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Asymptotic Normality in a Generalized
Occupancy Problem

LARs HoLsT

1. Introduction and Notation

Let us suppose that n balls are distributed among N cells so that each ball
may fall into the k:th cell with probability p,, p, +---+py=1, independently of
what happens to the other balls. To every cell a real number is associated, the
occupancy value, g, for the k:th cell. We call {(p,, a.), k=1, ..., N} a cell situation.
The occupancy sum, Z,, is the sum of the occupancy values for the cells which
contain at most 7 balls, r being a fixed number.

If r=0, a;=---=ay=1, and p;=---=py=1/N, then Z, is the number of
empty cells in the classical occupancy problem [1, 4]. Therefore we call the
problem of determining the distribution of Z,, in the general situation, the
generalized occupancy problem.

A number of papers deal with limiting distributions of Z, in various special
cases indicated by names such as: occupancy problems [6, 8, 9], the coupon
collector’s problem [7], the empty cell test [2, 57, only to mention a few of the
names and papers.

The above situation has also applications in sampling theory. Suppose that
we sample with varying probabilities and with replacement » times from a finite
population and that we use the Horwitz-Thompson estimator as an estimator of
the population total. The limiting behaviour of this estimator can be deduced
from that of Z,,.

The main aim of this paper is to show that, when n and N increase, under
general conditions, Z, is asymptotically normally distributed. Rosén [7] treats
the case =0 under the same conditions.

In order to give a precise formulation of the asymptotic behaviour of Z, when
n and N increase, we consider a sequence

{(pkvaakv)akzla--w]\]v}» VZI,Z,...,

of cell situations. Let d be an arbitrary natural number and consider simultaneously
the occupancy sums after the distribution of n,,, ny,+n,,, ..., By, + 1y, + - +ny,
balls. Call these occupancy sums

Z, ,Z Z

LOTE At RV of (VR B e O M 7 2
and set
VN :(Z Z )5 v=1,2,....
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In the following we assume that

N,—»o, when v—o0,

0 <liminf ny,/N, Zlimsup n,,/N, <0, s=1,...,d,
V— o0

V-

and
N,p.,£C<ow0, k=1,...,N,, v=1,2,..., for some real number C.

To facilitate the writing the index v will be suppressed.

In Section 2 we compute the characteristic function of V. Some auxiliary
results concerning moments of Vy are obtained in Section 3. Asymptotic normality
of Vy is proved in Section 4.

2. The Characteristic Function

Consider a cell situation and denote by ¢, the number of balls placed in the
k:th cell after the distribution of ny balls. Obviously (£, ..., &y, is multinomial

(ns’ Di1s ---,PN), ie.

ng!
P(éls J1s "'7€Ns=yN):

N
—— - pi*. R, =n
Yl yn! PN kglyk

Let g, =1,ifthe k:t hcell contains at most r balls after the distribution ofn+---+ny
balls, i.e., if &y + - + &, =7, &,=0 otherwise, k=1, ..., N, s=1, ..., d. Introduce
the generating function

d
AN(ZI E ] Zd)— Z En1 (H xaks) H (N Zs)ns ' e_st/ns!
s=1

Jhg= [4]
where z;, ..., 24, Xy5, ..., Xy4 are complex numbers, and E, . denotes expecta-
tion for fixed values of ny, ..., n,.
Lemma 2.1.
An(z1,5 5 2 =An(215 -5 245 X115 -5 XNa3 P1s -+ PN)
N d
=TT |1+ £ PO e o4 20) X s+ ()|

k=1 s=1

where

¥
= Zzs-e"z/si.
5=0

Proof. Let zy, ..., z, be real positive numbers and let ,, ..., ny, be independent
random variables, where 7, is Poisson (N p, z,), i.e.

Plges=y)=(Npyzf - e "7yl y=0,1,2,....

It is well-known that the conditional distribution of (1, ..., 71y, given #,,+
+4ys=n, is multinomial (n, p;, ..., py). Using this observation it is easily seen that

(nx”"’”) (Hx‘“’“ ans ng,s=1 ..,d)
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where g =1, if 1+ + 9 =7, 6,,=0 otherwise, k=1,..., N, s=1, ...,d. Hence
we have
An(zy, .00 2g)
<] d
= Z (nxsks ans_nsas ) n (Zrlks_n)
ny....,ng=0 k=1 s=1 k=

(ﬂ Xis)-
As 1y, ..., yg are independent we find

Ax(zy, ... 25)= Eﬂxs"‘) fj (ﬂxs’“>.

