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Skorohod Embedding of Multivariate RV's, 
and the Sample DF 

J. Kiefer* 

The main purpose of this paper is to study certain representations of su~s of lid k-vector rv's as 
embeddings in k-dimensional Brownian motion by vectors of stopping times, in extension of Skoro- 
hod's scheme [20], and consequent error estimates for weak and strong invariance principles. In 
particular, letting k ~  oe we embed the sample df in the Gaussian process with 2-dimensional time to 
which it has long been known to converge weakly. We discuss previous sample df embeddings, which 
have yielded related results; while some of our estimates are slight improvements, the emphasis here 
will be on the naturality of the embedding per se (although it will be indicated why it is probably 
far from the final word on the subject. 

1. Introduction 

Skorohod's embedding scheme has been used and extended in a number of 
directions. In particular, the original use [20] to obtain error estimates for weak 
convergence of certain functionals of a sequence of summands of iidrv's has been 
broadened by Rosenkrantz 1-15] and Sawyer [17, 18, 19]. On the other hand, 
Strassen [21, 22] used such embeddings to obtain his strong invariance principles 
for martingales. 

Turning to questions involving the sample df, a number of authors have worked 
on analogous schemes. The first of these was Breiman [3], who used Skorohod 
embedding for iidrv's Y~ with P{Y~>y}=e -(y+I)+, and the familiar fact that 

Y' (Y j+  1 ) / ~  (Yj+I), 1 =< inn  have the same joint df as the order statistics 
1 / 1 

{X,,i, 1 < i< n} from n iidrv's with uniform density on [0, 1], to approximate the 
sample df deviations by a Brownian bridge. Then Brillinger [-4] independently 
used the same scheme and also gave an upper bound wp 1 on the error. Rosen- 
krantz [16, Section III] gave essentially the same bound, although his emphasis 
was on certain weak convergence problems, e.g., for the v. Mises statistic. 

The disadvantage of this representation was evidently pointed out by Pyke 
(according to [4]) and has been discussed further in [12]: while it yields a satis- 
factory approximation for a single large n, it does not yield the right joint distri- 
bution for several large n's at once. Related weak convergence results have been 
obtained by Bickel, Billingsley, Pyke and Root, among others. 

Subsequently Mtiller [14] gave a proof of the convergence in law of the sample 
d f  process to the Gaussian process with two-dimensional time and the proper 
covariances, that is, with independent "Brownian bridge" increments, and in a 
striking analysis he gave the first estimate of the error for certain functionals of 
the sequence of sample dfs, analogous to the results of [20, 15, 17, 18, 19]. This 
estimate is based on an embedding of the sample df which uses a well-known 
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representation of the X,,i  in terms of exponential rv's, different from Breiman's: 
{(n - i) log (X,,,_ i + 1/X,,,- i), 0 < i < n -  1} (X,,, +l = 1) may be taken to be standard 
iid exponential rv's like Y~ + 1 above. This representation, like Breiman's, depends 
on n in such a way that it also cannot be used for joint (in n) distributions; however, 
Miiller cleverly adds roughly t N x/a-" of these, each approximating the sample df 
for a different set of n = N  a/a+" observations, to obtain (using further estimates) 
an approximation of the joint law of the sample df for each integral number tN 
of observations. 

We shall discuss the embeddings of [3, 4, 14] in more detail in Section 5, 
where some results concerning them will be stated and proved. 

The main development of the present paper is the representation of the 
sample df by a Skorohod-type embedding in the appropriate two-dimensional 
Gaussian process. Denote the unit interval by I, the reals by R, the nonnegative 
reals by R +, the positive integers by Z +. Let ~*(., .) be a Gaussian process on 
I x R + with continuous sample functions, zero expectation, and 

E 3" (Sl, q) 4" (S2, t 2 ) =  min (q, t2) [min (sl, S2)-  S 1 $2] (1.1) 

(so that there are independent increments in t and a Brownian bridge in s for 
fixed t). For future reference we define the closely related 

~(z, t ) = ( z +  1) ~*(z/(z+ 1), t), 

a continuous Gaussian process on R + x R + with zero expectations and inde- 
pendent increments in both directions: 

E ~(zl, tl) 4(z2, rE) = min(tl, t2) min(z 1, z2). (1.2) 

(We shall always use 4" and 4 as in (1.1)-(1.2); univariate Brownian motions, will 
be denoted 4~, 41, etc.) Let S, be the sample df based on the first n of the iidrv's 
{X~, i>  1}, uniformly distributed on I, with tS t defined as usual by linear inter- 
polation from nS,  and (n+ l )S ,+  1 if n < t < n + l ,  and S0=0. We take the left- 
continuous version of S, to conform with the embeddings of Section 2. Let 

~(S, t ) = t [ S t ( s ) - s ] ,  sEI ,  t ~ R  +. (1.3) 

A main consequence of our embedding is 

Theorem 1. 4" can be defined on a probability space on which there is defined a 
random function T: I x R + ~ R + such that 

4" (s, T(s, t)) has the same joint law as ~ of  (1.3); (1.4) 

and, as t--* oo , 

t -1/2 sup [~* ( s ,T ( s , t ) ) -~* ( s , t ) l=O( t - I / 6 ( log t )  2/3) wpl .  (1.5) 
O_-<s~l 

(It will become clear from the use made of (3.23) that all our results such as 
(1.5) and (1.6) can be stated in terms of either continuous t or discrete n.) 

A corresponding weak law, essentially Mfiller's Theorem 3 with obvious 
changes in some of his assumptions (described just above our Lemma 6) and 
replacement of n ~ by (log n) x, is 
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Corollary I (to Theorem 2). For G i continuous on I x R* where R* is a sub- 
interval of (0, + oo) of positive (possibly infinite) length and 7 is given by (3.34), 

-P{GI(s ,  t)<~*(s, t)<G2(s, t) for s~I,  tER*} (1.6) 

= 0 ( n -  1/6 (log n)'). 

The result also holds if only one G i is present, of course. (Miiller does not state an 
analogue of (1.5), but one can be obtained from his work.) As indicated above, 
one reason for giving (1.6) is that the embedding is somewhat more natural, the 
computations simpler, and the source of error perhaps more transparent, than in 
Miiller's ingenious development. Also, the proof of Theorem 2 helps one to 
understand the more intricate Theorem 1. In Section 6 we will discuss the possi- 
bility of improving the estimate from either approach. 

The developments of Lemmas 1' and 4' allow explicit constants to be obtained 
for the bounds of (1.5), (1.6), etc. In an already long paper we have not taken the 
extra space to do this. 

The result (1.6) is one of a spectrum of possible results in terms of the degree 
of fineness (in s) at which the sample df is considered. At the other extreme we have 

Corollary 2 (to Lemma 4'). Under assumption (3.34) with c~ > 1/4 (but ignoring 
conditions in ts-s'] there), for any finite subset I' of I and some 2', 

[left side of (1.6) with I' for I]--O(n-t/4(log n) z) (1.7) 

and (1.4) holds with 

[left side of (1.5) with I' for I] = O(rl/4(log t) ~') wp 1. (1.8) 

When one considers the error term given in multivariate Berry-Esseen results, 
or in the considerations of Section 7.3 of [20], or of [15, 17, 18] when I' is a single 
point and G i = constant and R* --(0, 1], it is impossible to believe that the bound 
in (1.7) cannot be replaced by n-1/2 (log n) ~'. In Section6 the inability of the 
Skorohod technique, as used here, to achieve such a better rate, will be analyzed. 

In an attempt to extend the results of Section 7.4 of [20] or of [19], one con- 
siders f ( t ,  x, s) continuously differentiable in t, x with partial derivatives slowly 
varying in x (of order O(Ixl A) for some A). Denote the cardinality of I' by [I'1. It is 
then a routine application (which we shall omit) of Lemma 4' to prove 

Corollary 3. I f  the second probability of (1.9) has a bounded derivative in 2, then 
there is a value fl such that, uniformly in 2, 

1 " 

(1.9) , } 
- P  f _-:x~v;-,,, 2 ~of( t, ~*(s, t) ,s)dt<2 =O(n-1/~(log n)P). 

( nlII s e I '  

When I'  consists of a single element, a very special case of [19] yields (1.9) 
with the exponent 1/4 replaced by 1/2. (The form of the corresponding statement 
1" 
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in [20] is slightly different, but the appropriate value is again 1/2.) Thus, again, the 
Skorohod technique fails to yield what we believe to be the correct result in (1.9), 
for reasons described in Section 6. Moreover, it is surely tempting to conjecture 
that, extending the differentiability assumption to s, one can obtain an error 
estimate O(n -1/2 (log n) ~) with ~ replaced by S ds in (1.9). Using the embedding of 

s 

the present paper and second derivatives slowly varying, the author can at 
Present only prove 

Theorem 3. Under the above assumptions, if also the second probability below 
has bounded derivative in 2, then there is a fi such that, uniformly in 2, 

P {!n-lk~__lf ( k ,n - l J2  k[Sk(s)-s],s) ds<-)~ } 

(1.10) 
1 

This is slightly better than what one would get directly from Theorem 1 or [14]; 
the additional strength comes from the possibility of using B,= O(n 1Is (log n) ~') 
in place of the O([n/log n] 1/3) which will be used in proving Theorem 2, and this 
in turn is made possible by using Lemma 1' and two derivatives in s to estimate 
the difference of the rv's obtained by integrating over s for fixed k (or t) and 
corresponding sums over B, points. The harder part of the proof is essentially in 
Sawyer's work [19], and we will not include the details in this already long paper, 
especially since the chief novelty of our development is present in the embedding 
and proof of Theorem 2, and the conclusion (1.10) seems far from definitive. 

The above can be viewed as an extension of Rosenkrantz's result for fixed 
k=n (or t); while stated in [16] for the yon Mises statistic, the result is more 
general: 

Theorem4 (Rosenkrantz). If  feC2(R x I) with partial derivatives of slow 
growth in the unbounded variable, and if the second probability below has bounded 
derivative in 2, then there is a value B > 0 such that 

P{ i f (n l /2 [S ' ( s ) - s ] ' s )ds<A}-P{ i f (~*( s ' l ) ' s )ds<~ ' }  (1.11) 

= O(n-1/4(log n)~). 

This can be proved using either Breiman's embedding as in [16], or Miiller's. 
Either method also yields the order of (1.11) for the modification of (1.6) obtained 
by restricting k to the single value n; this conclusion is contained in [14]. A 
defect of the embedding of the present paper is that, although it yielded a better 
result than Theorem 1 or direct application of [-14] in Theorem 3, it yields the 
same order as in (1.10) if used in the context of Theorem 4 where the other era- 
beddings do better. As Rosenkrantz points out, the result of Chan-Li-Tsian [7] 
for approximating the Kolmogorov distribution suggests that n-X/2(log n) p is 
again the desired result, and none of the methods yields that at present. This will 
be discussed further in Section 6. 
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Remarks on Theorems 3 and 4. While we have not obtained definitive results 
in this domain, the subject seems important enough to deserve certain comments. 

(1) Values of/~ can be discerned from [19] and the proofs described above. 
The condition that f ( t ,  x, s) has partials in t and s that are O(Ix[ A) can be much 
weakened without affecting the conclusion. Moreover, the assumption on Of/Ox 
in (1.9) and (1.10) can be weakened greatly at the expense of obtaining the slightly 
weaker conclusion O(n -1/5 +o(1)). 

