences u, given by u ,=x /a ,+b , , ;  
- oo < x < oo. Then G is one of  the three classical types given above. 

Thus the condition D(u,) alone is sufficient to guarantee that the central 
classical result concerning the possible extremal types, holds also for stationary 
sequences. 

It is also shown in [8] that if a further condition holds - there called D'(u,), 
viz. 

[n/k] 

D'(u,): l i m s u p n ~ P { ~ l > u , , ~ j > u , } ~ 0  as k ~ o o  (1.3) 
n~oo j = 2  

(for each u~ = x/a,  + b,), then the particular type which applies is the same as if 
the sequence {~,} were i.i.d, with the same marginal distribution function (d.f.) 
F, and the same normalizing constants may be used, In particular this means 
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that the classical criteria for domains of attraction (cf. [9]) may be used to 
determine (on the basis of the behavior of the tail 1 - F ( x )  for large x) which 
limiting law applies. These assertions result from making appropriate identifi- 
cations (e.g. u, = x/a, +b,) in the following theorem (cf. [9]) which generalizes a 
simple classical result. 

Theorem 1.2. Let {~,} be a stationary sequence (marginal d f  F) and {u,} a 
sequence of constants such that D(u,), D'(u,) hold. Let O<z < oe. Then 

P{M,<=u,} --+e -~ (1.4) 
if and only if 

n i l  - F(u,)] -~ z. (1.5) 

Conditions similar to D'(u,) have been used in virtually all studies of 
extremes of dependent sequences beginning with the early works of Watson 
[16] and Loynes [10] who showed in particular that (1.5) implies (1,4), using 
stronger dependence restrictions that D(u,), However since Theorem 1.1 does 
not require D'(u,) in limiting the extremal distributions to the classical types, it 
seems worthwhile to investigate the precise role of conditions of this kind. 

It has in fact been shown by Chernick [3] (extending a result of Loynes 
[10]) that if for each z>0,  u,=u,(z) is defined to satisfy (1.5), then under D(u,) 
conditions alone, any limit (function) for P{M, < u,(r)} must be of the form 

P{m,<=u,(z)}~e of (1.6) 

for some 0 with 0 < 0 < 1. 
In the present paper we extend this result in various ways. It will then 

follow, as a consequence, that in virtually all cases of practical interest the 
condition D(u,) alone is sufficient to guarantee that any asymptotic distribution 
for the maximum M, is of precisely the same type as if the sequence {4,} were 
i.i.d, with the same marginal d.f .F.  In fact the only essential difference which 
appears in dropping the assumption D'(u,) is that the normalizing constants in 
(1.2) may have to be modified from those applying to the i.i.d, case. In 
obtaining these results we use some ideas from O'Brien ([13, 14]). 

The parameter 0 in (1.6) is here (as in [9]) called the extremal index of the 
sequence {4,}. The main results concerning its existence are given in Sect. 2, 
with particular criteria and examples cited in Sect. 3. In Sect. 4 we look briefly 
at the role of D'(u,) in obtaining a Poisson limit for the (time-normalized) 
point process of exceedances of the level u, by the ~'s. When D'(u,) does not 
hold, the exceedances of u, can occur in clusters, leading to multiple points in 
a limiting point process. As will be seen from Sect. 4 the degree of clustering is 
directly related to the extremal index 0. 

2. Extremal Results Under D(u.)  

The basic technique of [8] for extending extremal theory to stationary cases is 
to show that 

P{M,<u,}  --pk{Mr <u,} ~ 0  (2.1) 
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for each k =  1, 2 ... when D(u,) holds, where r ,=  [n/k] (the integer part of n/k). 
This clearly simply reflects a form of approximate independence of the sub- 
maxima in the k subsets of [n/k]=r, integers (1, 2 ... r) ,  ( r , + l  ... 2r,)...  which 
together comprise essentially all of (1, 2. . .  n). Here we obtain a somewhat more 
general version of this result. The notation M(E) will be used (here and 
subsequently) to denote the maximum of ~j for j in the set E of integers. 

Lemma 2.1. Let {u,} be a sequence of constants and let D(u,) be satisfied by the 
stationary sequence {~,}. Let {k,} be a sequence of constants such that k,=o(n) 
and, in the notation used in stating D(u.), k. l.=o(n), k.%, z --+O. Then 

P{M,<=u,}-Pk'~{Mr <=un}~O as n~oo (2.2) 

where r , = [n/k,]. 

Proof This will be sketched only since it is analogous to the proof of (2.1) 
given e.g. in [9]. We shall also assume that n[1-F(u,)] is bounded, which is 
not necessary (cf. [8]) but simplifying (and holds via (1.5) in the applications to 
be made). 