By direct computation we get
E( foks) (1= PO 7)1+ (Plres S0~ Plnes + 1 57) - i
o F P+ A g SF) - X Xga
=1+ iP(Npk(zﬁ—---—{-zs)) Xpgee Xp s 1 (1)

s=1

with P(z) defined as stated in the lemma.

Hence the lemma is proved for real positive zy, ..., z,. By analytical continua-
tion it follows that the lemma is valid for all complex z,, ..., z,. Q.E.D.

Lemma 2.2. If s Loy inys o> Loy 4. 4n, OFE OCCUpancy sums for a cell situation
{(p> @), k=1, ..., N}, then the characteristic function of Vy=(Z,, ..., Zp +...n,)
can be written
E(exp(i(t; Z,,+ 414 Z, .. tnd)

nl...n An(zyy ..., 29
= Nlnﬁ fnd 2ri)y~*§---§exp(N(z +-- +2.))- v———gﬂlngﬁdl dz,...dz,
integrating along the circles:
lz]=R,>0, s=1,...,d,
xs=expliapty, k=1,...,N, s=1,...,d,

in the expression for Ay(zy, ..., z,).
Proof. With x, ,=exp(ia,t,) it follows that
E(exp(i(tl Zn1 +-+ td an A+ +na)))
=E(exp(i t(ag e+ Fayey)+ o Fitg(agerat -+ ayeyy)))
onal | 1¥E)-

From the definition of Ay and by Cauchy’s integral formula the lemma
follows. Q.E.D.
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3. Some Auxiliary Results

In this section we compute asymptotic expressions for the expectation and
covariance of ¥y and prove some inequalities which we shall need in Section 4.
We shall use the following lemma by Fabius [3] concerning the Poisson approxi-
mation of the binomial distribution.

Lemma 3.1. If ¢ is binomial (n, p), X is Poisson (np), and A is an arbitrary set
of real numbers, then for any n and p

|P((eA)—P(Xed)isnp’.
Let us call the general conditions introduced in Section 1:

A) 0<liminf n/N <limsup n/N < o0, s=1,...,d,
B) Np. < C<oo,for all N and k, and some real number C.

Let Xiq,..., X Nd be independent random variables, where X, is Poisson (n,p,),
k=1,.. N s=1,...,d. Put

Pk, s)=P(Xy1 + -+ Xy s =),
Q(k, 5)=P(Xk1+“"|‘st:”)’

Z a, - P(k,s),
N
Zak P(k,u)- (1—P(k,v))—(ny +---+n,) Zpkakau Z P a4, Q(k, v)
Our™= for 1Sv=u<d,
Cpu for 1fu<v<d.
Lemma32.IfZ,,Z, ... ..s Zy +...+n, are occupancy sums for a cell situation

{(pk7 ak): k: 19 rees N}5 then
N 3
E(Zn1+-'-+ns)=us+0<(zal%/N> )7 S=15'--’d5
1
N
Cov(Zn1+__,+,,u,Z,,1+,_,+nv)=0'u,,+0(za,f/N), wo=1,...d.
1
Proof. With the &’s and the &’s defined as in Section 2 we find
E(Zy +...on) (Zakbks) Zak G+ + & =7).

As & +--+ &, is binomial (n,+---+ny, p;), we get by Lemma 3.1, Cauchy’s
inequality, and conditions A) and B), that

=z

VE(Zy+-.m) — 1| = Zlakl IP(es+ o+ & S1) = P(Xy + - + Xy =)
k

IIA
1= 1

(- (4 +n) - pESK (zak/N)

k=1

This proves the first statement.
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We now consider the variances. Obviously it is sufficient to treat the case d=1.
For convenience we suppress the index 1. We have

N
Var(Z,)=Var (Z akek) Zak -Var(g)+ Y. aja, Cov(e;, &)=S,+5;.
1

Jj¥k

From Lemma 3.1, and conditions A) and B) we obtain
Var(g) =P(&=r)—(P(&G =) = P(X, =r) = (P(X,=1))*+ O(1/N)

where |O(1/N)| < K/N, with K independent of j. Hence

s, —Z . ). P(X,>r)+0 (Z p /N)

To find S, we first note that since (£, ..., &y) is multinomial (r, py, ..., py) we have

Cov(e;, &) =P(¢; =1, ESr)—P(¢;<r) - P(E.S7)

= 3 (3 () mota=pysa—pr

x,y=0

L =)=t (=p—p) T
[ 1+ n[(n—x—y)! (lﬁpj)"hx(l_pk)"‘y].