(2) Theorems 3 and 4 are easily modified to allow a finite measure, #(ds), to 
replace ds (and similarly for t). We shall discuss elsewhere the analogue of (1.11) 
when S, is replaced by the sample quantile process (essentially S~-1); (1.11) and a 
result of [11] immediately yield O(n-1/4(log n) ~) as an estimate of error in this 
case. In particular, Chernoff-Savage (linear rank) statistics and corresponding 
location parameter estimators linear in the sample quantiles, for 1 -  and 2 -  
sample problems, can be treated in this way. One would hope for better bounds, as 
illustrated in the easily obtained O(n -1/2) for linear combinations of a fixed 
number of sample quantiles. 

(3) We forego the statement and proof of almost sure analogues of (1.9)-(1.1i), 
which are obvious via Borel-Cantelli. As with (1.5), these are statements about 
imperfect methods, more than anything of intrinsic meaning. See also [19], 
Corollary 2, for the more definitive result obtained in the case studied there, and 
[10] regarding limitations of the Skorohod technique discussed elsewhere herein. 

(4) One can often obtain the required boundedness of the limiting density 
function in (1.9)-(1.11) by well known Fourier-analytic techniques we shall not 
discuss. Lemma 6 treats the corresponding problem for the results of (1.6)-(1.7). 

(5) Just as (1.9) with I' a single point is a very special case of Section 7.4 of 
[20] or of [19], so (1.10) and (1.11) have extensions to cases where {Sl(s ), seI} is 
replaced by another continuous time process, and n S, by the sum of n such iid 
processes. As mentioned in the next section, the crucial thing is that the martingale 
{(z + l) Sl(z/(z + a))-- z, zER +} be replaced by another martingale, the bounds 
obtainable depending on continuity properties of the latter. We treat this further 
in [13]. If, instead, one considers a martingale whose time domain is a discrete 
set of h points (possibly h = co), the embedding of Section 2.2 yields approximation 
theorems for partial sums of the corresponding iid h-vectors with finite fourth 
moments. Unfortunately, the error term obtained for the normal approximation 
by this method is again limited to O (n-~/4 (log n)P), compared with the n-~/2 of the 
multivariate Berry-Esseen bound. Section 2.2 also treats k-dimensional time. 

The proof of (1.6), once T has been defined, is not too difficult, involving only a 
slightly delicate balance of several error terms, which are estimated by adopting 
techniques used in [8] and [9]. The main difficulty is in defining Tproperly. This 
involves a Skorohod-type embedding in which we consider simultaneously several 
stopping times in order to get a vector rv (Section 2.2); in the sample df case, we 
are interested in the infinite-dimensional rv {S l(s) - s ,  seI}. This technique is not 
in itself so surprising, and we shall elsewhere treat other such multivariate era- 
beddings [13]. The difficulty here is not so much in defining stopping times which 
yield a representation of S,, as in identifying where ~*(s, t) sits in the resulting 
picture. We shall discuss the embedding in Section 2.3; an alternate one can be 
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obtained corresponding to the T* of Section 2.1. Theorem 2 will be proved in 
Section 3; Theorem 1, whose development requires slightly more technical com- 
plication, is treated in Section 4. We have tried to spare the reader as much pain as 
possible by omitting straightforward but long arithmetic in proofs of Lemmas 1' 
and 4', Theorem 1, etc. whenever the ideas are present in earlier proofs. 

We turn now to a simple result about approximating S,, which has nothing 
to do with embedding but is used in proving the theorems of this paper. (Indeed, 
we have previously used such estimates elsewhere.) Let B be a positive integer and 
define S~,, and 3" by 

"x) <(S"(x) if x=i/B, O<_i<_B; (1.12) 
S~,,t 

=[.linear for i /B<x<(i+ l)/B, O<i<B. 

~*(x, t )=same with ~*(x, t) for S,(x). 

Lemma 1. Suppose 0 < e, < 1, B.~ Z +, c > 1/2. There are positive c ons tan t s  C1, C 2 
(independent of n) such that, if B~ 1 < C1 (c - 1) and n- 1 B, log (B./e,) < C 1 (c - �89 
then 

P{supna/2lSn(x)-SBn, n(x)l>=[cB;Xlog(Bn/e,)]l/2}<-C2en. (1.13) 

In particular, (1.13) holds if B ,~oe  and n- lB ,  log(B,/e,)~0. If  nl/Z[Sn(x)-x] is 
replaced by 3" (x, 1) in (1.12) and (1.13), then (1.13) remains valid. 

Proof. Given that n S, (B-1)= m > 0, the rv 

/ ) ,=  sup nm-l[S,(x)--SB,,(x)[ (1.14) 
O<_x<<B-1 

is clearly distributed as sup IS,,(x)-x[. Hence [6], for all positive m and d, and 
some constant c', x~i 

P{D,>m -1/z d[nS,(B-1)=m} <c'  e -2d2. (1.15) 

On the other hand, the standard Markov exponential bound for the binomial 
case yields, for 6 > 0, 

P {S .  ( B -  1) > (1 + 5) B -  1} ~ e -  .B -1 a (1 + o) E e ~"s"(B-1) 
e _ n B _ I h 2 [ l + O ( O + B _ l ) l / 2  (1.16) 

as 6, B- 1 __. 0. Suppose 0 < e < 1 < B. Set d = [c n m- 1 B-  1 log (B/e)] 1/2 in (1.15) and 
6 = 2 [ c  n- lB  log(B/e)-I 1/z in (1.16). We then obtain 

P{n 1/2 sup IS,(x)--SB,,(x)I>[cB -1 log(Be)] 1/2} 
0_<x_<~-i (1.17) 
C ~ e - [ 2 c/( 1 + ~)1 log (B/e) _[_ e -  2 c [1 + 0 ( ~  + B - 1)] log (B/e).  

Substituting B,, e, for B, e, we note that our hypothesis implies that 5 < 2 Cl/2(c-�89 
Also, the term O(6+B -1) in (1.16) and (1.17) depends only on 6 and B -1, not on 
n. Thus, for 2c> 1 and C~ fixed at a suitably small value, the right side of (1.17) 
is bounded by (1 + c')(e,/B,). Exactly the same development holds if {0 <_ x < B 21} 
is replaced in (1.17) by {B21 i<-x<-B2~(i+l)}, l<i<B21.  Since there are B, 
such regions making up I, (1.13) is proved. The remainder of the Lemma is now 
obvious. 
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Remarks on Lemma 1. (1) If B n is constant, it is clear how to modify (1.16) to 
obtain (1.13) once more, with a change in c there. Also, the uniform spacing of 
the Bn intervals can be modified. (2) For the purpose of obtaining numerical 
results for approximating S, by SB,,, the constants C i can be made explicit with 
slight additional effort. (3) Finer estimates can be obtained upon replacing c by 
2-1 + a,, with slowly varying a,~ 0; this and corresponding lower and upper class 
characterizations for the almost sure (in n) analogue of (1.13) are of no concern 
to us here, although the gross first order result for the latter is essentially present 
in the proof of Theorem 1. (4) Finally, it is simple to see that the methods of [8] 
can be used to obtain bounds of the same type for sup n-1/2klSk(x)--SB.,k(X)[ 

k ~ n, x~I 
(or, for probability e , = n - r , r > 0 ,  as we shall require, the result can even be 
obtained by summing probability bounds obtained for fixed k, 1 < k < n). Moreover, 
if we replace the domain k < n  here by k<~n(log n) a for fixed positive ~ and fl, 
it is easy to see that [B21n log n] 1/2 need only be multiplied by ~1/2(10g n) ~/2 to 
yield the probability bound n -~. Thus, in the form we shall require in Section 3, 
we state 

Lemma 1'. There are positive values ~', C' l, and c such that, for fl >_ O, 

C' 1 =< B, < e' n/log n 
(1.18) 

~ P {  sup t[St(x)-SB~,t(x)[>=c'[~S~ln(logn)P+ijl/Z}<=n-1. 
0 <-t<-~n(logn)B, xEl  

Again, the same results hold if t [S t ( x ) -  x] is replaced by ~* (x, t) in (1.12) and (1.18). 

We have used here our repeated notational convention of piecewise linear 
interpolation in t to obtain such functions as tSB,,t (from nSB,,,). As we have 
remarked, (3.23) implies the equivalence of results we use, for continuous t and 
discrete n. 

2. Embeddings 

2.1. Some Possibilities 

We will depart from the sound principle of not wasting the reader's time with 
the author's false tries and negative results, for a simple reason: as mentioned in 
Section 1, the methods finally used herein do not, in their present form, yield the 
desired (conjectured) results, and it may save time for future workers to see what 
some of the alternative possibilities are and are not. 

The process {Sl(p)-p ,  p~I}  is not a martingale, but it is easily checked that 

LI(p)= (1 - p ) - l [ S l ( p ) - p ] ,  O_<pKl, (2.1) 

is (by our choice above (1.3)) a left-continuous martingale of a very simple form, 
and hence is well known to have a Skorohod embedding in a standard Brownian 
motion ~. In fact, there are several ways of generating S 1 from ~, as described in 
the next two paragraphs. Since trouble with joint distributions (when marginals 
behave satisfactorily) will be seen to be a difficulty throughout this work, as in 
fact has already been mentioned in Section 1 in connection with [3-4], and since 
the construction of the next paragraph is not the standard Skorohod martingale 
embedding, let us illustrate by two brief examples the pitfalls one must avoid if 
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one does not mechanically follow one of the standard constructions. For simplicity, 
let Pl and P2 be fixed values, 0 <Pl  <P2 < 1, and consider the problem of generating 
rv's with the same distribution as_(Sl(pl), $1(p2)), from Brownian motion. If we 
stop a standard Brownian motion ~ at the first time Tt' that ~(T~')= 1 - p t  or -p~,  
and then at the first subsequent time T~ that ~(T~'+ T~)-~(T{)= l - p 2  or -P2, 
we see that (~(T()+ p~, ~(T{ + T~)- ~(T;)+Pz) has the right marginal distributions 
but the wrong joint distribution. Similarly, if T~' is the first time that r (T~')= P21 
or - ( 1 - p 2 )  -1, then ~(Ta') + p  1 and p2(1-p2)~(T~')+p2 have the right marginals 
but the wrong joint law since, with positive probability, the first is 1 and the 
second is 0. 

It is not hard to guess natural schemes that work. Motivated by the above, 
let T* =inf{t: ~(t)= 1 - p  or -p} .  Then {~(T*)+p, P=PI or P2} has the correct 
joint law of (Sx(pa), $1(p2)) precisely because ~(T*)= 1 -  Pa implies ~(T*)= 1 - P 2  
if P1 <P2. Similarly, we see that {~(T*)+ p, pc1} has exactly the law of {$1 (p), pel} 
(or {( 1 - p)-i  ~ (T~,), 0 < p < 1 } has the same law as (2.1)); note that To* = T* = 0 wp 1. 