Let {l,} be as in the definition of D(u,). Divide the integers 1 . . .n into 
intervals (i.e. sets of consecutive integers) 11, I*, 12,  I*... I k ,  , Ik* ~ where 

I i=(1,2. . .r ,--1,)  , I*=(rn--l ,+l ...r,), I2 = ( r , +  1 ...2r,--l,), 

13 = (2r,-- l ,+  1 ... 2r,)...  lk=((k  . -- 1) r ,+  1 ... k, r , - / , ) ,  

I k . -  (k, r, - I, + 1 ... n). 

Thus each interval Ij contains r , - I ,  integers, with each I* except Ik. having 1, 
integers, and Ik. having n - k , r ,  + I, < k,+ I, (since r. = [n/k,]). It is readily seen 
that 

O<P 0 1 { M ( I j ) < u , } - P { M , < u , }  
J 

<=(k.- 1)P{M(I*) >u.} + P{M(I* )>u.} 

< [ ( k , -  1) l,+(k, + l,)] P{~I >u,} 

< K  k , ( / ,+ l )  , 0  as n--,oo (2.3) 
n 

by virtue of the stated assumptions (K being a constant). 
It follows from D(u,) by a straightforward induction (cf. [8, Lemma 2.3]) 

that 
P { <=k, c~,z~ (2.4) 

which tends to zero by assumption. Finally it is readily checked that 

[pk. {M(I a) =< u,} - Pk"{M,. < u,}[ 

<=k,[P{M(It)<=u,} -P{M~ <=u,}] =k,P{M(II)<u,<=M(I*)} 
<k, l , P { ~  >u,} <Kk ,  l,/n--*O. (2.5) 

The result now follows at once by combining (2.3), (2.4) and (2.5). []  
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We suppose from now on that for each ~ >0  a sequence {u,(~)} is defined 
to satisfy (1.5), viz. 

n i l  -F(u,(r))] --*~ (2.6) 

This imposes a slight restriction on the marginal d.f. F of the {,, but one 
which will always be satisfied in the applications made. Of course if F is 
continuous, u,(~) can be defined to give equality in (2.6). In any case it is 
necessary and sufficient for (2.6) to hold that 

[ 1 - F ( x - ) J / [ 1 - F ( x ) ] ~ l  as x--.c~ (2.7) 

(cf. [9]), a condition which always holds for any F in any of the three classical 
domains of attraction. It is also evident that if there exists u,(r) satisfying (2.6) 
for one fixed ~>0, then there exists such a u,(r) for all ~>0  (e.g. if u,(1) 
satisfies (2.6) with r =  1, define u,(r)=uE,m(1)). 

The following result extends Theorem 1.2, and Theorem 1 of O'Brien [14]. 

Theorem 2.2. Let {~,} be a stationary sequence and {u,(r)} constants satisfying 
(2.6) and such that D(u,(ro) ) holds for some ~o >0. Then there exist constants O, 
0', 0 <_ 0 <- O' <- 1 such that 

limsup P {M, < u, (z)} = e-  0~ 
n ~ o o  

liminf P(M,  < u,(z)) = e-  0"~ (2.8) 
n ~ o o  

for 0 < z < z  o. Hence if P{m,<u, ( z ) }  converges for some "c, 0 < r < Z o ,  then 0=0' 
and P{m,<u, ( z ) }  ~e-~  for all such z. 

Proof Note first that it is readily shown (cf. [9]) that D(u,(r)) holds for 
0 < z < z  o since it holds for r= 'c  o. Write ~(r)=l imsupP{M,<u,(r )}  and let k 

n ~ o o  

be a fixed integer. Then it follows from Lemma 2.1 with k , = k  that 

limsup P {M,, < u,(z)} = ol/k(z) (2.9) 

where n '=  [n/kJ. Now if u,(z)> u,,(z/k) it follows that 

O<P{M, ,<=u,(r )} -P{M, ,~u, (z /k)}  <-<-P{j~=x (u,,(r/k)<~j<=u,(v))} 

< , = n IF (u, (~)) - F (u,, (z/k))]. 

