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A Class of Limiting Distributions 
of High Level Excursions of Gaussian Processes* 

SIMEON M.  BERMAN 

O. Introduction 

Let X(t), - o v < t < ~ ,  be a real valued stationary Gaussian process with 
mean 0, variance 1, covariance function r(t), and continuous sample functions. 
Such a process will be called a standard process. For  u > 0  and T > 0 ,  let L be 
the Lebesgue measure of the set {t: 0 < t < Z  X(t)>u},  the time spent above u 
in [0, T]. It is assumed that r is nonperiodic and that 

1 --r(t)~y~ltl ~, t-*O, (0.1) 

for some y > 0  and some ~, 0 < ~  <2.  Let U(t), - o o  < t <  oo be a Gaussian process 
with continuous sample functions, vanishing at t = 0, and such that 

E(U(t ) -U(s) )=O,  ElV( t ) -U(s) l  2 - [ s - t l  ~. 
Our main results are: 

i) The conditional distribution of u2/'y L, given X(0)=  u, converges for u ~ ve 
to the distribution of the time spent above 0 by the process t f 2 U ( t ) - t  ~, t>O. 
In the case c~ = 2 this provides a more general version of the "vertical window" 
conditional limit theorem for high level excursions, proved by Kac and Slepian [4]. 
We note that our earlier result [1] gives a more general version of the "horizontal  
window" limit theorem. 

ii) In the particular case e = 1, the same limiting distribution as in i) is obtained 
for u 2 7 L under a different kind of conditioning, namely, conditioning by the event 
L > 0 .  Here U is the standard Brownian motion process. The moments  of the 
limiting distribution are explicitly computed. This conditioning is analogous to 
that in [1], where the case ~ = 2 was considered. 

The limit theorem in i) may be explained in the following way. Let I A be the 
indicator of the event A; then 

T 

L = S I[xls)>,ldS 
0 

and so TTu2/= 

u2 /~ /  L = ~ I[x~s/~u2/~)>ul ds 
0 

Tyu2/~ 

= ~ I(u[x(s/~u2/~)-uj>o}ds. 
0 

* This paper represents results obtained at the Courant Institute of Mathematical Sciences, 
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The conditioned process u [X(s/u 2/~) -uJ,  given X(0)= u, converges in distribution 
to 1/~U(s)-[sl~; therefore, with appropriate justification, the same is true for 
the excursion distributions of the corresponding processes. 

The result ii) implies that when c~=l the two conditions L > 0  and X(0)=u 
lead to the same limiting distribution. In contrast to this, two different limiting 
distributions are obtained when ~--2. 

1. Excursions for a Class of Gaussian Processes with Stationary Increments 

Let U(t) be the Gaussian process defined in w 0, and put 

~b(x)=(2rc)-~e -}x~, g'(x)= { ~(y)dy. 
- o o  

Let ~ be the random variable 
oo 

4 = ~ Itv"Zvlt)>,=ldt" 
0 

This is almost surely finite because 

Put 

oo oo 

E~= I P{]/2U(t)>t~}dt= I [ 1 - ~ (  t l / ~ ) J d t < o o .  
0 0 

4,(x, y; p)-  

exp { x 2 - 2 p x y + y 2  
2(1-p2) } 

2~z(1 _p2)~ 

and note that, by the method in [3], p. 214, the variance of ~ is 

o3 oo r ( s , t )  

f S  (r162 
0 0 0 

where r(s, t) = correlation of U(s), U(t) 

=1 (Isl~ + Iris- Is-tl~). 

The latter is positive for all s, t > 0 so that the variance of ~ is positive (or infinitely 
positive); therefore, the distribution of ~ is not degenerate. 

When e = 1 U(t) is the standard Brownian motion process. We shall compute 
the moments of ~ and show that they determine a unique distribution. For sub- 
sequent purposes the Brownian motion is conditioned by U(0)= Yo, not necessarily 
equal to 0. 

Lemma 1.1. Let U(t), t>=O be the standard Brownian motion, and ~ defined as 
above (with c~ = 1); then 

E(~]U(O)=yo)=m! ... exp - ~ ( y i - y i _ l )  + dyl...dy~, m ~ l .  (1.1) 
0 i = l  
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Proof. By the standard method of evaluating "Wiener integrals", we find that 
the left hand side of (1.1) is 

m' ~ . i !  "'" [2(si-s,-1)3 -~ 4 ~ l /2 ( s , - s i_3  / 3 i a m 

dy 1 ds 1 ... dsm. 