The details of the remainder of this section and the next two sections can be 
carried out using {Ti*}. However, it is technically somewhat simpler to work in 
terms of a different infinite set {Tz, zeR + } of stopping times, because of the fact 
that T.*vl can be either greater or less than T.*p~ (which is why {T*, pel} are not the 
stopping times usually encountered in Skorohod embeddings), while we shall 
have T~ nondecreasing in z wp 1. We define 

T~=inf{t: ~(t)= 1 or - z } .  (2.2) 

Then it is easily checked that {(1 -p)  ~(To/(~_v))+ p, pel} (= 1 if p =  1) has the same 
law as {Sx(p), peI}. In fact, this is just the simplest Skorohod embedding of the 
martingale L 1. Working with T z rather than T*, we will find it convenient to 
replace I - { 1 } =  {p} by R~ = {z}, and we shall repeatedly use z, p for variables 
related, as above, by p=z/(z+ 1) and z=p/(1-p). Thus, {~(T~), zeRO} has the 
same law as the martingale Ll(z/(z + 1)), which we hereafter denote by 

Q~(z) = ( z +  1) S~(z/(z+ 1)) -z ,  zeRO. (2.3) 

While the almost sure limit, 1, of Q(z) or ~(T~) as z ~  +oo cannot be adjoined 
while maintaining a martingale, this causes absolutely no trouble at p = 1, since 
what matters there is that lim(z+l)-~Ql(z)=O=Sl(1)-i wp. 1. We shall 

z---+ oo 

hereafter usually work in terms of Q~ rather than $1 or L~, and correspondingly in 
terms of the ~ of (1.2) rather than the ~* of (1.1). We shall write Q, for (2.3) with 
S 1 replaced by S,, and t Qt is obtained from n Q, by piecewise linear interpolation. 

A natural way to continue the development is now this: Let 4'1, ~ , . . .  be 
independent standard Brownian motions. Let T~I ~ be the first time that ~'~(T~I ~)= 1 

r o ' ' o - z ,  s that {~i(Ti,~), z~R~} are iid (in i) processes, each distributed as Q1. 

Then ~i(Ti, z), zeR 1 has exactly the distribution of {nQ,(z), zeRO}, from 

which we obtain at once an exact representation of n S,. 
n 

But where is {(z, 0? Nothing so obvious as ~(z, n ) = ~  ~i(z) will be useful, 
1 

since by the central limit theorem that could not even yield o(1) in (1.5)-(1.6). A 
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m 

natural attempt (at bast  to me) is to let U,~,~=~ Ti~ ~ (with U~,z=0 ) arid define 
1 

nl 

r  ~ , (T, ,z )+~'+,( t  ~ '  ' _ '  ' ' - ,,,,) whenever U,~,~ < t < U~,+i,~. (2.4) 
1 

For  then, for fixed z > 0, by the strong Markov property of the T~iz, we have that 
{~'(z, t), t>0}  is a standard Brownian motion and thus {~'(z, zt), t>0}  has the 
desired law of {~ (z, t), t >0} for each z. Unfortunately, the strong Markov prop- 
erty does not yield the right joint distribution" for 0<  z, < z 2 and e>  0, choose t 1 
so small that P { T ~ , ~ > t , } > I - ~ , '  and note that T~ '~>q implies ~'(Zl, q ) =  
~'(z2, ti). In fact, we even lose joint normality. (A reason for mentioning this 
"failure" 4' is that, as discussed in Section 6, it offers some promise for eventual 
Success . )  

However, realizing that the joint behavior of the processes r (z~, ") is reflected 
in the independence, for fixed z 1 < z  2 < z[ <z~, of the processes t/(zl, zz; .) and 
t/(z'a, z~; -) defined by 

(z~ , z~ ; t ) :  ~ (zz, t ) -  ~ (z~ , t), (2.5) 

?'(T.' I above in terms of the we are motivated to define rv's distributed like the ,~, ~, ~j, 
t/(zj_~, zj;-) rather than in terms of the ~'~. This can be done in a more general 
context, to which we now temporarily turn. 

2.2. Skorohod Vector Embeddings 

A number of workers have been concerned with the possibility of a Skorohod 
representation of a vector rv. One obvious piece of wishful thinking must be 
dispelled at the outset: we cannot hope to succeed with a single stopping time. 
This is apparent if one tries to embed, in 2-dimensional Brownian motion, a 
2-vector taking on the four equiprobable values (+  1, + 1). On the other hand, if 
one looks at each of the two coordinates of the Brownian motion at its obvious 
stopping time to yield the values _+ 1, we have a representation. 

Let A,,,=(Aml, A,,z, ... ,Amh ) be iid (in m) h-vectors such that Aii , A 1 2  , . . . ,  Alh 
is a 0-expectation martingale, E{A1jIFj_I}=A1,j_ 1 w p l  for l<_j<h where 
Ai0 = 0 and Fj is the ~r-fietd generated by {All, ..., Alj }. Without further mention 
we can and will use conditional probability measures 

P {An, j+l < u IAli = a I . . . .  , Ai j=  aj}. 

Assume also, for the moment, that A 1 is bounded wpl .  Let {t /( i-1,  i; t), t=>0}, 
1 <_i<h, be h independent standard Brownian motions. (This notation is moti- 
vated by the sample df results and (2.5); think o f t / ( / -  1, i; t)= ~(i, t ) - ~ ( i -  1, t).) 

Now represent Art , ..., Air , by Skorohod embedding, except that instead of 
using a single Brownian motion for all A l , j + i - A l j  we use t/(0, 1;.) for All ,  
t/(1, 2; .) for A 1 2 - A l i  , and so on up to t / (h -1 ,  h; ") for Aih--Ai ,h- i .  Formally, 
T_ (~) is a stopping time defined inductively on i for 1 _<iN h (and possibly using i - l , i  

additional randomization as in Skorohod's original method) such that, if B~ ')-- 
{t/(j - 1, j;  T~)~, ~) = a t - a t_~, 1 < j  < i} (a o = 0), then 

P{t / ( i -  1, i; Ti(l_)l,i)<=u[B~l) } = P { A 1 , - A l . i _  i <=ulAlj=aj,j<i } . (2.6) 
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This yields {t/(i-  1, i; T~)I, i), 1 __< i =< h} distributed as {All - A l , i _  1,  1 < i<  h}. 
Then, given Ti(1)l, i = t~ (say), we obtain an h-vector independent of that of the 

previous sentence, but with the same distribution, by writing r/(j - 1,j; Tj(2I j + t~)- 
t l ( j - l , j ; t j )  in place of t / ( j - 1 , j ;  T_. (1) j_~,j, on the left side of (2.6) (including B~l)). 
That is, we observe the t / ( j - 1 , j ; . )  process from time Ti(t)l, j to ,j_I,j~.j_t,j'T'(1) -1--T(2) to 
get a rv which represents A2j -A2 ,  j_ 1, successively for j = 1, 2, ..., h. 

We continue in this fashion. Thus, define rT(o)~,i+l --~i,~+iT(~ = 0 and then U ~m)~,~+l = 

~T_. ~q) inductively for m > 0 and 0 < i < h by letting the vectors t J o, 1 . . . . .  i , i+1  __ __ IT(q) Th(q_)l, h) 
q = l  

be lid in q and such that, with 

Blq)= 0 ? ( j - 1 , / ;  U)_q),,j)-~/(j-1,j; U (q-~)~-J_Lp-aj-aJ_x, l=<j<i} (ao=0),  (2.7) 

T. (q) is any stopping time satisfying i,i+l 

P {rl(i- 1, i; Ui~)l,i)-tl(i - 1, i; U i ~ )  <-ulBlq) } 
(2.8) 

=P{Aq, i -Aq,  i_ 1 <=u[Aqj=aj,j<i}. 

Again, we can assume our probability structure allows external randomization 
if needed. 

We thus obtain 

Lemma 2. Skorohod vector embedding: 

{{i=~tl /( j- l , j ;  U)')~,~), 1 <=i<=h}, n~Z  +} (2.9) 

has the same joint law as , n e Z  + . 

Remarks on the Embedding (2.9). 1. It is now obvious how to study, for each j, 
the difference between t l ( j - l , j ;  U)_")I,j) and t / ( j -1, j ;EU);)I , j ) ,  and thus obtain 
precise almost sure results on this difference as in [10], and also the k-dimensional 
analogues of Strassen's results [21, 22]. (See Section 6A for further comments.) 
Also, the analogues of the results of (1.7) and (1.9) (described there for the special 
case A~i= L 1 (zi)) follow at once from using our developments with the techniques 
of [20] and [19] for more general summands. (See, however, Section 6 C regarding 
inapplicability of some of these techniques.) Moreover, the representation (2.9) 
does not require boundedness of A~, and the error term one Obtains in these 
approximations will depend on (conditional) moments in a manner made clear 
in [2, 10, 19]. 

Thus, (1.7), (1.8), (1.9) carry over, with appropriate modification of their right 
sides as described in [2, 10, 19] under various moment conditions, to general {A,,} 
with {A~j} a martingale, upon replacing 

{k(Sk(S)-S ) and r t); 1 <=k<n, t~I, seI'} (2.10) 
by 

A,,j and ~ t I ( j - I , j ; t E ( A l j - A a , i _ I ) 2 ) ,  l<_k<_n, t6I,  l<i<=h . (2.11) 
m = l  j = l  j = l  
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(As remarked earlier and as is explained in Section 6, the exponent 1/4 in (1.7) 
and (1.9) cannot be replaced by 1/2 with the present scheme, even if h=2.) 

2. The iid structure in m of {Am} is inessential. In fact, there is no difficulty in 

embedding processes m~Z § which are martingales in n as well as 

in j. Moreover, there are embeddings for which, as with the Tp* of the previous 
section, the stopping times for AI~-A1, ~_ 1 need not be ordered in j. 

3. Of great interest is the possibility of replacing j (and, possibly, n) by a 
continuous time parameter in (2.9). Some circumstances where this is possible 
will be treated in [-13]. In Section 2.3, below, we will see what goes wrong with 
this attempt in the sample df example. 

4. Another direction of extension is to the case where the index set o f j  in A,q 
is not 1-dimensional, e.g., to the sample df of chance k-vectors. The arithmetic 
of [-8] shows the kind of modifications that are needed in Lemmas 1' and 4'. One 
obtains somewhat worse orders than in (1.5), (1.6), (1.10), (1.11), in terms of a 
process ~*(k)(s, t) with k-dimensional s. Results can be obtained for general {Alj } 
with j in a lattice of R k, a setting considered more extensively by J. Zinn, a student 
of J. Kuelbs. 

2.3. Back to the Sample df 

Let I' be any subset of I, as in Corollary 2, (1.7). In view of the nature of S,(1), 
we can limit our treatment to the case 16I'. Let R'={z: z=p/(1 -p) ,  p~I'} be the 
corresponding set of non-negative values under the correspondence described 
above (2.3). Adjoining z o =0  (unless 0~R' already), we write R'--{z o, z~ . . . .  , zk} 
with z i < z i +1. Now, with ~ the process of (1.2), replace the t 1 ( i -  1, i; t) of Section 2.2 
by the t/(zi_l, z~; (z~-z~_l)-lt)  of (2.5), which have the same distribution. (The 
convenience of this normalization of the t /o f  (2.5) will be seen below to be that 
the analogue here of TiC)l, i of (2.6) will have expectation z i - z  i_ 1 .) The rv's A1i are 
the Q1 (z3 of (2.3). Thus, for the embedding of Section 2.2, (2.7)-(2.8) with t / ( j -  1,j; 
u)q) 1 j) there replaced by r/(zj 1, z.; (z . -z .  1)-1 u(q) ] here, can be realized by -- , -- J J-- zj-1,_zj! _ 
treating rl(z.~_z,z.;(z.-z.j j j _ I ) - I T J  ~j_~,~)~ exactly as ~(T~)-~(T~j_~) of (2.2) or 
~i (T~', ~j) - ~i (TI', ~j_ ~) below (2.3): 

I t  j -1  T~(r ,~j=inf : t>=O,y'tl(zi_l,zi;(zi-zi_l)-lT~(~]~,~) 
i=1 (2.12) 

+~(Z~_l, zj; (z~-zj_~) 1 t)= 1 or - z j ~  
and,  similarly, 

j--1 
T~(q~_~,~j=inf{t: t >=O, Z [t/(z~-l, zl; ( z i -  zi_,)- '  U~ ])_ .... ) 

i=1 

- -  tl (Zi - 1 '  Zi; (Zi - -  Z i  - 1 )  - 1 u ( q  - 1) "~] (2.13) Zi 1,Zi]l 

+ -1  + t)) 

- - Y I ( Z j _ I ,  Zj;  ( Z j - -  Z j _ I )  - 1  uz(q_-ll)j) ~ ~- 1 o r  - - Z j } .  