This together with the corresponding inequality when u,(r)<u,,(z/k) show that 

fP{M,, < u , ( r ) } - P { M , ,  <u,,(z/k)}l<n'[F(u,(r))-F(u ,(r/k))[ 

=n' V/kn, (1 +o(1))--~ (1+o(1)) 

by (2.6), and this tends to zero as n-* ~ since n' ~ n/k. But clearly 

limsup P {M,, <_ u,, (z/k)} = ~ (z/k), 
n ~ o o  
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and it thus follows that l imsupP{M,,<u,(z)}=O(z/k) .  Combining this with 
(2.9) we see that ,~oo 

~9(z/k)=O1/k(v) 0<z<__Zo, k = l , 2 . . .  (2.10) 

Now P { M n , < u , ( z ) } > l - n ' P { ~ l > u ~ ( z ) } ~ l - z / k  as n ~ o o  so that by taking 
kth powers and using Lemma 2.1, it follows that l im in fP{M,<u , ( z ) }>  
( 1  - r/k) k, and letting k ~ oo that ,4 

liminf P {m, < u,(z)} > e-  ~. (2.11) 

In particular this implies that O(z) is strictly positive. It is also non- 
increasing since if "c'<z it is clear that u,(z')>u,(z) when n is sufficiently large. 
But the only strictly positive non-increasing solution to the functional equation 
(2.10) is O(r)=e -~ for some 0>0.  That is l imsupP{M,<u , ( z ) }=e  -~ with 

0>0 .  " ~  
Similarly it may be shown that l imin fP{M,<u, ( z ) }=e  -~ where clearly 

0 '>0.  By (2.11) 0 '<1  and hence 0_<0<0'_<1 as asserted. Thus the relations 
(2.8) follow and the final statements of the theorem are immediate from 
these. []  

If P{M,<u,(z )}  ~ e  -~ for each z > 0  with u,('c) satisfying (2.6), we shall say 
that the sequence {4,} has extremal index 0 (cf. Sect. 1). Use of this terminology 
will simplify statements of later results, and in particular gives the following 
obvious restatement of part of the above theorem. 

Corollary 2.3. Let {~,} be stationary and satisfy D(u,(z)) for each ~>0  where 
n i l - F ( u , ( z ) ) ]  ~ z .  I f  for some z o >0,  P{m,<u,(Zo)} converges to a limit o~ then 
{~,} has extremal index 0 = - v o a l o g c ~  so that P(m,<u,(z))--+e -~ for all 
~>0. [] 

In the next section we shall show that the addition of the condition D'(u,) 
(cf. w 1) implies that 0=  1, and give other criteria determining 0 when 0__<0 < 1. 
However here we proceed with the more general theory, showing that if {~,} 
has a non-zero extremal index 0, then any limiting distribution for the maxi- 
mum must be of the same type as if the terms were i.i.d, with the same 
normalizing constants if 0 = 1, and simply modified constants for 0 < 0 < 1. The 
basic result generalizes a theorem proved by O'Brien [14] under strong mixing 
assumptions. Here in addition to the previous notation we write 

2~, = max(~'~, ~2 ... ~,) 

where ~a, ~z-.. are i.i.d, random variables with the same d.f. F as each of the 
stationary sequence ~ ,  ~z ... (following Loynes [10] we call ~'~, ~2 "'" the "as- 
sociated independent sequence"). We note the well known (and easily proved) 
result that for any z > 0 and sequence {u,}, 

P {~I, <= u,} (= F"(u,)) --* e ~ (2.12) 
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if and only if 
n D  - F (u.)3 -~ ~ (2 .13)  

(i.e. if and only if (2.6) holds with u, = u~(z)). 

Theorem 2.4. Suppose that the stationary sequence {~,} has extremal index O, 
0<_0<_ 1. Let {v~} be an); sequence of constants and p any constant with O<=p<= 1. 
Then 

(i) I f  0 > 0  
P{ l~<_v . }~p  if and only !f P{M.<~v.}op ~ 

(ii) I f  0 = 0  

(a) ifliminfP{iVt~<v~} >0, then P{M~<=v.} ~ 1 

(b) if limsup P {M. < v~} < 1, then P {M. < v~} ---, O. 
n ~ o o  

Proof. (i) Suppose 0 > 0 and P {M~ < v.} --* p where 0 < p < 1, Choose z > 0 such 

that e -  ~ < p. Then 
p {2~r < u.(~)) -~e -~, P{IC/I.<<_v.} --+p>e -~ 

so that v. >u.(z) for sufficiently large n, and hence 

liminf P {M~ < v.} > lim P {M. < u.(z)} = e- 0~. 
n ~ o o  n ~ o o  

Since this holds for any z such that e - ~ < p  it follows that 

liminf P {M. < v~} > pp. 