Change the inner variables of integration from y~ to Yi-si, and invert the order 
of integration' 

fi 
0 0=So< ""<s in<or  i=1 

Integrate over sin, ..., s 1 �9 . dsm ... dsl dyi ... dym. 

0 i=1 ] ~  

It follows from the form of (~ that this is equivalent to 

m!S--'Sexp[~ -li~=1(yi" -yi_l)]  f i  ~ . ~ o ~ - d P ( Y l - Y l - 1 ) d s } d y l . . . d Y , ,  . e - s ~ 4  0 .2 ) 
0 0 = i=1 ] ~  

From the well known Laplace transform equation 
0(3 

e -~' s-~ r  ) ds=(2t) -~ e-C~lxl 
o 

it follows that 
~-e-S/4  ~(Yi-Yi-1-)ds=e-~IY~-Y'-ll;]/~ 

thus; (1.2) is equal to 

m!~ --. ~ exp [(Y~-Y,-~)+lY~-Yi_~IJ dY~...dYm. 
o 0 

This is equal to the right hand side of (1.1). 

Lemma 1.2. There is a unique distribution having the moment sequence (1.1)for 
Yo =0. 

Proof. 

E(~/'IU(O)=O)= ; - . - ;P{l /2U(s i )>s i ,  i= 1, ..., mlU(O)=O} ds 1 . . .ds m 
o o 

oo s m sm 

= m S  I "'" S P { ] ~ U ( s i ) > s i ,  i = 1  . . . .  , m I U ( O ) = O }  d s  I . . .  d s  m 
o o o 

oo 

<=m ~ s m-~ P {l/2 U(s)> s] U(O)=O} ds 
0 
oo 

=m ~ sm-l[1-~(]/~-2)] ds. 
0 
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From this bound and the well known inequality, 

1 - r  x > 0 ,  (1.3) 

it follows that the series 
Ztn 

E(4Ol c(0)  = 0) 

converges for [zl <�88 so that there is a unique distribution with these moments 
([-2], p. 176). 

This is a consequence of (1.1): 

oo 

E(r U(0)=0) = m I E(r  �9 (1.4) 
0 

When e = 2, the process U(t) is equivalent to r/t, where ~/is a random variable 
with a standard normal distribution. It follows that ~ is the length of the interval 
(0, t) for which s z - 1 / 2 q  s < 0, 0 < s < t; therefore, ~ = 1/~ r/+, and so its distribution 
has mass �89 at the origin and a half-normal density on the positive axis. 

The two-sided occupation time 

; [[r dt (1.5) 
--oo 

is shown, in the same way, to be equal to 1/21~[. 

2. Conditional Limiting Distribution of the Occupation Time Given X(0) = u 

Theorem 2.1. Let X (t) be a standard process satisfying (0.1); then the conditional 
distribution of  u2/~ L given X (O)= u converges to the distribution of  4. 

Proof  There is no loss of generality in assuming that ~-- 1. For  any ~ > 0 the 
process X(t /7  ) has the covariance r (t/V) which satisfies (0.1) with 7 = 1; furthermore: 

T T y  

u2/~ 7 ~ IExts)> ,1 ds = u 2/~ S I~x~s/,)>,1 ds. 
0 0 

If the conclusion of the theorem holds for the right hand member (for all T > 0) 
then it holds for the left hand member for all 7 > 0. 

For  arbitrary c > 0 put 
T 

~c(u) = u 2/~ ~ e . . . .  2/~ i~x ts)> ,1 ds 
0 

oo 

0 

We shall prove that the conditional distribution of ~r converges to that of ~ 
for u ~ o c .  Since ~(u) and ~ are bounded (by 1/c) it suffices to show that the 
conditional moments converge. 
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The process X(t) is conditionally Gaussian given X(0)= u, and 

E ( x  (t) l X  (O) = ~) = u r (t) (2.1) 

consequently: 

covariance (X(s), X(t)[X(O) = u) = r (s - t ) -  r (s) r (0; 

F~ {u(X( t  u -  ~/~)- ~ ) I X ( 0 ) =  ~} --, - t ~, 

Var {u (X (t u- 2/~) _ X(s u- 2/~))1X(0) = u} --* 2Is - t l~, 

for u ~ o o ;  therefore, the 
u(X(tu-2/ ')-u) converge to 
dominated convergence) that 

conditional finite-dimensional distributions of 
those of the process l f2U(t ) - tL  It follows (by 

~(~;~(u)lX(O)=u) 

r ~ 2 / ~  Tu2/~  _ci~_ls i  

= [. "'" S e P{u(X(s,u-2/~)-u)>O, i=1  . . . . .  mlX(O)=u}dsa...dsm 
0 0 

oD 09 rn 

~ J . . . j e  '=~ P{]/2U(si)>s r, i=l , . . . ,m}dsl . . .ds , , ,  
0 0 

=E(~7). 