Since {t/(z~_l, z~;(zj-zj_l)- l t) ,  t>0} has variance 1 per unit of time t, we see 
t t that T~ (q)_ ~, ~: has the same expectation as the T~.-T~ , of (2.2) or TI ,~-T/ ,~_ ~ 
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below (2.3), namely 
E T(~)l ,~j=zj-  zj_l ; (2.14) 

thus, our normalization assures that the expectation of the third argument of 
rl(zi_l, zi; ( z i - z i _ l )  -1 u~q),~,)is q. 

We have eliminated the difficulty of not finding the ~ of (1.2) in the 3' of (2.4) 
obtained from the Til ~, by now embedding {Q,(z), zeR ' ,  n e Z  + } in 3. As we shall 
indicate in the next paragraph, all of {Q,(z), Z<Zk} has in fact been embedded 
in 4, but Q,(z) for all z is not as evident as one might like in the above embedding 
using R'. (The R' above can be modified to include, for example, an infinite 
sequence approaching 0 or o% but this will not help achieve what we want here.) 
For simplicity, consider {Q1 (z), z <  1}. We would like to replace the above em- 
bedding of {Ql(z), z e R ' }  by {Q~(z), z<  1}, by piecing together (roughly) stopped 
parts of a continuum of differential processes ~ (z, z + dz; t). One might try to get 
at this by considering a sequence of nested finite sets whose union is dense, e.g., 
R' L = {z : z = i/2 L, 0 < i < 2L}, hoping somehow to take a limit with L of the previous 
embeddings to obtain {Ql (z), z <  l }. We do not see how to make this work. 
Roughly, although 2LT. (1) . has expectation 1 for all L and z j + ~ - z j = 2  -L, it Zj,Zj+x 

follows from (2.19) that it has variance 2 L and must itself be very large for some 
(chance) j. The latter is certainly the case for an interval (zj, zj+t) containing the z 
for which Q1 jumps, and it will also be true for (chance) values 2 for which, in 
terms of (2.2), ~ has a local minimum at t =  T~ so that ~n~(T z - T~)> 0. 

This failure reflects our feeling that the present method of embedding, while it 
has proved a useful tool, is not an ultimate one. Actually, all of {Q,(z), ONZ<Zk} 
(and, with a slight modification, all of {Q,(z), zeRO})  does sit in ~ in the above 
embedding with R', but not in a form which yields the desired Skorohod-type 
estimates without further calculations. For example, consider R' {0, 1, 2}. It is 
convenient to think of ~ as being defined on the domain of planar Borel sets, 
with, as usual, ~ (A) having variance A and being independent over disjoint A%; 
thus, we simply write ~([0, z] x [0, t]) for ~(z, t). In Fig. 1 is shown a possible 
realization of the set 

A = {[0, 1] x [0, Uo(2~]} u {[1, 2] x [0, rr(2)q~..1,2,, 

for which ~(A)=2Q2(2). The shaded subset B of A, for which ~(B)=2Qz(1.6) ,  is 
obtained by letting 

z(i)=inf It: t_>O, [~/(0, 1; Uo(~)l)-q(O, 1; Uo(i?a))] 
L 

[ ( i  '-1 ) ( , - 1  ) ]  } (2.15) 
+ ~ , 2 ; ~ z ( J ) + t  -111 1 , 2 ; ~ z  (j) = 1 o r - 1 . 6  , 

j=l l j=l I-I 

and 2 Q2 (z) is obtained similarly for other values z. 
In similar fashion, by using an unbounded sequence {zl} one obtains an 

explicit embedding of {Q,(z), z~R+}; however, the large z/s play no role in the 
proofs and will simply be omitted. Thus, in Section 3 one can define z/s f o r j > B , ,  
to exhibit all of Q,, but it is unnecessary to consider them in proving Theorem 2. 
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~I,2 

Fig. 1. Examples of 2Q2 (2) and 2Q2 (1.6) 

A similar remark will apply in Section 4 (Theorem i), where for technical simplic- 
ity the values z > B, are treated slightly differently. 

In terms of the discussion, above, of the difficulties accompanying a process 
of subdivision, the reader might find it instructive to see what happens to this 
already complicated picture when one subdivides the simple R' of Fig. l ! 

What we shall do, then, is to use Lemma 1' to approximate S, by SB,,, for an 
appropriate B,, and then use the embedding of Sections 2.2-2.3 for SB,,, in 3, to 
prove Theorem 2. 

We conclude this section by computing some elementary properties of the 
T (i) and U (i). It is well known that, for c~<na/2(1 +z) 2 and z>0,  

~(1) E exp {c~ 16,~} = cos [(c~/2) 1/2 (1 - z)] 
cos [(c~/2) 1/2 (1 + z)] " (2.16) 

Hence, as ~ 0 ,  

Eexp{c~T~o~}=l+c~z+cd(z+3ze+z3) /6+O(cd(z+l)4z) .  (2.17) 

From the above or Wald's equation, as already noted in (2.14), E T ~ 2  = z 2 - z  1_ 
It will simplify notation and yield the same result if we work in terms of the 
of (2.2) rather than the ~/of (2.12)-(2.13). We note now that P { T~I,)~-= 01~(_To(~)l)-- 1} 
--1; and from looking at stopping boundaries we see that, given that ~(To(~l)= 
- z 2 ,  the conditionaI distribution of 

{(1 +z2) -2 [~([1 +zl]  z t+  To(1~1) + Zl], 0~ [1 --t- z1] 2 t <  T~)~} 

is that of the unconditional distribution of {~(t), 0 <  t <  T(2) - -  -- *o, (2 +~)-~ (z~- ~1)}. Since 
(2) _ P{T~),~- 1} =z2/(1 +zl)  , we obtain from (2.17), 

E exp {c~ T,(~)~: } = (1 + z~)-2[z2 + E exp {e(l + z~) 2 ro(~l~ + ~)_,(~_z~)}] 

= 1 +c~(z e - z ~ ) + a  2 {(z 2 - z l )  (1 +z2) 2 +3  (Ze-Zi)2(1 +zl)  (2.18) 

_~ (2 2 - -  Z1 )3 } /6  ~- O (~3 (1 Jr Z2) 4 (Z 2 --  Z2) ) . 

Consequently, routine calculation shows that 

log E exp {~ [- T f  ) - (z 2 - z~)] } i_ gl,g 2 

~ e 2 { ( z 2 - z O ( l + z 1 ) Z + 3 ( z 2 - z l ) Z z l + ( z i - z l ) 3 } / 6  (2.19) 

=cd h(z2, z2) (say), 

provided that this last expression is o(1) and that the ratio of ea (1 + z2) 4 (z 2-za)  
to this expression is o(1). 
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Elementary estimates on the h of (2.19) yield 

~2 (z2 - zi) (1 + z 2)2 < h (z 1 , z2) < 2~ (z2 - zl) (1 + zz) 2 . (2.20) 

We now compute ordinary Markov exponential bounds (as in (1.16) for 
Bernoulli rv's). Putting e = qn/2 hN in (2.19) (qu > 0) yields 

P ( U~m - N(z2 - zl) > qn} <= E exp {~ [ U~(~)~2 - N(z z - z a) - qN]} 
(2.21) 

= e x p { - ( q ~ / 4 h N )  (1 + o(1))}. 

The negative deviations of U (m are treated similarly. Moreover~ considering the 
conditions just below (2.19), from (2.20) we have e2h of exactly order 

N - 2 q ~ ( Z a -  zt)- i (1 AI- 22) - 2  

and the ratio of ~3( t+z2)4(22-z l )  to eZh of exactly order N-lqn(z2--Zl) -1. If 
the latter is o(1), so is the former. Thus, we have 

qN/N(z 2 -- Zl) = 0 (1) (2.22) 

P{I t~J~2- N (z2 - zl)l > qN} = exp { -(qg/4 h N) (1 + o (1))}. 

Finally, at slight expense in sharpness we will put the estimate (2.22) in a form 
useful in the proof of Theorem 2 of the next section. We will use (2.22) with zt, z 2 
replaced by zj_~, zi where zj>zj_ 1 and l < j < B , ( z o = O ) .  From (2.22) and the 
right side of (2.20) we obtain 

Lemma 3. There is a positive constant C3 such that 

qN/N <= C3 ( z j -  zj_ l ) ~  P {lU(~)_~,~j- N ( z j -  zj-t)l > q,} 

< exp { - q2 /N(z j -  zj_~) (1 + zj)2}. (2.23) 

In fact, in applying this in Section 3 we shall use the particular zj of (3.2) 
(1 <j<BN) with 

qs = 2 (zj - zj_ 1) [NB,, log (nB.)] 1/z (2.24) 

for various large integers N. From (3.2), B. (zj - zj _ 1)/(1 + zj) 2 = (B. - j ) / (B .  - j  + 1) 
> 1/2. Hence, (2.23) becomes 

(3.2) with N - ~ B .  log(nB.)< C'~/4 (2.25) 

~ P{ lU}~) , , j -N(z j - z~_ t ) l>qN of (2.24)}<(nB,) -2 

3. Statement and Proof of Theorem 2 

It is convenient to divide the considerations into two par t s -bounding  in 
probability the difference between ~ and the embedded process, and then bounding 
the limiting density of the functional. 

To emphasize the essentials of the proof, we postpone the statement of the 
required Lemma 4' and first prove Lemma 4, which is of no interest in itself in 
view of the existence of embeddings for fixed n mentioned in Section 1, but which 
contains the main ideas of Lemma 4' with simpler arithmetic. We use the notation 
of Lemma 1 and of Section 2.3, and write e = min (C 2 , 1/2) where C3 is as described 
in (2.25). 
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Lemma 4. With the embedding of nQ. in ~ described in Section 2.3, with the pj 
equally spaced, and with ~ as defined just above, there is a positive constant C 4 such 
that, for n sufficiently large, 

2<B.<en/8 l o g n ~ P (  max (z~+ l)-l lnO.(zj)-~(zj ,  n)[ 
~ ~ I < j < B n  " 

(3.1) 
<= C 4 [(nB,)~/4(log n)3/4+B, log n]} > 1 - n  -1 . 

Proof Corresponding to equally spaced p j = B ~ j  ( I < j < B , ) ,  we let zj= 
pj/(1 - p j) =j/(B,, - j )  and thus 

zj--zj_~ =BJ(B.- j ) (Bn-- j+ 1), 
(3.2) 

zj + 1 = B, / (B , -  j). 