It also follows in particular that if p =  1 then P{M.< v.}--+ 1 =pp. 
Similarly by taking e-~>p it may be shown that limsupP{M.<v~}<-<_p ~ 

n ~  oo  

when O < p < l .  Hence P{M<v.}--+O when p=O, and for O < p < l ,  

P {M.<=v,,}--+ p ~ 

by combining the inequalities for the upper and lower limits. The proof of the 

converse is similar so that (i) follows. 
To prove (ii) we assume 0=0 ,  so that P{M.<u.('c)}---*l as n--,oo for each 

z>0 .  If liminfP{ll)i,,<v,,}=p>O, choose z with e-~<p and hence P{kTl,,<u,,('c)} 
--+e-~<p so that v,,>u,,(v) for sufficiently large n. Thus 

liminf P {M. < v.} > lira P {M. < u.(z)} = 1, 
n + o o  n ~ o o  

giving (a). 
To show (b) note that if limsupP{M,,<v,,} <1 we must have v,,<u.(z) for 

sufficiently large n and hence 

limsup P {2~. < v.} < lim P {M. _-< u.(z)} = e -~ 
n ~ o o  

for each z. The conclusion (b) follows by letting z--* oo. [] 

As an immediate corollary we give conditions in terms of the extremal 
index under which M. has a limiting distribution if and only if M. does. This 
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of course implies that in such cases, the classical domain of attraction criteria 
may be used in the dependent situation. 

Theorem 2.5. Let the stationary sequence {~n} have extremal index 0>0.  Then 
M ,  has a non-degenerate limiting distribution if and only if f4 ,  does, and these 
are then of the same type based on the same normalizing constants. In the case 0 
= 1 the limiting distributions for M,  and f4 ,  are identical. 

Proof. If P{a,()~,I,-bn)<=x} ~ G(x), non-degenerate, then Theorem 2.4(i) shows 
(with v ,=x /a ,+b , )  that P { a , ( M n - b , ) < x } ~ G ~  But G is an extreme value 
distribution and it is well known (and easily checked from the possible func- 
tional forms) that G o is of the same type as G in the sense of Sect. 1 that G~ 
= G ( a x + b )  for some a > 0 ,  b. 

The converse follows similarly, noting that if P { a , ( M . - b , ) < x } - ~ H ( x ) ,  
non-degenerate, then P {an(M . -  b,) < x} ~ Ha/~ As a limiting distribution for 
maxima from an i.i.d, sequence, H t/~ must be of extreme value type and H 
= (Ha/~ ~ must be of the same type as H ~/~ 

The final remark for 0 = 1 is obvious. []  

For  the case 0 <  0 < 1 the same normalizing constants give limits e.g. G(x), 
G~  for M, and M,. Of course a simple change of the set of 
normalizing constants for M,  will lead to the same limit G(x). 

It is, of course, also of interest to explore the situation when the extremal 
index is zero. An argument of R. Davis [5] shows (using also Theorem 2.4(ii)) 
that M,  and ~ r  cannot both have non-degenerate limiting distributions based 
on the same normalizing constants. This is stated precisely as follows, without 
proof. 

Theorem 2.6. Let the stationary sequence {~,} satisfy D(u,(z)) where for each 
z > 0  u~(z) satisfies (2.6). I f  {4,} has extremal index 0=0, then M~ and M,  
cannot both have non-degenerate limiting distributions based on the same nor- 
malizing constants. That is, it is not possible to have P {a , ( f / I , -bn)< x} ~G(x) ,  
P {a,(M,-b,)<-_x} ~ H(x) for non-degenerate G, H. [] 

3. Some Criteria for the Extremal Index, and Examples 

In this section we first give some relationships of potential use in determining 
the extremal index. We are grateful to a referee for pointing out that these 
involve similar methods and conclusions to those of R. Davis [4], and also 
that calculations of Newell [12] explicitly provide the extremal index for the 
case of m-dependent sequences. 

The first result has perhaps more theoretical then practical interest but 
serves as a means of extending the condition D'(un) to apply to more dependent 
cases with 0 < 1. By way of convenient notation we again write n'= [n/k] for 
fixed k, n - - l , 2  .... Also as previously F~ .... it(u) will denote the joint d.f. of 
~i~ ... ~ir evaluated at (u, u. . .  u). 

Theorem 3.1. Let the stationary sequence {4,} satisfy D(u,(z)) for each z > 0  
where u,(z) satisfies (2.6). Then {~,} has extremal index 0 ( 0 < 0 <  1) if and only if 
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k limsup [1 - F  1 . . . . . .  , (Un)-O'co/k [-- .0 as k---* c~ (3.1) 
n ~ o o  

for  some z o >0. Equivalently this holds if and only i f  

1 - F I  ...... "(un)-+O'co/k + 2k as n---,oo (3.2) 

where k2k ~ 0 as k ~ oo. 