Using Stirling’s formula

nl=12nn-n"-exp(—n+1/12n+0(m"?))

taking logarithms, expanding into a Taylor series, and using conditions A) and B),
we see that

(n—x)!(n—y!

Tn—x—y)1 (X y/n+007%)

and, further, that

(I*Pj_Pk)"_x_y

A—p)y~*(1—py~’ =exp(~np;pe+ypi+xp+0(n~?)
TFj — P

where |0(n™?)| £ K/n?, with K independent of jand k. Introducing these expressions
into the formula for the covariances, expanding the exponential function, using
Lemma 3.1, and conditions A) and B), we get

Cov(g;, &)= Z P(szx)P(§k=J’)[_XY/n‘“”PjPk+ypj+ka+0(n_2)]

x,y=0
=—np;p P(X;=r) P(X,=1r}+0(n"?)

8 Z. Wahrscheinlichkeitstheorie verw. Geb,, Bd. 21
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where |0(n~?)|< K/n?, and K is independent of j and k. Hence we find

S,=—n- ijpka a P(X;=7) P(X,=1)+0(}.|a;al/n?).

J¥k

By conditions A) and B),

N
n-Y.pi ai (P(X,=rf <K} ag/N,
1
and by Cauchy’s inequality,
N
0(X 1a;al/n?)||0( Y lajt - lal/n?)| S K- 3 a/N.
ik 1

ji*k
Hence we find

(Zpkak Xk—r))2+0 (Za )

Finally we see
N N 2 N
Var(Z,)=8;+5,=) a; P(X,<r) P(X,>r)—n (Z Px akP(Xk=r)) +0 (Z a,%/N)
1 1 1

which proves the second statement when u=v.
It remains to consider the covariances. It is sufficient to treat the case d=2.

Cov(Z,,, Zpn)= Zak Cov (e, &2)+ Za a, Cov(gjq, &,).
j¥k

As in the derivation of the variances we find

Cov(ery, &) =P+ &2 ST — P& =7) - P&+ S0)

=P(X;; + Xi, 1) P(Xi >71)+O(1/N)
and
Cov(egjy, &2)=P1 1, &+ &2 S1) =P =S1) - PGy + 82 =)

As &, and &, are independent the last expression can be written

Z< P(Ckzzz)'(P@n:xa fk1=)’)—P(fj1=x)'P(ém:J/))

and, in the same way as we obtained Cov (e;, &) above, we get

Z P(szzz)P(fnzx)P(fm:J’)'[—XY/”h_n1pjpk+ypj+ka+0(”f2)]-
yHesr
By Lemma 3.1 we realize that this is equal to
—ny p;pi P(X =1) P(X3y + X, =1)+0(n; ).

As in the derivation of the variance it follows that

N
COV(Zy, Znysn) =012+ 0 (Z a,%/N) . Q.E.D.
1
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Lemma 3.3. There exist real and positive numbers K, and K, such that

() (] <5 e () (]

Proof. 1tis sufficient to consider u = 1. We write ¢* = g,; and suppress the index 1.
We find

o%=Yai P( PX,>r)—n(Y poa, P(X,=1)* <Y, aip P(X, <7) P(X,>7)
and after some reflection, using conditions A) and B),
o’ <K'y af(np) T SK"-NY p.a.

This proves the first part of the lemma.
Further, using Cauchy’s inequality, we find

0’2y af - [P(XEr) P(X > 1) —np (P(X=r))]2 K'Y at(np)*"*>
where the latter part is proved below. By Hélder’s inequality we get
(Z ag)(2r+1)/(2r+2) . (Z a pl%r+2)1/(2r+2)gz a]% Di»
and from this it follows that
2= K - p2r+? (Z D a]?{.)?.r+2 (Z a&)er.

This proves the second inequality in the statement.

It remains to be proved that, if X 1s Poisson (m) and 0<m= C < o0, then for
some K'>0 we have

LHm=P(XZr)P(X>r)—m(P(X=r)zK'-m*"*2.