Fixing n and B, and dropping the subscript on the latter, for positive integral N 
we define 

f (N) = 2 [NB log (n B)] ~/2. (3.3) 

Let e be as defined above. We define inductively 

This yields 

Let 

Then 

m o ~ n o ~ n ,  

rni+ 1 = f ( m i ) ,  i 
n i + l . = m i - m i +  1 (andhence ~n , .=n-mi ) .  

1 

m~=n[4n-lBlog(nB)] 1-2-' for i>0 ,  

m]mi_l=[4Bn-l  log(n B)] 2-~ for i=>l. 

(3.4) 

(3.5) 

~0 if ml/mo>e, (3.6) 
K = ( m a x { i :  m]mi_ l <e} otherwise. 

mi<mi_ 1 and ni>(1-e)mi_ 1 for l<_i<K (3.7) 

and, from (3.5) with B >  1, if n>3,  

K < [log + (log n/log e-1)-l/log 2. (3.8)  

In the remainder of this proof we will simplify notation by writing m i and n i, 
rather than integers close to them, as numbers of observations. It can be seen that 
proper reinterpretation of these symbols yields (3.1) without difficulty when n 
is large. Also for brevity, we shall write 

t l j ( t )  ~ t  l ( Z j _ l ,  Z j ;  t), 

/ ~ 
V f  ) = (zj  - z i _  1) -  1 u ( . l  . . - - +  .,) z j  - 1, Zj 

{ ( Z j - - Z j _ I )  - 1  U (n) 
z j -  t, Zj 

if i=0 ,  

if l <_i<_K, 

if i = K + l .  

(3.9) 
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(In particular, if K = 0 we have Vim= (z j - z  j_ 1)-1 U(n); we drop obvious subscripts 
o n  u (n ) . )  

To estimate g/j ((z~ - zj 1)-1 U(,)) _ f/((zj - zj_ 1)-1 E U (")) = fli(V~ r + 1)) _ f]~ (n) (re- 
1 - call (2.14): ( z j - z  j_ 1) ~ EU ~")= n), we write the telescoping sum 

r (3.10) 
-k- 2 {fl j(VJ(i) + mi) - f l  j(Vj(i)-I- mi - [V) (i)- V) ( i-1)-  nlJ)}. 

i = 1  

We first consider the first two terms on the right side of (3.10); in the next 
paragraph it will be seen why this difference requires a separate treatment. We 
see that, whether or not K >0,  

4e - i  B log(n B)< m K <4e  -2 B log(n B); (3.11) 

the right hand inequality follows from substituting mK+l/mK>~ and the second 
line of (3.5) into the first line; the left hand inequality follows similarly from 
mr/inK_ 1 <~ if K > 0 ,  and from the condition on B, in (3.1) if K = 0 .  Thus, condi- 
tional on VJ K), the ~.~K+l)_ Vj(r)=(zj_zj._l)-i [U(,)_ U(,--mK)] of (3.10) has the 
same distribution as (z j - z  j_ 1)-1 U(m of (2.25) with N = m r satisfying the condi- 
tion of (2.25). We now recall (2.24) and let j vary, and consider the sum of proba- 
bilities (2.25) over 1 < j < B,. We obtain, wp 1, 

p{I(VJ r+l) - vj(r)) -- mK[ < 2 [mK B log(n B)] ~/2, I <__j < BI { Vf~)} } > 1 - n -  Z B -1 . (3.12) 

Let A be the event of (3.12). Under the same conditioning as in (3.12), t/)(z)= 
0j ((z j - z  j_ 1)-1 z + Vj (r)) is a standard Brownian motion for z > 0. Write 

Fj={z: ] z l < 2 ( z j - z j _ O [ m r B l o g ( n B ) ] l / e , ~ + ( z F z j _ O m r > O } ,  (3.13) 
q)= 3 (z j - z j _  I) 1/2 (mr B) 1/4 [log (n B)] 3/4. 

By the standard inequality for the tail probabilities of the maximum of a Brownian 
motion, we have for n > 10, 

p {l~j (Vi(r) + [V) K+I) - Vj(r)-l)- g/j (vj(K) + mr) I > @ A ,  { V)r)} } 

< P {sup [r l) (z + (z i -  z j_ 1) mr) -- tt) ((Z j--  Z j_l) mK) l > q) t { VS r)} } < (n B)- 2. (3.14) 
~ e F j  

From (3.13), (3.11), and (3.2) we have 

J J 
q; < 5B ~/2 e 1/2 log (n B) ~ ( z , -  z~_ 1) 1/z 

~=1 1 (3.15) 

< 5 B e- 1/2 log (n B) log (2 [zj + 1]). 

Thus, from (3.12), (3.13), (3.14), and (3.15), for n sufficiently large, 

P{~=l Ifl(V)r+l))-gl(V'(r)+mK)[ (3.16) 

e-1/e log(n B) log(2[zj+ 1]), 1 < j < B ~  > 1 - n  -a. <5B 
) 
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We next consider the i-th term of the sum in (3.10). First note that, by (3.6)-(3.7), 
ni>(1-~)mi_l>e-l (1-e)  mi>mx; thus, since mt~ satisfied the condition for N 
in (2.25), so does n i. Hence, from (2.25) with N =  hi, we obtain, as in (3.12), 

P{IVj (i)- vj(i-1)-ni[<=2[niB log(nB)] 1/2, 1-<j<B} > 1 - -n -2B -1. (3.17) 

Since n~ < m~_ 1, the product of the two equations of (3.5) yields 

2[n, Bl~176 [m i mi ]1/2 - -  = m  i. (3.18) 
1~1 i l J  

This means that, if the event A' (say) of (3.17) occurs, then, conditional on {Vj (~ 
and { Vj (i- 1~}, the arguments of the two f/j terms in the i-th difference of the sum of 
(3.10) are both > Vf ). That difference is thus conditionally of the form f/j ( q ) -  f/j (t2) 
where tl and t 2 are determined by {f/~(t), t<min( t l ,  t2) }. (The absence of this 
property is what entailed separate treatment of the difference studied in the 
previous paragraph; that treatment used here would yield a bound inferior to 
(3.1).) The event of (3.17) consequently implies a corresponding change in the 
argument of the t/~ process (defined below (3.12)), of (zj-zj_O[VS~ 
time units. Since the q) are standard, we obtain in terms of a standard ~/o, 

P{r=~{flr(V~(i)+m~)-~r(Vr(~-l'+m~-n~)} >~@A~,{Vj(i)},(V)(i-I)}} 

= P {]t/o (zj) l > ~/j} =< 2 v}/2 77) -1 e -  ~ /2  ,s, (3.1 9) 
J 

~= ~ (z , -z ,_  0 IVy'~ V,(i-1)-nd<z~rn~. 
r = l  

Thus, putting ?lj=2[zjmilog(nB)] 1/2, (3.17) and (3.19) yield for n sufficiently 
large, 

P{r~__1{flr(gr(i)"bmi)-fl(Vr'i-1)+mi-ni)}l 
(3.20) ) 

<2[zjmi log(n B)] l/z, 1 <_ j < B~ >- 1 - n -2. 
3 K 

By (3.6), ~ m~/2 < m~/2/[1 - el/el < 8 [n B log (n B)] 1/4. Thus, finally, from (3.8), (3.10), 
i 

(3.16), (3.20), and the condition on B in (3.1), we have for n sufficiently large and 
some positive constant C4, 

P{~=l{fb(V~(K+l))-qr(n)} 
(3.21) 

< c~ {z)/e (, B) 1/~ 0og n) ~/~ + B 0og ~) log [2 [~j + 13] }, 1 =< j < B t > 1 - n-  1. 

The fact that (z+ 1) -~ max [-z 1/2, log 2(z+ 1)] < 1, with (3.21), yields (3.1). 

Remarks on Lemma 4. (1) This is our crucial estimate concerning the embedding 
of Section 2.3. The martingale structure of the Uff)-nz, in both n and z, can be 
used to give an alternate proof, but that approach is also long due to the complica- 
tion of n Q, (z ) -  ~ (z, n) being determined by stopping times dependent on ~. This 
2 Z. Wahrscheinlichkeitstheorie verw. Geb. Bd. 24 
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last effect is minimized in the present proof by the device which enables the sum 
in (3.10) to be treated in terms of Brownian motion deviations for fixed epochs 
which can be summed on j as independent normal rv's, leaving only the first 
difference on the right side of (3.10) for grosset path-dependent estimation. (2) We 
have been somewhat cavalier in the choice of constants in the limits entering into 
the proof, but a more careful choice would only alter C4, not the order of the 
deviation in (3.1). However, the behavior of the embeddings as p ~ 0 or 1 can 
obviously be sharpened; as one might expect, the behavior for Ip -1 /2 l<e '  
accounts for most of the deviation. (3) We have given the proof for equally spaced 
p j, for the sake of Corollary 1. The changes in estimates for other choices of the 
Pi should be clear. In particular, if B, is bounded in n and the pj are fixed, the 
bounds stated in (3.1) are valid; this is used in Corollary 2. (4) It is easily seen that, 
with a slight change in the values of e and C 4 and an accompanying increase in 
the coefficient 2 in the definition of qN in (2.24), one obtains (3.1) with n Q, ( z j ) -  
4 (z j, n), replaced by m Qm(zj)-4 (z j, m), for each m < n, and with the probability 
bound 1 -  n-1 replaced by 1 -  n -3. As in the statement of Lemma 1', we require 
such a result for m < ~ n (log n) ~, and it is easily verified that this essentially involves 
substituting this larger value for n, while leaving B, unchanged, in the upper 
bound on It Q t -  41 of (3.21). With a slight additional argument this last comment 
yields 

Lemma 4'. There is an ~' > 0 and C' 4 > 0 such that, for fl > 0, ~ > 0, and n suffi- 
ciently large, 

2< B,<e'n/ log n 

~ P  {(zj+ 1) -11tQt(zj)-4(z j, t)l <2C~, [(~n [log n] a+3 B,)I/4+B, log n] (3.22) 

for 0 <_ t < ~ n (log n) ~ and 1 < j < B,} >- 1 - n-  1. 

The required additional argument is in fact given by 

0<  sup ( z + l ) - l [ t Q , ( z ) - m Q m ( z ) [ < l  wp 1, 
re-<t-<,,+1, 0<_-~<~o (3.23) 

P{ < < sup< ( z + l ) - X l 4 ( z , t ) - 4 ( z , m ) l > 2 1 o g n } < C s n  -3 
m _ t _ m + l ,  O ~ z <  

for some constant C 5 ; the latter is easily proved by the methods of [8]. 

We can think of { t ( z j+l ) - lQt (z j / ( z j+l ) )}  of (3.22) as an embedding of 
{ tSB, . , ( j /B . ) - t j /B , ,  I ~ j < B , ,  O<_t<-~n(logn) 6} of (1.18). It is easily seen that 
the maximum of the rates in (1.18) and (3.22) has its minimum when the two rates 
have the common value n 1/3 (log n) (~ + 2)/3, at B, = n 1/3 (log n) (~- 1)/3. Recalling how, 
in connection with Fig. 1, we could consider all of k [Sk(x)-x], xE1, to be embedded 
in ~*, we conclude easily from Lemma 1' and Lemma 4' (with, in fact, any power 
of n in place of n- 1 on the right side of (3.24)), 

Theorem2.  For fl>O and 5>0  there is an embedding of {k[Sk(x)--x  ], k<= 
n(log n) p, x~I}  in 4" such that, for some constant c*, 

P{ sup n - 1 / z l t [ S t ( x ) - x ] - r  
t ~ n ( l o g  n). a, x~I  (3.24) 

> c* n-  1/6 (log n) ~a + z)/3} = O (n-a). 
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We have stated (3.24) with continuous t, for comparison with Theorem 1. As 
in Corollary 1, the main interest is of course in integral t for S t and continuous t 
for (*, although Corollary 1 remains essentially unchanged for any of the four 
possible combinations. (See Remark 3 on Lemma 6.) In Lemma 5 we consider 
only the combination stated in Corollary 1. 