Proof. For simplicity of notation we take Zo= 1 and write un=G(1 ). If {4,} has 
extremal index 0, and since (2.1) holds by Lemma 2.1, 

El ... n" (Un) = P {Mn" ~ Un} "--~ e -  o/k = 1 -- O/k + o (l/k) 

from which (3.2) (and hence obviously (3.1)) follow. 
Conversely if (3.1) holds then 

limsup P {M,, __< u,} = limsup [F 1 .... , (u,) - 1 + O/k] + 1 - O/k 
n ~ o o  n ~ o o  

< 1 - O/k + limsup [1 - FI .... , ( u , ) -  O/k[ 
n ~ o o  

Hence again by (2.1) = 1 - O/k + o(1/k). 

limsup P {M, __< u,} =< { 1 - O/k + o (1/k)}k 
n ~ o o  

for all k giving, on letting k ~ oo, 

limsup P {M, G u,} G e-  0. 
n ~ o G  

The opposite inequality for l i m i n f P { M , < u , }  follows similarly so that 
P { M G u , } ~ e  -~ Thus we have convergence of P { M G u , ( - c ) }  to e -~ at z = r  o 
= 1 and the result follows from Corollary 2.3. [] 

The condition D'(u,) given by (1.3) limits the probability of one exceedance 
of u, being followed "closely" by another. One obvious generalization is to 
permit (with high probability) no more than some specified number of ex- 
ceedances to occur together. One specific such restriction is to limit the 
quantity 

E(f,~k=k Y" P{~ i l>u . ,  ~i2>u . . . . .  ~i ,>u.} (3.2) 
1 ~i l  < / 2 . . .  <irOn" 

for some r. For example the assumption D'(u,) limits E (z) so that in fact n,k 
limsup ~,(2)--*0 as k ~ oo, from which it follows (cf. [8]) that (1.4) holds so that /2 'n ,  k 

n ~ c x ~  

{~,} has extremal index 1. Generalizations of this are clearly possible to allow 
a non-zero limit for limsupE~)k as k--+ oo for some values of r > 2  as the 

n ~ o o  

following simplest case beyond D'(u,) shows. 

Corollary 3.2. Let  the stationary sequence {~,} satisfy D(u,(z)) for  each z > 0  
where u,(z) satisfies (2.6). Suppose that for  some Zo>0, u,=u, (zo)  and some O, 
0_<0_<1, 
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(3.3) 

(3.4) 

limsuplE~2,)k--Zo(1--O)[--*O as k ~ o e  

and 
~(3~. ~ 0 l i m s u p  ~ ,  ~ as k ~ oo 

Then {~,} has extremal index O. 

Proof. Since  1 - F  1 .... , ( u n ) = P  ( ~ j > u , )  it  fo l lows  by  s t a n d a r d  B o n f e r r o n i  
i n e q u a l i t i e s  t h a t  J 

n ' [ 1 - F ( u n )  ] - k - I E ( 2 ) - < I - F  1 .... ,(un) tl, k - -  

a n d  h e n c e  <n'[1  - f ( u , ) ] - k  -1 E(~2)k+k 1 ~ 3 )  , ~ n ,  k 

kn' [1 - F(u.)] - r o (1 - 0) - IE~2~ k - z o (1 - 0)l <_- k [1 - F~ .... , (un)] 

< , -(2) z (1 q-E (3) = k n  [ 1 - F ( u , , ) ] - r o ( 1 - O ) +  Ln, k -  o - 0 ) [  .,k" 

S ince  u.  = G(Zo), l e t t ing  n ~  oo w i th  k f ixed y ie lds  

0 z o - l i m s u p  [E(~ 2, )k --  Z 0 (1 --  0)[ < l i m i n f  k I- 1 - F t .... �9 (G)]  
n ~ o o  n ~ o o  

< l i m s u p  k [1 - F 1 .... ' ( G ) ]  
n ~ o o  

< Or 0 + l i m s u p  I E~2, ~ - "%(1 - 0)l + l i m s u p  ~,~'C3)k 
n ~ o o  

f r o m  w h i c h  i t  fo l lows  s i m p l y  t h a t  

l i m s u p  I k [ 1 - F~ .... ' (G) ]  - 0 z o [ < l i m s u p  I E(~2) k - z o (1 - 0)l + l i m s u p  E~)k 

w h i c h  t e n d s  to  ze ro  as k ~  ~ ,  g iv ing  (3.1) a n d  hence  the  d e s i r e d  c o n c l u s i o n  by  
the  t h e o r e m .  [ ]  

T h e  c o n d i t i o n  (3.3) m a y  be  r e s t a t e d  in  a n  o b v i o u s  w a y  to give the  fo l l owing  
a l t e r n a t i v e  ve r s i o n  of  the  co ro l l a ry .  

C o r o l l a r y  3.3. The result o f  Corollary 3.2 holds if (3.3) is replaced by 

n" 

( 1 - - j / n ' ) P { ~ a > u , l ~ l > u , } - *  l - - O + 2 k  as n ~ o o ,  (3.5) 
j=2 

where 2 k ~ 0 as k --* c~. 