To complete the proof it suffices to show that the distribution of ~c converges 
to that of ~ as c--, 0, and that the conditional distribution of ~c(u) converges to 
that of u2/~L uniformly in u. The first assertion follows from the fact that 8r 
increases as c + 0, and that its limit (by dominated convergence) is 4. To verify 
the second assertion we observe that u2/~L is at least equal to ~c(u), and 

E (I u 2/~ g - ~c ( u ) l l X ( 0 )  = u) = 

which by (2.1), is equal to 

T u 2/~ 

(1 - e  -C~) P{X(su-2/~)>u[X(O)=u} ds, 
0 

T.Z/= [ [ q/l_r(su_2/=)]] 
~ (1 -e -cs )  1 - ~ u v ~ l ~ s s ~ j j d s .  
0 

(2.2) 

Under (0.1) there exists a positive constant B such that 1-r ( t )>Bt  ~ for all 
0 < t < T; therefore, the integral (2.2) is at most equal to 

oo 

(1--e -cs) [1 -~ ( ] /Bs~ /2 ) ]  ds, 
0 

which is independent of u and which tends to 0 with c. The proof is complete. 

Let us now consider the two-sided occupation time 

T2 

u2/~ S Itx(s)>,l ds, T1 < 0 <  r2 (2.3) 
T1 
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where the time parameter now includes a portion of the negative axis. By means 
of the same proof given above, with the modifications that [T 1, T2] and e -cISI are 
used in place of [0, T] and e-% respectively, it can be shown that the conditional 
distribution of (2.3), given X(0)--u, converges to that of 

oO 

[. I[~v(~)> i~1~ ds. (2.4) 
- - o 0  

The rest of this section is about the special case e = 2. In [1] it is shown that 
the conditional distribution of uyL, given L>0 ,  converges to the Rayleigh dis- 
tribution. This also the limiting distribution under "horizontal window" con- 
ditioning, described in [4]. When e--2, the random variable (2.4) has the same 
distribution as (1.5), which has a half-normal distribution. This is the limiting 
distribution under the "vertical window" conditioning in [4]. Our results apply 
to a larger class of processes than those in [4] because we do not assume the 
differentiability of the sample functions. 

The limiting distribution of (2.3) may be interpreted as the limiting distribution 
of the length of an excursion above u - e v e n  when the sample functions are not 
differentiable. Under (0.1) with c~=2, X(t) assumes the value u at most finitely 
many times in each interval, almost surely; furthermore, every t for which X(t) 
is equal to u is a "crossing" point, not a "tangency" [8], and [3], p. 199. It follows 
that if X(0)=u then there is an excursion above u either immediately before or 
after t=0.  

3. An Asymptotic Formula for the Distribution of the Maximum of a Standard Process 
when �9 = 1 

As a preliminary to the main theorem of the next section we derive an asymp- 
totic formula for the tail of the distribution of the maximum of a standard process 
satisfying (0.1) with c~= 1. The condition that r(t) is nonperiodic is equivalent to 

r(t)= 1 if and only if t = 0 .  (3.1) 

Theorem 3.1. Let X(t), t>=O, be a standard process satisfying (0.1) with ~= 1, 
and also (3.1); then, for any T > 0 :  

e {max(X(t): O<_t<_T)>u}~TTu#)(u), u~oo.  (3.2) 

The plan of the proof is similar to that of Theorem 3.1 of [1]. It is also related 
to [5], Section 4. The proof will be completed after several preliminary lemmas. 