To obtain Corollary 1 from Theorem 2, we need only (3.23) and the familiar 
device used in such weak convergence results, e.g. by Skorohod, MiiIler, Sawyer, 
of using boundedness near 0 of the density of an appropriate functional of 4*. 
Let R* be a subinterval of R + and write 

* - { t :  t~R*  and n t ~ Z + } ,  R n - -  

H 2 = sup [4* (s, t ) -  G 2(s, t)], (3.25) 
s 6 I ,  t eR*  

H I - - -  inf [~*(s , t ) -G~(s , t )] .  
S~I,  t~R*  

The random function ~(s, t) in (3.26) below can be any function defined on the 
same probability space as (*, although in proving Corollary 1 we take ~(s, t) to 
be our embedding of n 1/2 t [S,, ( s ) -  s]. 

Lemma 5. Suppose P {0 < H i < 6 + 6'} < C(3 + 3') for i = 1 or 2, that R* is non- 
empty, and that I Gi (s, tl) - G i (s, t2) [ < C'ltl - t 2 ]~ whenever C'[q - t 21~ < 6', for s t  I, 
t F R * .  Then 

2 n -1/2 log n+ C' n-~ < 3' ~ I P  { GI (s, t)< ~*(s, t)< G2 (s , t), (s, t)~ l x R*} 

- P {G, (s, t) < ~(s, t) < G 2 (s, t), (s, t)e I x R*}l (3.26) 

<2C5 IR*l n -3 + 2 C ( 3 + 3 ' ) + P {  sup I~*(s, t ) -  ~(s, t)l> 3}. 
I x R *  

Proof A quarter of the demonstration is that, if l~* (s, t ) -  ~(s, t)J < 3 on I R, • * 

and ~(s, t)<G2(s, t) on that set, then ~*(s, t)<G2(s , t )+3 thereon and hence 
(with (* (s, t) here = n-1/~ (1 - s) ( (s (1 - s)- ~, n t) of (3.23)), except on a set of proba- 
bility 2 C5 IR*l n -a, we have ~*(s, t )< G2(s , t)q-3-b2n -1/2 l ogn+  C' n -~ on I x R*; 
consequently, 4" (s, t) can be __> G 2 (s, t) somewhere on I • R* with probability at 
most C(3 + 3'). For (* (s, t)< G 2 (s, t)< ~(s, t) on R* the only contribution is from 
the last term of (3.26). 

What remains to be verified in order that Theorem 2 and Lemma 5 can be 
applied in particular cases is of course the boundedness near 0 of the densities of 
the H/. This has been proved in particular cases by Skorohod (for I replaced by a 
point and R * =  (0, A]) and by Mtiller (for R * =  [1, oo), essentially with boo > 1/2 
in (3.34) below while assuming no Lipschitz condition but certain other restrictions 
described in Remark (1) on Lemma 6). A simple condition and proof (more 
elementary than M/.iller's) are given in 

Lemma6.  Suppose the G i are continuous with [Gi(s , t)[ <G(t) and [Gi(s,t ) -  
Gi(s', t)l < G(t ) Is-s ' ]  for s, s '~I and t sR* .  Also (if O~R u suppose inf{t: ~*(s, t )= 
Gi(s, t) for some i and s}>0  wp 1. Then, for 3>0,  

P{O<-H~<3}<6~ inf{t -1/2 +2t -~[G( t )+G( t ) ] } .  (3.27) 
t~R* 
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Proof We shall give the proof for H z. Let 

71 = inf {s: sup [r (s, t ) -  G z (s, t)] = 0}, 
,~R* (3.28) 

1 -- 71 =inf{s: sup [4" (1 --s, t) -- G2 ( 1 -  s, t)] =0}. 
t~R* 

The 7i are defined on the same set F (say) of sample paths, on which 71 < 72. On 
F, define 

z i = inf,{t: [4* (2i, z i ) -  G2 (Yi, zi)] = 0}. (3.29) teR 

Then, given F and 71 -- sl --< 1/2, z 1 = t I > 0, the process {t I 1/2 4" (s, tl), s a N s < 1} 
has the same conditional law as {4"(s, 1), Sx<S<l  } given that 4"(s1,1)= 
t~l/2G2(sl, tl). The obvious analogue holds for time variable 1 - s  given 72 ~ 
s2> 1/2, z 2 = t 2 ~ 0 .  Since always 71 < 1/2 o r  72 ~> 1/2 on F, 

P{O< H 2 <3} < P{O< H 2 <3IF} 
(3.30) 

<P{O<=H 2 <3, 7~ < 1/21r} +P{O< H 2 <3, 72--> 1/21r}. 

We treat in detail only the first term on the right side of (3.30), which is no greater 
than the infimum over s~ < 1/2 and q of 

P{0< s-up [{*(s, t l ) -G2(s ,g , ) ]<al f f , ,71=s1,z ,=t l} .  (3.5!~ 
sl <=s< 2/3 

Writing, as earlier, (z + 1) 4" (s, t)= 4 (z, t) and z 1 = s 1 (1 -s l ) -1 ,  m~d using 

]G 2 (s, t) - G 2 (s l ,  t)] < 0 (t) ]z - 21 [/(1 q- z) (1 + el), 

we have 

4" (s, q ) -  62 (s, tO = (z + 1)- ~ {~ (z, q ) -  ( z -  z0 G2 (s, q) 

- (z 1 + 1) [G 2 (s, q ) -  G 2 (sl, tl) ] - { (zl, tl) } (3.32) 

>_ (z + 1) -~ { ~ (z, t 0 - ~ (z~, tO - ( z -  z0  [G(t) + g(t)]  }. 

Substituting z~ < 1, z<2,  we see that the probability of (3.31) is no greater than 

P{ sup t ;  1/2 {~(z, ta)--4(zl, q) - ( z - z l )EG( t )+f f r ( t ) ]  }<3(~t / l / z}  
O_-<z-z, _-<~. (3.33) 

< 3 3t1'/2 { 1 + 2 t[*/2 [G(t) + G(t)] }, 

the last by a Brownian motion estimate (e.g., [20], p. 173). 

Remarks on Lemma 6. (1) The dependence on s can be weakened, both in 
allowing a weaker Lipschitz condition and also in allowing G~ and its differences 
to vanish, but sufficiently slowly, near s = 0 or 1 (in particular, Miiller's assumption 
that lim infG~>0 is unnecessary); we forego the altered statement of Lemma 6 

s(1-s),L0 
and Corollary 1. (2) Somewhat different conditions can be given using the "first t" 
in place of (3.28), but the present conditions and proof seem, on the whole, more 
expeditious. (3) If also inf G 2 > ~ > 0  , the analogous result is obtained for 

l xR* 

P { - - ~ < H 2 ~ 0 } ,  from the above with G 2 replaced by G 2 - 6 ;  this would be 
needed only for the somewhat artificial combination (in the paragraph following 
(3.24)) of continuous t for S t and discrete t for 4*. 
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Assumptions and Proof  o f  Corollary I. We adopt the following notation to 
describe the behavior of the Gi: 

For positive constants Co, L, ao~, boo , bo, and real a o, 

<~Co t-a~ t__<l, 
[ G i ( s ' t ) l + j s - s ' l - l l G i ( s ' t ) - G i ( s " t ) ]  ( C o t  ~ ,  t_>__l; 

I Gi (s, t 0 - G  i(s, t2) l < C o (trl + t~-L) lt z --t  1 ]~ 

for 0 < t 2 -- t 1 < 1 and some ~ > 1/6; 

( t , ' - -  1 t l / 2 - b o  
( _ l ) i G i ( s , t ) > . . ~ o  ~ , t ~ O ,  

[Co I t 1/2 +b~~ t-~oo; 

(3.34) 

y = 2/3 + 1/6 boo + max [-(1 + ao)/2bo, 1/4bo~ , (aoo - 1)/2bo~], 

I 
where the terms with subscript 0 (resp., oo) are omitted if 0~R* (resp., if R* is 
bounded). 

The last assumption on the G, implies (from standard estimates for 
sup [4* (s, t) or n 1/2 t lSt(s)-s]] ,  as in [-6, 8]), that for some c '>  0 

sEI, O<=t<=T 

P{GI(s,  t)< ~* (s, t), n 1/2 t [ S , , ( s ) - s ] <  Gz(s, t) for s~ I  

and t < c'(log n) -1/2b~ or t >  c'(log n) 1/2 b~~ } > 1 - n - l .  
(3,35) 

It suffices, therefore, to prove (1.6) for R* c~ [c'(log n) -1/2b~ c'(log n)l/2b~~ Conse- 
quently, the coefficient of 3 in (3.27) (and hence the C of Lemma 5) is of order 
(logn) ~ where 7=max[1/4bo,  ( l+ao) /2bo ,  1/4bo~ , (ao-1) /2boo ]. Note that 
1 / 2 - b o > - a  o, so that ( l + a o ) / 2 b o > l / 4 b  o. The second assumption of (3.34) 
allows C' to be taken to be a power of log n in Lemma 5, and thus, since ~ > 1/6, 
6' can be taken as n -1/6. From Theorem 2 with fl= 1/2b~, we thus obtain that 
the right side of (3.26) (with 6 = c* n-x/6 (log n) (p + 2)/3) is of order 

6 C = n-  1/6 (log n) r + (a + 2)/3 

which yields (1.6). 

Remark. The modifications for dependence in s (near 0 and 1) and bounds of 
orders other than monomials in (3.34), are straightforward. The third condition, 
where we have used positive powers b 0 and bo~ rather than suitable slowly varying 
functions, is but the simplest condition to yield a result like (3.35) and avoid the 
trivial case where the second probability of (1.6) is 1; in the latter degenerate 
case one can also obtain estimates like (1.6). Of course, a~ > 1/2 + bo~. 

Proof  o f  Corollary2. (Of course, the [s-s '[  term in (3.34) can be omitted.) 
B, is now fixed in (3.22), and the proof of Lemma 4' obviously holds even though 
the pj need not be uniformly spaced in I'. The analogue of Lemma 5 is valid, and 
Lemma 6 can be replaced by an analogous result following the lines of Skorohod's 
corresponding result for I' a point. The remainder of the proof of (1.7) is as for 
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Corollary t, and (1.8) follows from the fact that probabilities corresponding to 
the n-~ of (3.35) can be made n-2 by merely multiplying the deviations considered 
in Lemma 1', 4', etc. by suitable constants. 

4. Proof of Theorem 1 

We shall give details of the features not present in the proof of Theorem 2, but 
will merely sketch the differences when parts of the argument are similar to those 
of the proofs of Lemma 1' and 4', etc. 