Proof. I t  is s i m p l y  c h e c k e d  t h a t  

E ~ 2 , ~ - Z o ( 1 - 0 )  
n '  

= n [ 1 - F ( G ) ]  ~ (1-- j /n ' )P{~;>U,I~I>U,}--ZO(1--O)--*rO2k as n - , o e ,  
j=2 

f r o m  w h i c h  (3.3) fo l lows  a t  once .  [ ]  
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While "repeated limit conditions" such as (3.1) can be useful in practice, it 
may sometimes be more convenient to use conditions depending on a single 
limit only, and we shall show briefly how this may be done, giving an 
alternative form for Theorem 3.1. 

The condition D(u,) requires that the quantity % , ~ 0  as n---,oe for some 
l,=o(n). It is clearly possible to obtain k , ~  ov such that both 

k. c~.. I. --+ 0 (3.6) 
and 

k, I, = o(n) (3.7) 

hold (e.g. taking k,=min(e2.~,, (n/1,)~). Using such a sequence k, we have the 
following variant of Theorem 3.1. 

Theorem 3.4. Let the stationary sequence {4,} satisfy D(u,(z)) for each ~>0 
where u,(z) satisfies (2.6). For some t o > 0  let k , ~  o~ be such that (3.6) and (3.7) 
hold with u,=u,(Zo). If, writing r,= [n/k,], 

k , [1 -F~  ..... (u,)]~Oz o as n ~ o o  (0<0-<1) (3.8) 

then {4,} has extremal index O. Conversely if {~,} has extremal index 0 then 
(3.8) holds for each % > 0  and each k , ~ o e  satisfying (3.6) and (3.7) with 

u.=u.(~o). 
Proof If (3.8) holds then 

0% (1 +o(1)) P { M r n < = u n } = F a  ...... (u . )=  1 -  k. 

so that 

and hence P{M,<u,}--+e -~176 by Lemma 2.1 showing that {4,} has extremal 
index 0 by Corollary 2.3. 

Conversely if {4,} has extremal index 0, and % > 0 ,  k - ~ o e  satisfying (3.6) 
and (3.7) then Lemma2.1 shows that W"(M~ < u , ) ~ e  -~176 with u,=u,(zo). 
It follows simply that F~ ..... (u,)~ 1 and 

0-c o 
log [1 - (1 - F 1 ..... (u,))] = - ~ (1 + o (1)) 

so that 
OT o 

- [1 - e~ ..... %) ]  [1 + o 0 ) ]  = - ~ -  (I + o(I) )  

giving (3.8) as required. [] 

A simply expressed sufficient condition for (3.8) may be given as in the 
following corollary. In this we write E~ s) for E (S) where this is given by (3.2) i.e. n, kn 

E~S)=k, ~ P{r >u ,  ... ~,s > u,} (3.9) 
. l<i l<i . . .<is<=rn 

(where r n -= In/k J). 
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Corollary 3.5. Let the stationary sequence {~,} satisfy D(u,(r)) for each z > 0 ,  
where u,(z) satisfies (2.6). For some Zo>0 let k , ~ o o  be such that (3.6) and (3.7) 
hold with u,=u,(Zo). Suppose that for each s = l , 2 . . ,  the EC, s) defined by (3.9) 
satisfy 

(s)~ (3.10) En ~s as n--->~, 

where ~s--* 0 as s ~ 0o. Then {~.} has extremal index 

0=~o 1 ~ (_)r 1~. 
r = l  

Proof. Write 2 ~ = k , [ 1 - F  1 ..... (u,,)]=k,,P ~ l(~j>u,) . Then using Bonferroni 

Inequalities we have for s odd, n > s, 

(1~ ~2) (3) E(s~>2,>E~I)-E~,2)+r~ . . . - E ,  E, - E ,  + E ,  . . . +  , ~(3) ~+~) 

Writing_2 = liminf,~,, %=limsup 2, and letting n ~ 0% we obtain, for each odd s, 

c~1 - ~2 + e3 -.. + ~ > ' ~ >  2 > ~l-C~z + c% ... - ~ +  1- (3.11) 

Since the extreme terms differ by c~s+~ which tends to zero as s ~ o o ,  it 

follows that 2 = 2 ,  say. If Ts= i ( - ) ~ - ~ ,  it then follows from (3.11) that 
r = l  

O < T s - 2 < T ~ - T ~ + I = ~ +  1 for s odd and similarly 0 < 2 - T ~ < T ~ _ I - T ~ = ~  ~ 
for s even, so that in both cases 

ITs-21<cq+~s+l--,O as s ~ o o .  