As in the proof of Theorem 2.1 we can, by the substitution of t/7 for t, reduce 
the case of arbitrary 7 to the special case 7=1;  therefore, the hypothesis (0.1) 
becomes 

1 -r( t )~l t l ,  t~O.  (3.3) 

We recall S lepian's lemma [7], which was used in [1 ]: if X and Y are Gaussian 
processes on a common index set I, and with common means 0 and common 
variances, and if EX(s)X(t)<= EY(s) Y(t) for all s, teI, then 

P{max(X(t): teI)>u}<P{max(Y(t): teI)>u}. (3.4) 
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Lemma 3.1. Let V(t) be a standard process with the covariance function 

(1 - [ t ] )+ ; (3.5) 

then, for all T, 0 < T < 1, and all x, 

P{max(V(t): 0_<t___ T)>=x}= 1 - r  
T 

+ x 4)(x) j �9 (x 1/s/(2-  s)) ds (3.6) 
0 

T 

+ 43 (x) I l/(9~- sl/s 4) (x l / s / (2 -  sl ) ds. 
0 

Proof The maximum of V is at least equal to x if either V(0)> x or V(0)< x 
and V(s)=x for some s, 0 < s <  T; thus, the probability in (3.6) is equal to 

X 

1 - r (x) + ~ P { V(s) = x for some s, 0 < s < T[ V(0) = y} 4) (y) dy. 
oO 

By a result of Slepian [6], the conditional probability in the integrand is equal to 

~ l x - y l  l ( x - y ( 1 - t ) ~  
o t [ t ( 2 - t ) ]  ~ 4) [ t ~ - - t ~  ] dt. 

Multiply this by 4) (y), integrate with respect to y, and invert the order of integration" 

r { f  (x-y(1-t))[t(2_t)] �89 } ! t - l [ t ( 2 - t ) ]  -~ (x -y )4)  4)(y)dy dt. 

The inner integral can be explicitly evaluated by using the relations 

( x - y ( 1 - t )  y - x ( 1 - t )  
[ t (2_t ) ]  ~ )43(y)=43 ( [ t ( 2 _ t ) ]  ~ ) 43(x) 4) 

\ 

and 
X 

y 4) (y3 dy = - 4) (x). 
oo 

The verification of (3.6) follows some elementary calculations. 

Lemma 3.2. Let X be a standard process satisfying (3.3); then for every e, 
0 < 8 <  1, there exists r > 0  such that 

P{max(V(t): O< t< T(I - e ) ) >  u} 

<P{max(X(t): O<_t< T)>~t} (3.7 3 

<P{max(V(t): 0<_ t<_ r(1 +e))>u} 

for all u and all 0 < T < r. 

Proof By (3.3), for every e, 0 < e <  1, there exists ~>0  such that 

(1 - I t [  (1 + ~))+ < r (t) < (1 -It[  (1 -~3)+ (3.8) 
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for all It I < z. The maximum of V(t) on [0, T(1 _+ e)] is equivalent to the maximum 
of the process V(t(1 • on [0, T]. The latter process has the covariance function 
(1-ltl(l_+e)) +. If T__<r then, by (3.8), the covariance of X dominates that of 
V(t(1 +e)), and is dominated by that of V(t(1-e)) on [-0, T]. This and (3.4)imply 
(3.7). 

Lemma 3.3. Let T be fixed and let m be a positive integer. Then there exist 
positive numbers K and a such that: 

If  J1,..., Jm are closed subintervals of [0, T] each of length h < a, and J is 
the union of J1 . . . . .  J,,, then 

P{max(X(t): teJ)> u} 
l imsup P{max(X(t): O<_t<_T)>u} <___Kh. (3.9) 

Proof For any arbitrary but fixed e, 0 < e < 1, let a be the number z in Lemma 3.2. 
By Boole's inequality and stationarity: 

P{max(X(t): teJ)>u}<mP{max(X(t):  O<_t<_h)>u}. (3.10) 

Since ~r may be taken arbitrarily small we suppose that it is also smaller than T: 

P{max(X(t): O<t<T)>u}>P{max(X(t):  O<_t<_a)>u}. (3.11) 

It follows from Lemma 3.2 and from (3.10) and (3.11) that the ratio in (3.9) is at 
most equal to 

P{max(V(t): O<t<h(1 +e))>u} 
m P{max(V(t): 0_<t<a(1-~) )>u}  " (3.12) 

Since a may be taken arbitrarily small we suppose also that c r ( l+e)< l ,  and 
apply Lemma 3.1. (Even though there is a strict inequality on max V(t) in (3.12) 
the probability is the same as for max V(t)>=u because the function is (3.6) is 
continuous.) It follows from (3.6) and (1.3) that the ratio (3.12) converges to Kh 
for u ~oe,  where K=m(1  + e)/a(1-e). 