We must first alter the embedding by letting B, and the zj vary with the n-th 
observation. (The use of Section 3, with n varying, would only yield the existence 
of {T,(s, t), n~Z  + } so that (1.5) held with T, for T there whenever t<=n.) We shall 
make a single choice of the parameters of the embedding from the outset, to yield 
the best order obtainable in (1.5) from the analogues of Lemmas 1' and 4'. As in 
Section 3, we shall save space by not distinguishing notationally between large 
real values and their integral parts. 

We shall keep even tess track of constants than in Section 3, and will denote 
by O(1) any positive function (whose domain will depend on the context) which 
is bounded away from 0 and oo and whose definition may change from one usage 
to the next. 0(1) is used similarly. 

Define 
M , = r 8  r for r > 0 ,  

(4.1) 
B n = U  for M~_I<n~M~,  

so that 
Bn = (a (1) (n/log n) 1/3. (4.2) 

Whenever we are using 2' subdivision of 1, they are of equal length, and the 
corresponding zj, here termed z} '), are given by (3.2) with B, = 2 r. 

For 0 < n < M 1 we use the embedding of Section 2 at the single value z]l)= 
1(p1=1/2), and denote the embedding by t/(0, z]l); TT(,) a. the subscript [r; j] v[1,  1]J, 
abbreviates (z~r) l,z~')). Since the "last _~z! ~)'', which by (4.1) is B , - l = 2 ' - l ,  is 
going to vary with n, it is convenient (although it is not strictly necessary), here 
and below, to adjoin {~ (z', z"; n), z', z '>B,-1}_ to the {~(z~Pl, zT); W. (')~tr,jv, j < B . }  
(with W =  U above and as defined generally below), so as to have the expected 
value of the last argument of q be n regardless of the first two arguments. We call 
A =  {(p, n): p >  1 - B 2 1  } the "adjoined region". We then define, for n < M  1, 

0 < z = ~1 , (4.3) na - z; q(,%) for 
( t / ( 0 ,  Z]I);  (n) (1) . > -(1) Um 11) + ~/(zl , z, n) for z = zl �9 

(An alternative to adjoining for z>__B.-1 as above  is in fact to define Q,(z)= 
O , ( B . - 1 )  for z>_B,-1 .  This means deleting the rectangle [1, 3] x [0, M~] in 
Fig. 2 and lowering what is above it. A subsequent modification five paragraphs 
below must then be altered accordingly.) 

We write j '  = b if j = 2b or 2 b -  1. This means the two intervals [z~'}, 2, zr149 1 
and [z~'},_ 1, z '~) 1 make up [z~,-~ ), z~,-1)]. 2 j ' J  ~ 

We continue as follows: Suppose Q, is defined for n<M,_  1. Then, for 
Mr_ 1 < n < M , ,  we define n Q , - M ~ _  I O,M,_~ at the 2 ' - 1  arguments z~ ~) by using 
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�9 �9 (n) ( M r - l )  ( r)  ( , ) .  W r  ( M r - l )  t > stopping times Wt, ' Jl - Wt,- 1, J'] on {q (zj_ 1, z~ , t + t,-1, j']), = 0} in the same way 
(z~)- z}~- ) 1) Ut~}l m"-l) was used to obtain ( n - M , _  1)Qn-Mr-, from the tl(zj_l, z j; t) 
for B = 2 ' - I  in Section 3. Our "adjoining" described above (4.3) makes 
Wt (M'-,) - M  for all r. Finally, we write, for M, l < n < M ,  andz j_ l<z<z~,  , - -  1,  ( 2 r - -  1 ) ' ]  = , - - 1  -- - -  

j - - 1  

n Q . ( z ) - M , _ t  Qmr_,(z) = ~ r,,f.(') .('). w(")~ -r z~); VF(Mr-~L~q 
~=l (4.4) 

' 'Jr,  j]] ' /  t ~ j - - l ~  - J  ' ' r [ r - l , e ' ] J d ~  

with the last term in square brackets replaced by 

(') n)  (r) , [t/(z2,_l, z; = 2 " -  1. -r l (z2~_l ,z ,M,_l)  ] if z>zz~_ 1 

Here is a diagram of 0M, +1(2), in Fig. 2: it is ~ (shaded area). 
Note especially: as r increases, bases of rectangles are piled on top of broader, 

lower ones; the region [1, 3] x [0, M1] comes from the "adjoined" definition which 
makes the expected height of the shaded part equal M 1 + 1 for each z; the value 2 
is not a z~ 2), and so we must split [-1, 3] x [-M1, W(M,+ln,,[2, a~ j vertically although this 
rectangle was determined by stopping the process with argument [1, 3] x 
[M 1 , M 1 + t] by moving up its horizontal upper boundary. This last is a technical 
convenience in defining 0, but will necessitate proving in (4.8) that 0 is suitably 
close to a corresponding interpolated process analogous to that defined in (1.12). 
Thus, the full {n [(z + 1) S, (z/(z + 1))- z], z < 1, n e Z + } (which can be modified in 
an obvious way from {z< 1} to {z<z  r ~  1} for any fixed Ro) still sits in ~ in the 
above picture, but it is given in terms of the horizontal cuts of Fig. 1 rather than the 

r ~ r r ( 1 )  ~] vertical cuts used in (),, of "whole rectangles" like [0, 1] • [0, ggtl, 11 " 

Theorem 1 requires this embedding for {z < oo }, not just {z < large constant}. 
The additions we must make to achieve this turn out to be trivial, since it will turn 
out that we do not need to estimate differences between r and the embedded 
n S. (p) - Mr_ 1 S~s~_~ (p) for p > 1 - B 21 (when Mr_ 1 < n __< M,) in obtaining our 
estimates; this will be seen explicitly in connection with the discussion of (4.16). 
Consequently, our embedding can be completed in A = {(p, n): p > 1 - B  Z 1} in any 
convenient way that exhibits the presence of S, (p). One possibility is that men- 

t l 
~^/Ml+l) ~^/(Ml) 

/[2,2]-vvE2,2] vv[2,3]/-vv[2,3] ~IvIl+4 
j w[2/I] ~-vv [2,1 ] " ,̂ ,(M,+]) ,^flNl) ' A'(M'+]) ̀ '̂(M') i l  , 

\ \ ' ~  , , \ \ \ , ,  \ ' ,  ~ - -  [M 1 

\ '  \ \ \ \ I I 

"[U]" I 

(2) 1 z(ll> 1 Z 71 Z(3 2) 3 "Z zl =5" = = 2 = 

Fig. 2. Example  of QM~ + 1 (2) = ( ( shaded area) 
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tioned in connection with Fig. 1, of adjoining any sequence of unbounded z~r)> B,. 
A simpler alternative is to use the standard process {r/(2 r -  1, U - l + t ;  n ) -  
q ( 2 r - l ,  2 ' - l + t ;  n - l ) ,  t>0}  already exhibited in the "'adjoined" region A of 
our definition of Q,, in the manner the r were used in Section 2.1, stopping this 
process the first time the resulting sample df of the single n-th observation 
reaches 1. The deficiencies noted for this scheme in Section 2 are now irrelevant for 
the reason stated earlier in this paragraph. 

We define ~ (s, n) = (1 - s) n O, (s/(1-2 s)) (with ~ (1, n) = 0), including region a in 
the definition. Recall that ~(s, n ) -~ ( s ,  Ms_l) gives an exact embedding of 
In S n (s) - M s _ 1 SM,-1 (s) -- (n -- M s _ 1) s] for s = integral multiples of  2 -  i, if M s_ 1 < 
n <<_ M i . For M s_ i < n < M s define 

"~(s,n)-~(s,  Mi_ 0 if s=2-s j ,  j integral, 

~ (s, n) - ~ * (s, M s_ l) = '  linearly interpolated from the above if (4.5) 
2 - S j < s < 2 - s ( j +  l). 

Thus, if M,_ 1 < n < M r ,  the rv ~e(2-r j ,  n) is a sum of r  independent rv's, one with 
exactly the distribution of In S, (2 - r j) _ Mr_ 1 S~t. -1 (2 - r j) _ (n - M r_ i) 2 -  rj], and 
the i-th of the others with the distribution of the rv linearly interpolated from 
[Mi SM, (t 9) - Ms- 1 SM, -1 (19) -- (Mi - Ms- 1) P] at the values of p = 2-  s ] closest to 
2-r j .  Finally, in conformity with (1.3), we define {~(s, n)} to be the embedded 
process distributed exactly as {n S, ( s ) -n  s, s e I, n E Z +}; this is obtained from the 
horizontal cuts described at the end of the second preceding paragraph for the 
i-th observation when s/(1 - s) < B~- 1, and from any exact representation used 
in the manner of the paragraph just above, for s/(1 - s ) >  B i -  1 (region A). 

Our proof is divided into four parts: 

P {sup 1~* (s, n ) -  ~* (s, n) l = 0 (n 1/3 (log 
8~I 

P~ max I~*(B;i j ,  n ) -  ~ (B; i j ,  n)[ =O(ni/a(log 
" O < j < B n  

P{ max I~ (B21j, n ) -  ~* (B2 ~ j, n)l =O(n~/3 (log 
O < j < B n  

P {sup I~ * (s, n ) -  ~(s, n)[ = O(n 1/3 (log 
SeI  

n)2/3)}>l-n -2, (4.6) 

n)Z/3)}>l--n -2, (4.7) 

n)Z/3)}>l-n-2, (4.8) 

n)Z/3)}>l-n -2. (4.9) 

These four equations, for n ~ Z  +, yield (1.5) for integral t; the corresponding result 
for linearly interpolated (in t) tS t follows at once from (3.23). 

Remark 4 on Lemma 1 yield (4.6), in view of (4.1)-(4.2). 
We require an analogue of Lemma 4, to obtain (4.7). Suppose M r_ 1 < n < M r. 

Temporarily fix p~) = 2-r jr, 1 <Jr < 2r" Denote by p}i ) the corresponding right end- 
point of the interval of length 2-s (with endpoints multiples of 2-i) containing 
[P~)- i, P~)] ; thus, j~+i =Jl and (ji +1 - 1)' =is for i < r. We write z~i) correspondingly. 
Also, define p - p ( p ~ ) ) = m i n { i :  pJ~)< 1 -Z-S}. Then T, Tz(M,-I) -- a/t (the "ad- ' r i P  - 1 ,  JR -1] - -  ~WP-- 1 

joined" region A in the definition of Q,), while for p < i < r  the stopping time 
w(M,)_ w(M,-1) ;0 the sum of M s - M i _  1 iidrv's, each satisfying (2.19) with (Zl, Ze) i, ji] " ' [ i - - l , j i - l ]  1~ 

there replaced by (z~i)_ l, z~i)). (The first M._I summands together yield 

log E exp {~(W (M"-I) - Mp_l) } = 0  
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in place of (2.19).) All of these intervals [z}i) 1, z}i) ] are contained in [z}o~ zJ~ 
from which it follows that, in the expression h of (2.19)-(2.20), all factors (1 +z}i) ) 
(replacing (1 + z2) there) are f2 (1) (1 + z}~ )) for p < i<  r. (The ~ (1) here is independent 
of n, r, L.) Also, zj-z j ,_l=f2(1)(1+zj ,)22 -i. Hence, from (2.20), we have as 
analogue of (2.19) for M~_~ <v<M~,  in terms of stopping times with unit ex- 
pectation, 

logEexp{c~[W~Iv}j w(~-,~ 1]}..~:2(z(i)_z (i) ]-2h(.(i) ZJl) ) 
, i - -  ' ' [ i ,  j i ]  - -  " J l  j i - - l !  ' ~ k ~ j i - l '  

(4.10) 
=cd ~(1)2~=< ~ 20(1)B.. 