Hence ~ ( - )~ - ac~  converges to the value 2 and (3.8) holds with 0 % =  
r = l  

~ ( - ) ~  e~ giving the desired result. []  1 

r = l  

Finally in this section we cite some examples of sequences exhibiting all the 
possible types of behavior relative to the extremal index. In each of these cases 
D(u,(z)) is satisfied. 

The most common case is where D'(u,(z)) holds leading to the extremal 
index 0--1.  For  example this is so for a stationary normal  sequence {~,} with 
covariance sequence {r,} satisfying the condition of S.M. Berman, [2], viz. 
r log n ~ 0 - an obviously weak condition indeed. 

We have given a simple example of a case when 0=�89 in the discussion 
above. An example where a series of values of 0 is possible through parameter  
choice in an autoregressive scheme, has been given by Chernick [-3]. The stable 
processes considered by Rootz6n [15], can have any value of 0 in the range 
0 < 0 < 1. A simple example due to L. de Haan  also exhibiting this behavior is 
the sequence 

~, = max pk t/,_ k 
k>=0 
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where 0 < p  < 1 and {~/,} is an i.i.d, sequence with common d.f. exp ( - i / x ) .  This 
yields an extremal index 0 = 1 -  p. 

An example of Denzel and O'Brien [6] exhibits a "chain dependent" 
sequence {~,} with extremal index 0=0.  In this case -Mn has a Type II limiting 
distribution, but we do not know whether M, has any sort of limiting distribu- 
tion. 

A further example of L. de Haan, however, provides a case where 0 = 0 and 
M,,, ~r n both have limiting distributions. Specifically the sequence {~,} is 
defined by 

~, = max (tt,_ k - k) 
k>O 

where t/, are i.i.d, with common d.f. e x p ( - x  -~) x > 0 ,  ( e> l ) .  In this case M, 
has a Type II limit with parameter e and norming constants a,=n-1/~, b , = 0  
whereas M, has a Type II limit with parameter c~-1 and norming constants 
a~=n - a/(~- l), b,,=0. 

Further an example of O'Brien [13] exhibits a case in which {~,} has no 
extremal index at all. In this each ~, is uniform over the interval [0, 1], ~z, 
~3... being independent and ~z, a certain function of Cz,- ~ for each n. 

Finally while the above discussion has relied on the condition D(u,) 
throughout, even this condition may be weakened. For example a case where 
D(u,) does not hold but the extremal index exists is given by the following 
example of [5]. Let ql, r/z, --. be i.i.d, and define the sequence 

(~1, ~ ,  ~ ,  ...)=(~t, ~ ,  ~ ,  ~ ,  ~,-- . )  
o r  

(~1 '  t ] l ,  112, ~2 . . . .  ) 

each with probability �89 It follows from [5] that {~,} has extremal index �89 
Further, it is easily shown that (3.5) holds. However D(u,(z)) does not hold, 
showing that even this weak (and usually satisfied) condition is not quite 
necessary. 

4. Point Process of Clusters 

As noted in Sect. 1, when n [ 1 - F ( u , ) ]  ~ and D(u,) and D'(u,) both hold, the 
(time normalized) instants at which the sequence exceeds u, take on a Poisson 
character as n becomes large. More specifically let N, denote the point process 
on the unit interval (0, 1] consisting of those points j/n such that ~j>u, .  Then 
under the conditions above it may be shown ([9]) that N, converges weakly to 
a Poisson Process with intensity -c on (0, 1]. 

When D'(u,) does not hold, the exceedances of u, may tend to occur in 
clusters, leading to the simultaneous occurrence of multiple events i.e. a "com- 
pounding" in the limiting point process. A complete description of the limiting 
point process has been given by Rootz6n [15] in the case where the underlying 
sequence {~,} belongs to a class of stable processes (cf. the above discussion in 
Sect. 3). 
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Again under a (multidimensional type of) strengthening of the condition 
D(u,), and assuming D'(u,), it is possible to obtain a "complete Poisson theo- 
rem" (cf. [-1,9]). This involves convergence of the point process in the plane 
with points at (j/n,(~j-bn)/an) , with appropriate an, bn, to a certain Poisson 
process in the plane. Results of this type allow rather complete descriptions of 
(joint) asymptotic distributional results for extreme order statistics. 

It is also of interest to determine the effect of eliminating the condition 
D'(u,) in results of this type. For  example Mori [11] has shown that under 
strong mixing the limiting point processes are confined to a certain class (and 
it seems likely that this is true also under the weaker D(un)-type of condition). 