Lemma 3.4. For every positive T and 6: 

P {u<max(X(t): O<t<T)<=u+~} 
lim sup _<6. (3.13) 

,-* ~ T u dp (u) - 

Proof The maximum of a function on a union of disjoint intervals falls 
between u and u + 6/u only if the same holds for the maximum over at least one 
of the intervals; thus, by Boole's inequality and stationarity: 

P{u<max(X(t): O<_t<- T)<=u+~5/u} 
(3.14) 

<mP{u<max(X(t): O<t<_T/m)<=u+b/u} 

for any positive integer m. For arbitrary e, 0 < ~ < 1, let m be so large that 

T/m<min(r, (1 + e)-l), 
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where ~ is the number in Lemma 3.2. The lemma implies: 

P{u<max(X(t): O<t< T/m)<u+6/u} 
<P{max(V(t): 0< t<_ T(1 +e)/m)> u} (3.15) 

- P {max (V(t): 0 < t < r ( 1  - e)/m) > u + ~/u}. 

Divide the right hand side by Tu(o(u) and let u ~ o o :  by Lemma3.1 and the 
estimate (1.3), the quotient converges to 

(T/m)[l + e-(1-8)e-a]. 

From (3.14), (3.15), and the arbitrariness of e we conclude that the lira sup in 
(3.13) is at most equal to 1 - e  -a, which is smaller than c5. 

In the following two lemmas it is shown that the maximum of X over the set 
[-0, T] is asymptotically equivalent to the maximum over a sufficiently dense 
finite subset. 

Lemma 3.5. For any 6 > 0 and T > 0: 

lim-~yx-, , P{max(X(t): O<<_t< T ) > u + - - ,  
~oo uq)tu) u (3.16) 

max(X(j  u-S): O<j< [TuS])<u} =0.  

Proof By stationarity and Boole's inequality the probability in (3.16) is at most 

TuSP{X(O)<u,X(u-5)<u, max(X(t): O<_t<-u-5)>u+~}. (3.17) 

The event described in (3.17) implies that for some n>  1 and some k, l_<k_<2", 
and every c, 0 < c < 1 : 

X(k 2-nu- 5)-X((k - 1)2-~ u-S)>  ~c"-1(1 -c)/u; 

indeed, if the alternative inequality held for every n and k, and for some c, 0 < c < 1, 
then 

sup X(k 2-" u- s) < u + O/u, 
k,  n 

so that, by continuity of X: 

max(X(t): O<_t<u-S)<u+a/u. 

It follows that (3.17) is bounded above by 

~cn - l (1 - c )  ) ] .  (3.18) TuS ~ 2~ [1-~b ( 

Let u be so large that, by (3.3), 

1-r(u-5)<2u-S; 
then (3.18) is at most equal to 

Tu s ~ 2"[1-~(Ku~(c ]f2)")], 
rt= l 

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 2i 



130 S .M.  B e r m a n :  

where K = 6 ( 1 -  c)/2c. By (1.3) the expression above is at most 

T u  ~ 1 2 u 3 (2 ca) "] 
K ] / ~  ,=1 ~" (lf2/c)" exp [ -~-K , 

which, by the Cauchy-Schwarz inequality, is at most 

Tu5 ~ (2/c2),e-K2(2c2)" ~ - n  (2ca)" . (3.19) 

Each of the series in (3.19) converges if c>  l /If2 and u>  1. Divide the expression 
(3.19) by u4)(u) and then let u ~ :  the quotient is 

constant, u s exp [ -  K(u 3 - 1) (2 c2)" + u 2 , 
n 

which converges to 0 because the term with u 3 dominates the exponent. 

Lemma 3.6. Let I t . . . .  , I m be disjoint closed subintervals of [0, T], and I their 
union. For u >0, let G k be the intersection of I k with the set of numbers of the 
form j u - s, where j = 0, 1 . . . .  ; and let G be the union of G1, ..., Gin. Then: 

lim P{max(X(t): t~G)>u} 
- 1 .  ( 3 . 2 0 )  

,-~ ~ P{max(X(t):  te I) >u} 

Proof Since G c I, it suffices to prove: 

lira P{max(X(t): t e I )>u,  max(X(t): t ~ G ) < u } - 0 .  (3.21) 
, ~  P{max(X(t): t e I )>u}  