It is easily seen that the inequality holds for m sufficiently small or great. Therefore
it is sufficient to prove that f,.(m)>0 for m>0. Now

e fom)=e"—~1—m>0 for m>0.
Taking derivatives we find
K m)—fi_ymy=e"-m*> - (r—=1Y)"2(m/r—1)*>0 for m>0.

Hence we have proved that f,_,(m)>0, implying f,/(m)>0. Since f,(0)=0, it
follows by induction that f,(m)>0. Q.E.D.

From the definition of g, and Lemma 3.3, we obtain

N N
Lemma 3.4. 1) liminf (Z a,f/am,) =1, and 2) limsup (Z a,f/a,m) < o0 if and only
T i

if limsup <(Z1\]§ a,f/N)/(i Dx a,f)) <

g*
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4. A Limit Theorem

Theorem. Let Z,, Z,, (., ..., Zy ... +n, be occupancy sums for a cell situation
{(pk’ak)a k'“la ,N} If

L. 0<1i1\1,ninfns/N§limsup n/N<oo,s=1,...,d,

2. Np,=C< oo, for some C and all N and k,
3. lilrvnsup ((Z a,f/N)/(Z Pi a,f)) <0
N
: 2W ) =
4 1\111_{130 <xI§nka§XN|akl/(; i )_

5. zélm [Corr(zn1+~-+nuﬂzn1+ +nv)] [puvau v=1 d] p s

then
Z E an) /l/ Var n1 n1+ c+ng T (Zn1+-~-+nd))/|/ Var(Zn1+--~+nd))

is asymptotically normal (0, p*) as N — co.
Proof. From conditions 1, 2, and 3, and Lemmas 3.2 and 3.4, it follows that
Var(Zy, o sn) =055 (14 O(1/N)),
Corr(Z Ry+oee Ny s n1+ +nu)=0uu ) GuuO-vv+0(1/N)=puv+0(l/N)s

(E( Mt 4g) ,“s/l/ Var(Z, ....1n) =0(N7%),

and that conditions 3, 4, and 5 are equivalent to

N

3. lilrvnsup (Z a,f/ouu) <0,
- 1

4' 131_1;1‘010 (lglkang,akl/l/ o-uu)=07

5. I&im Pus=VPon, h0=1,...,d.

Hence it is sufficient to prove asymptotic normality for

(Zm :ul)/l/o-_lla n1+ t+ng .ud)/ O-dd)'

In the following we write o instead of }/ g,.
By Lemma 2.2 the characteristic function ¢y of Uy can be written

d
(PN(tla se td)=eXp (_lz tS.us/O-s) ) nI! nd! . N—(n1+~~-+nd)

s5=1

eXp(N(Zl—I—----i—Z,,))'AN(Zl, ey Zd)

Zitt | ghatd

-(2ni)""-§---§ dz,...dz,
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where the integrals are taken along the circles |z,{=n/N, s=1, ...,d, and where
An(z1s -5 24)

d s—1
=]] [1 + Y P(Np(z;+--+2z)) exp (iak Y. (tv/a,,)) (exp(iay t /o) — 1)]

k=1 s=1 v=1
with ,
P(z)=) 28 e F/sl.
s=0
We will show that, when N — o0,
1 d
oxlty, o t) > EXp (— Eubz_ltutvp@-

By applying Stirling’s formula for n,!, s=1, ..., d, and changing to polar coordi-
nates, we obtain

@n(ty, .., ty)=exp (_ i i t us/os) oW, (}j (ny2 n))%

s=1
d

[ [exp ( Y ng(e'® — 1—i95)> - Ay(n €N, ..., nge®/NYdo, ...do,.
-1 -z s=1
Now we break up the integration region into two parts:
S={0,:10,)<5, s=1, ..., d)

S={0,:10,|<m, s=1,...,d}—S.
First we prove

Lemma 4.1. For all fixed values of t, ..., t;, and 6 >0, the integral

4 3 a
(ﬂlns) - Jexp (Z ns(ei"S—l—i(?s)) Ax(ny €N, ..., nz€'%/NYdD, ... d0,
N 1

S= §=

converges to 0 when N — co.

Proof. From the conditions 1, 2, and 3 it follows that

N N
AnCIS [0+ Ky o) <o (K Y laior) Sexp (K, V)
For 0<6<|6, <7,
lexp (ny(e'% — 1—i0,))| Sexp(n,(cos O, — 1)) <exp(—2n, sin® §/2)<exp(~ K, N).