We shall not investigate limiting results of these types in detail here. 
However it does seem interesting and useful to give the simplest of con- 
vergence results - involving the Poisson limit for the point process "positions" 
of the "clusters" of exceedances of high levels. This is analogous to a result of 
Rootz6n in [15] for stable processes. 

One very simple means of defining clusters of exceedances is to take a 
sequence r~ and consider that events occurring within a distance r n of each 
other belong to the same cluster, r n should of course be chosen so that it is at 
least as large as (virtually all) cluster "lengths" but small compared with 
cluster "separation." For  many usual situations this still leaves considerable 
flexibility in the choice of r n, while leading to unique results as we shall see. 

More specifically we shall suppose that D(un) holds for u,=un(z ) satisfying 
(2.6), a sequence k,--+ ~ is chosen to satisfy (3.6) and (3.7) and rn= [n/k,]. A 
point process N, is defined on the unit interval (0, 1] as follows. If for given 
s = l , 2 . . . k ,  there is an exceedance of u n by ~j for at least one j such that 
(s-1)r,<j<-_srn, then N n has a single event at the point t=sr,/n. That is any 
group of exceedances between ( s - 1 ) r ,  and st, is replaced by a single event - 
after time-scaling - at s rJn, "representing" the original group. We refer to N n 
as the "point  process of cluster positions." With this construction the following 
result holds. 

Theorem4.1. Let the stationary sequence {~,} satisfy D(u~(z)) for each z > 0  
where un(z ) satisfies (2.6). Let k~-~ co be chosen to satisfy (3.6) and (3.7) and let 
{~,} have extremaI index 0 (0<0_<1). Then the point process N, of cluster 
positions for exceedances of u,(z) converges in distribution to a Poisson Process 
N on (0, 1] with intensity parameter 0 z. 

Proof. As in previous proofs of similar results (cf. [-9]) it is by a theorem of 
Kallenberg [7] only necessary to show that 

ENn{(a,b]}-~o~S{(a,b]} for 0 < a < b < l  (4.1) 

and P {N n(E) = 0} ~ P { S (E) = 0} (4.2) 

for each finite disjoint union E of sets (a i, bi] c(0,  1]. 
If v, denotes the number of (integer) intervals ((s-1)r,,srn] completely 

contained in ([na], [nb]]  it is clear that v n ~ n r , - l ( b - a ) ~ k , ( b - a )  and further 
that 
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gN.{(a,b]}~vnP (~i>u.) 
i 

k, (b - a) [ 1 - F 1 ...... (u,)] 

-*(b-a) O "c 

by (3.8). But this is just ~ N {(a, b]} so that (4.1) follows. 
p 

To show (4.2) we write E =  Q) (aj, b3] and write Bj for the integers in ([(naj], 
1 

[(n bj]]. Then it is readily seen that 

P{Nn(E)=O}=P{j~_I(M(Bi)<u,)}+o(1) 

t l =j=l ~1 {P(M(Bj)<=u.)}+ P j=l f~ (M(Bj)<__u.) -j~=IP{M(Bj)<=u.} +o(1). 

By a straightforward induction, the difference in square brackets does not 
exceed pc~,,nx in absolute value where 2 is the minimum separation of the 
intervals (a j, b j] (2 can be taken non-zero since abutting intervals can be 
combined). But c~,,~ may be taken non-increasing in l (cf. [-9]) and it follows 
from D(u.) that % , ~ 0  as n--* oo. Since {~.} has extremal index 0 it follows in 
an obvious way that P {M(Bj)<u.}--.e -~ and hence 

p 

P {N.(E)= 0] ~ [ I  P{N(a), bj] =03 
j=l 

proving 4.2. [] = P {N(E)=0} 

It is of interest to note an intuitively appealing interpretation of the ex- 
tremal index as the inverse of mean cluster size. This may be seen even in 
terms of the simple approach above. For the mean cluster size can be in- 
terpreted as the (limiting) mean number of exceedances in an interval of length 
r., given at least one exceedance in that interval i.e. if Z denotes the number of 
exceedances of u.(~) in an interval of length r., 

g{ZlZ=>l}- -  ~ sP{Z=slZ>l} 
s = l  

=NZ/P{Z>=I} 
= r. [1 - F(u.)]/[1 - F 1 . . . . .  (un)] 

- - ) . 0  - 1 "  

Finally it should be noted that the limiting distributions of extreme order 
statistics will be affected in a more complicated way by the clustering than the 
maximum. These distributions would emerge from the more complete limiting 
result for individual exceedances. However use of the simple Poisson result 
given above will result in the distributions for the heights of the "kth highest 
clusters" rather than the kth extreme order statistics, in an obvious way. This 
of course is analogous to consideration of kth highest local maxima in con- 
tinuous parameter situations. 
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