For arbitrary 6>0  the numerator in (3.21) may be written as the sum of 

P{max(X(t): t d ) > u + 6 u - l ,  max(X(t): t~G)<u} (3.22) 

and a term not more than 

P{u<max(X(t ) :  t~I)<=u+6u-1}. (3.23) 

By Lemma 3.5 the probability (3.22) is of smaller order than u q~ (u). By Lemma 3.4, 
the ratio of (3.23) to u q5 (u) has a lim sup not exceeding T6. Now by the reasoning 
in the proof of Lemma 3.3, the denominator in (3.21) is at least equal to a positive 
constant multiple of u q~ (u). It follows that the lim sup of the ratio in (3.21) is at 
most a positive constant multiple of 6. Since 6 is arbitrary, (3.21) follows. 

For u > 0  the maximum of X on the finite set G is equivalent to the maximum 
of the m sub-maxima over G1, ..., G~, respectively. Now we shall prove that in 
estimating P {max (X(t):tE G)> u} for u--* o0 we may suppose that the submaxima 
are mutually independent random variables. 

Lemma 3.7. 
1 -  f i  P{max(X(t): t~Gk)<u } 

k = l  
lim - 1. 
, ~  Pymax(X(t): t~G)>u} 
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Proof We prove this by a slight alteration of the proof of Lemma 3.4 of [1]. 
Put u ~ in place of g(u) in that proof. By a similar argument it suffices to show 
that for arbitrary b, 0<  b < 1, the expression u 1~ exp [ - u 2 / ( 2 - b ) ]  is of smaller 
order than u q5 (u) for u ~ oe. This fact is easy to verify. 

We now complete the 

Proof of Theorem 3.1. The reasoning is analogous to that of Theorem 3.1 of [1]. 
Cut the interval [0, T] into m equal sub-intervals; then clip a relatively small 
open segment from the right end of each so that they are mutually separated. 
By Lemma 3.3 the distribution of the maximum over [0, T ] i s  asymptotically 
nearly the same as the maximum over the union of the remaining disjoint closed 
subintervals. By Lemma 3.6, the maximum over these intervals is asymptotically 
equivalent to the maximum over a finite subset of density u-5. By Lemma 3.7 
the maxima over the various intervals may be considered independent random 
variables with a common distribution, and the upper tail of this distribution is 
approximately Tur for large u. By the argument in [1] this is sufficient 
for (3.2). 

4. Conditional Limiting Distribution of  u 2 7 L Given L > 0 

Theorem 4.1. Let X(t) be a standard process such that r is nonperiodic and 
satisfies (0.1)for c~=l. Then the conditional distribution of u2~ L, given L>0 ,  
converges to the distribution of the random variable ~ (where U(t) is Brownian 
motion). 

Proof By Lemma 1.2, it suffices to show that the conditional moments of 
u 2 ~ L converge to the moments of 4. By previous arguments, as in the proof of 
Theorem 2.1, it is sufficient to consider just the case 7= 1; therefore, (0.1) takes 
the form (3.3). 

For any nonnegative random variable X the conditional m-th moment, given 
that X > 0, is E(Xm)/P {X > 0}; therefore, 

E [u2 iI[x(s)>uldS]" 

E [-(u 2 L)m[L>0] = P{max(Xts): O<s<_ T)>u} ' 

which, by Theorem 4.1, is asymptotic to 

r m E[u2!iEx    u ds I/Tu ,u  
for u~oo .  

For m= 1, (4.1) is equal to 
u(1 -q~(u))/~b(u), 

which, by the well known estimate associated with (1.3), converges to 1 as u--* oo. 

We now take m>2.  The expression (4.1) is equal to 

1 Tu2 Tu2 

S ' . . .  m}dtx, d t m .  
rue(u)  o o ' "" 

9* 
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Since the integrand above is a symmetric function of t 1 . . . .  , tin, the integral is 
equal to 

Ttt 2 tm tm 
m 

Tu(o(u) ~ ~ ~o ... ~o P{X(tiu-2)>u,i=l, . . . ,m}dtl . . .dtm. (4.2) 

By the total probability formula, the integrand above is equal to 

[. P{X(t i u-Z)> u, i-- 1, ..., m -  l lX(t m u -2) =y} qS(y) dy, 
u 

which, by stationarity, is equal to 

S P {X((ti- tin) u- 2) > u, i=  1 . . . .  , m - 11 X(0) = y} ~b (y) dy. 
u 

(4.3) 