Hence for some Ks>0 and K4>0 the integral can be majorized by K- N¥?
-exp(— K¢ - N)—0, when N—» 0. Q.E.D.



118 L. Holst:

In the region S we expand the logarithm of the integrand in powers of 6, and
t/o,. We find, with P(k, s) and Q(k, s) defined as in Section 3, that

a
Y ny(e® —1—if0)+log(Ay(n €N, ..., n e!%/N))

s=1

-1 zn 2y (zakp(k 9) o,

s=1

+ Z(n101+"'+nses)'(ts/o-s)' ZpkakQ(ka S)

s=1

d N

Y Y (tioro): zp(k 9ai—3 X (2ed): 3 Pkl

sgil (Z 1)) Pk, s) —i—O(%]akP/al) -

s= 1

+o(=§ z /61)+o(202 Zrakl/ol)w(an@P)

s

From this result and the conditions of the theorem we find that the logarithm
of the integrand can be written in the form

d 1 d 1 d s—1
iz:u'sts/o's_z Zn(g m) Z Z Zttpsv
s=1 s=1 s=1 s=1 v=1

d
+0(1)+0<ZI03I)+0 (293-1/N)+0 (ZnslBSP)
1 1 1
where
d N
ms= Z(tv/o-v)EPkakQ(k>V)=O(N_7),
v=3 k=1
Using the coordinate transformation ¢,= f 0,,s=1,...,d, we get

1 d
q)N(tla'-'atd):eXp(——E Z tutvpuu) .(zn)—d/Z

u,v=1

1 d
3 2le 0 +OC. ))dqh 4 s,

-j.--jexp(

S1
where

SI={<PS5I(Ps|§]/n_S'5,S=1,...,d}.

If we could neglect the error terms, then the integral would converge to 2=
when N — co. Therefore we first only consider integration over the region

Si={plol<nl,s=1,....d}

where O(...) converges to 0 when N — c0. Hence we have proved

)d/Z
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Lemma 4.2. For all fixed values of t,, ..., t;, and
§'={0;:10,/=ni~ %, s=1,....d},
we have when N — o0

d

exp ( ~iY p ts/os) : (If[l (/2 n',))%

s=1

d
e fexp (Z ns(e“"—l——ies)) Ay (n, €%/N, ... nye%/N) d6,...d6,
S’ 1

5=
1 ¢ ©
—CXp | — '2_ Z Luly Puy) -
u,v=1
It now remains to prove

Lemma 4.3. For all fixed values of t,, ..., 14, and for a sufficiently small value
of 6>0, the expression

1

d % d .
( I ns> [ fexp ( ns(e”’S——l—ié)s))  Ay(n, @%/N, ... nye%/N) d6,...do,
s ’ s=1

=1 S-5
converges to 0 when N — 0.

Proof. For sufficiently small 6 >0 we have with ¢;>0
cosf,—1=—2-sin? 0/2< —2c2(0,/2)> = — K, 62.
Hence the integral can be majorized by
d \: d
(H n) [ fexp (—KO ZnSQf) 1Ay (...)] d6,...d6,.
s=1 S-8 1

Now we use the expansion for log Ay(...), and we obtain

Ay ()| Sexp (K1 o |93!+Kz)-

Changing coordinates to ¢, =1/n,6;, s=1, ..., d, we get the estimate

d d
- fexp (—Ko-zl‘:<p§+K1-Z!<ps!+Kz) de;...dp;—0,
1

S1—S1
when N—o. Q.E.D.
Combining Lemmas 4.1, 4.2, and 4.3, we conclude that when N — oo

1 d
@N(th""td)_-)exp (_5 Z tutvplﬁ)

w,v=1
By the continuity theorem the assertion follows.

Remark 1. As |Cort(Z,, ... 1n > Zpy..1n)|S1 it follows that it is always
possible to select a subsequence {N'} of {N} so that Condition 5 is fulfilled.
Hence Conditions 1, 2, 3, and 4 imply that the only possible limiting distribution
is the normal.
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Remark 2. In Rosén [ 7] it is shown that, in the case =0, Conditions 1, 2, and 3
imply that the limiting correlation matrices are non-singular. In this case it is
casily seen that our theorem can be stated as Rosén’s Theorem 1.
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