When (4.3) is inserted in (4.2) and integrated with respect to t i over [0, tm], the 
variable of integration may be changed from tz to t m-  t~, i=  1, ..., m -  1 ; there- 
fore, (4.2) becomes 

T u  2 tm tm CO 
m 

Tuck(u) So !'"~o J , {X( t iu -z )>u ' i=l  ..... m-llX(O)=Y}O(y)dydtl""dt"" 

After the substitution z = u ( y - u )  this becomes 

T u  2 tm tm oO 
m 

Tu2 [. I '"[. iV{X(t iu-2)>u,i=l, . ' . ,m--l lX(O) =u+zu-1} 
o o o o .e-Z-z2/2"2"z't~...'t,,.a a a (4.4) 

Let us now formally take limits in (4.4), both in the limits of integration and in 
the integrand; this will be rigorously justified later. The conditional joint distri- 
bution of u[X(t~u-2)-u], i=  1 . . . . .  m - 1 ,  given X(O)=u+zu -1 is Gaussian with 

E {[u(X (tiu- a))-u]]X (O)=u + z u-1}=u2 [r(tiu- e)-  l] + zr(tiu - 2) 

and conditional covariances 

u 2 I - r  r . . .  

As in the proof of Theorem 2.1 the joint distribution converges to that of 
1/2 U(tl)-ti + z, i=  1 . . . . .  m - 1 ,  which is the finite dimensional distribution of the 
process, l f 2 U ( t ) - t ,  conditioned by U(0)=z. Put this limiting probability in 
(4.4), and t~= oo and exp(-z2/2u2)= 1; then (4.4) is equal to 

m;Et[~Itv~v(s,>sjds] ~-1 U(O)=z}e-Zdz, 
o kuo 

which, by (1.4), is equal to E ~'. 
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Now we justify the foregoing limit operat ion on (4.4). Since the integrand 
is a symmetric function of t 1, . . . ,  tm_l, and since it does not  depend on tin, the 
expression (4.4) is equal to 

T u  2 co 

�9 .. ~ I P { X ( t , u - 2 ) > u ,  i = l  . . . . .  m - l [ X ( O ) = u + z u  -1} 
- T T - u 2  ] o o o (4.5) O 

�9 e . . . .  ~ / 2 ~  dz dt~ ... d t ~ _ ~ .  

Put D( t )=  1 for t > 0 ,  and = 0  for t < 0 .  Since the integrand in (4.5) is a symmetric 
function of t l, . . . ,  tm_ I, (4.5) is equivalent to 

0 o i=1 (4.6) 
. P { X ( t i u - 2 ) > u , i =  l . . . . .  m -  l l X ( O ) = u +  zu  -1} e . . . .  2/2"2 dz dtl  ... dt, ,_ 1. 

The integrand converges pointwise for u ~ o o ;  thus, for the convergence of the 
integral it is enough to show that the integrand in (4.6) is dominated  by an 
integrable function. Such a function is 

m - 1  

I-I D (t i - t i _ 1) e - "  (1 -~)-c(1 -c)m,, _ ~, (4.7) 
i = 1  

where 0 <  c < 1 and B >0.  To prove that this dominates  the integrand, we note  
that  the integrand is at most  

m - - 1  

D ( T u 2 - t m - 1 )  " [ I  D ( t i - t i - 1 ) P { X ( t , ~ - I  u -2)>ulX(O)  = u + z u - 1 }  e-Z. (4.8) 
i = 1  

If X is a normal ly  distributed random variable with mean # and a 2, then, for 
any c > 0 ,  

P { X > 0 }  = P {eCX> 1} <=EeCX=e c~+~2~2. 

F r o m  this and the form of the condit ional  distribution of X( t~_  1 u -2) given X(0) 
we find that 

P{X( tm_ 1 u - 2 ) > u l X ( O ) = u +  zu  -1} 

= P { u [ X ( t m _  1 u - 2 ) -  u] > O I X ( O ) = u + z u  -1} 
=< exp {c z r -  c u 2 (1 - r) + �89 c 2 u 2 (1 - r2)} (4.9) 

< =exp{cz r - c (1  - c )  u2(1 - r ) } ,  

where r=r( tm_lU-2) .  As in the proof  of Theorem2.1  there exists a positive 
constant  B such that  1 - r ( t ) > B t  for 0_<t_< T; therefore, from (4.9) we see that 
(4.8) is dominated  by (4.7). 
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