A sum W (N) (say) of N such terms (some replaced by 0 if i <  p) yields, in place 
of (2.21), wi th ~ = q/20(1)NB,, 

p { ~(m > q} < E {exp [~ ~(m _ q] } 

< exp {N c~ 2 0  (1 )B , -~  q} (4.11) 

= exp { - q2/4 ~2 (1)NB,}. 

This last is <n  -3 if q=O(1)  (NB, log n)~/2; this and the corresponding result for 
{W (m <q} make up the analogue of (2.24)-(2.25) (with q here for (z j -z j_ l )  -1 qN 
there), and the condition of the first line of (2.25), inherited from those following 
(2.19), is again seen to be that N -~ B, log n < s o m e  small positive value. 

We use the above to prove (4.7) by going through the proof of Lemma 4 with 
W ("~+" +"') in place of the Vj (i) of (3.9). We use (3.3)-(3.8) as before (and in view [r, J~l 
of (4.1) we have K ~ ( l o g  log n)/log 2). The analogue of (3.12) is valid, since the 
proof of (3.11) depends only on (3.5). We replace (z j-z j_l)  in (3.13) by (z)~)--(~)~j~_l~ ~ 
and now sum on j~ to obtain the obvious counterparts of (3.14), (3.15), (3.16). 
These and the analogues of (3.17)-(3.20), with the coefficients 2 and 22 altered 
slightly, yield the analogue of (3.21) with the probability changed to 1 - n  -2. 
Thus, (4.7) follows from the fact that 

(nB,,) 1/4 (log n) 3/'* + B,, log n = 2 n 1/3 (log n)  2/3 . (4.12) 

We turn to (4.8). We define p(p)just  as above (4.10). Still supposing M~_~ < 
n<_M~, fix p~) and abbreviate t,(i) ,(,) ,,(i)~ by (p', p, p"). _ uq,_a,v~, ,,.j, ~ We first look at that 
portion ff (say) of ~(/3, n ) - ~ *  (p, n) that comes only from values t>Mo(~) for 
each p, 0 < p < p .  This is the portion from those (s, t) of I x R + outside (above and 
to the left of) the "adjoined" region A. Since, moreover, the (noninterpolated) 
contributions from values p < p' cancel in the difference E, we are left with 

5 = {E~ (P, n)-~(p,  M~_I)] - E~(P', n ) -  ~(p', M~_~)] } 
(4.13) 

- {[ ~* (p, n ) -  ~ (p, M~_ O] - [~* (p', n ) -  r (p', M~_ ~)]} , 

where p = p(/3). This difference E may be thought of as a sum of M~_ 1 - M e _  ~ rv's, 
corresponding to the (M~_ 1 +l ) - th  to M~_t-th observation; there is no inter- 
polation, linear or by vertical cuts, from the (M~_~ + 1)-th to n-th observation. 
For each i, t S < i < r - 1 ,  the M i - M i _  ~ rv's corresponding to the observations in 
that i-th group are iid, and each has a distribution which is the same as that of 

,..~, W*) of (4.14) (below), which we now describe in terms of the notation 
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of Section 2, translating time to begin at t = 0 for notational ease: For a process 
' ~ ( 1 )  1 - -  4** distributed like ~*, stop ~**(p", t )-~**(p' ,  t) at time t=(zj-zj~_l) -1 l[i.s,- 

W* (say). The contribution of ~** from the time rectangle [p', p"] x [0, W*] to 
the ~ part of (4.13)is 4"*((1-ni)p '+n~p",  W*)-~**(p' ,  W*), where ni=(~-p')/ 
(p'-p')  is the interpolating proportion. Similarly, the contribution to the ~* 
part of (4.13) is (1 - n  i) ~** (p', W*)+n i ~**(p", W*)-~**(p', W*)~ The difference 
between these two contributions can be written as ~*** (rc~, W*), where 

4*** (re, W*) = ~** ((1 - n) p '+  n~ p", W*) (4.14) 

- (1  -zc) ~** (p', W * ) - n  ~**(p", W*). 

Recall that W* was defined in terms of the values of ~** (p", t) - 4** (P', t). A simple 
computation in terms of the Gaussian distribution (more easily done in terms of 
the corresponding independent increment z-process for which, however, one does 
not have the simple linear interpolation obtained by putting z', z" for p', p" 
in (4.14)) now shows that the conditional law of {~***(n, w),0<zc< 1}, given 
W * = w  o and even the whole path {r t)-~**(p', t), t< W*}, is the same as 
the unconditional law of {4*** (zc, Wo) , 0 < n =< 1}, namely, it is that of (p" -  p,)1/2 wl/2 
times a standard Brownian bridge. (This simple dependence on w o of course 
differs strikingly from the conditional distribution of ~, obtained from the same 
horizontal cuts that defined W*.) Consequently, given w(M,)_ W(M~-I~ ' ' [ i ,  j i ]  ' ";[i, i l l  = "A/i, t h e  

total contribution to ~(/5, n)-~g,(~, n) from the (Mi_ 1 + 1)-th to M; th  observa- 
tion is that of w~/Z2-~/z~**(n] where ~** is a standard Brownian bridge. If the " i  ~ ~ iJ i 

~**'s are taken to be independent in i, we thus have, finally, the representation 
(given the w~ as above for i<  r) 

r - 1  

~=~-  wl/2i 2-~/2 4"*i (Th). (4.15) 
i = , 0  

It is now simple to use exponential bounds in the manner of the proof of Lemma 1: 
(,,,(u~) W/Mi-~))/(M,-Mi 1) is close to 1 for all large i<r ,  with high probability; 

VV[i, j i]  - -  [i, j d  " - -  

with that probability, the "rv's taking on the values w~ are such that 

r - - 1  

Z w, 2-i  = O (n 2/3 (log n) 1/3); 
i = , 6  

also, E e x p e { * * ( r Q < e  a(*)=-~. We obtain that the r.v. E of (4.13) and (4.15) is 
O (n */3 (log n) 2/3) for all ~ = p)~) (1 <L < B,), with probability > 1 - (2 n)- 2. 

To complete the proof of (4.8) we shall show 

p{ ~ [~(p, Mo(,)_~ ) - ~(p-- 2 -~, Mo(v)_ ~) ] = O(n ~/3 (log n) 2/3 ) 
v=2-"S<p (4.16) 

for ~ = 2 - ' f ,  0 < ] < 2 ~ } >  1- (4n)  -2 

and the corresponding result for r replacing ~ in (4.16). (This separate treatment 
of the ~ and ~* parts confirms our earlier assertion that the method of embedding 
in the "adjoined" region A was irrelevant.) Recalling that M -~/~ ~(p,M) is a 
standard Brownian bridge in the adjoined region A, and that (p, M )  and (p, M~_ 1) 
are in that region if and only if p > 1 - 2-*, we see that the sum in (4.16) has variance 
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no greater than 

~ (Mi - M i -  1) 2-i(1 - 2 i) < f2 (1) n 2/3 (log n) 1/3. (4.17) 
i=1  

Moreover, if we denote the sum in (4.16) by r/,,(1-p), it is easy to see, as in [8] 
Lemma 2, that P{o sup/]n.(s)l >,l}__< 0(1)P{1 .(1/2)1 > Consequently, (4.17) 

and the usual normal exponential bound yield (4.16). The corresponding result 
for r ~ is very similar; the crucial analogue of the abovementioned parallel of [8] 
now uses not just sample d.f.'s, but sums of random functions obtained from 
sample d f ' s  linearly interpolated in s at various different spacings. In the next 
paragraph we compute bounds of the required type for such sums which arise in 
treating the more difficult region complementary to A, and the result for ~* 
in (4.16) follows similarly. 

We thus turn finally to (4.9). The discussion of the previous paragraph enables 
us to limit discussion to the complement of A; that is, corresponding to (4.15), to 
sums of random functions 

H(p)= Z (4.18) 
i= o(p) 

where the S(~) are independent sample d.f.'s, S(~ based on M~-M~_ ~ observations, 
and S/e is the piecewise linear function interpolated from values S(~(2-ij), j inte- 
gral. As in (4.13), it is only the contribution from p!~) to p that doesn't cancel out 
�9 J i  

m the i-th - i  r+4 summand of (4.18)�9 Suppose we set e --2 and can show that, for 
2>8 ,  

P{o~P~IH((1 ' - -s . -~ ~sr,, >2} 
(4.19) 

= 0(1) P { m a x  IH(1 - j  +j e P}: I > X/2} 
0<j=<a-x  

with O(1) independent of r. Then, as in [8] and [12a], it is easily seen that the 
right side of (4.19) can be estimated by exponential bounds of the type we have 
used repeatedly, to yield (4.9). We suppose the first p in [-p~:) l, PJ~)] where IH(p)[ => 2, 
say p = Po, is in the left half of this interval; time reversal handles the other half. 
If Po + ~o is the least of the e - i  possible arguments of H on the right side of (4.19) 
for which Po +go -->Po, we will show 

P{lH(Po+%)l>2/21Po=Po, go=%,  IH(po)[ = 2 0 >  2} = f2(1), (4.20) 

which yields (4.19). 

Let u~ be the number of observations in [p}i~_~, p}i )] among the (M~_ 1 + 1)-th 
to M~-th observation, and let v~ be the number of these in I-p}~]_ ~, p}~)]. If Po = P}~- a, 
(4.20) is trivial; so we assume H(p}~_l)=ho (say) with Ihol<L We also treat 
explicitly only the case H(po)=2 o of positive deviations. We obviously have 

(M~ - M~_~) [Sff (Po + %) - Sff (Po)] = ~', % 2 -~ ~ .  Since also 20 > 2, we obtain the 
f i 

desired H(p o + %) > 2/2 provided that 

Z ( M i - M i _ l ) [ S i ( p o + % ) - S i ( P o ) ] > = Z % 2 - i p l - ) o / 2 .  (4.21) 
i i 
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The total number of observations in [po,pJ r)] from the (Mo+l)-th to Mr_l-th 
observation (where p = p (p~))) is N o = Y, v i 2 -~ (pJ~)- P0) - (2 - ho), and the proba- 

bility that any specified one of these falls in [Po, Po + %] is - (~) Po - eo/(P}~ - Po)' Thus, 
conditional on the vi, po=Po, go=%, and H(Po)=2 o, the left side of (4.21) is 
binomial with mean N o Po, and N o Po exceeds the right side of (4.21) by 

N~176176176 (2-rvi=2-i#i)+ 2 n~.r)-p o ) 
i " r J r  

Since 2 - h 0 < 2 2 ,  % < 2  -r-4,  and pJ~)-p0>2 - r - l ,  the term in braces in (4.22) 
is >2/4. The unconditional probability that the sum in (4.22) (which has ex- 
pectation 0) is > - 1 is easily seen to be bounded away from 0, uniformly in r and 
p~), by using elementary estimates similar to those used in [12a]. (The latter shows 
that a binomial rv exceeds its mean by at least - 1  with probability bounded 
away from 0.) Hence, (4.21) is established, as is thus (4.9). 

Finally, T(1, t) is defined arbitrarily in (1.4)-(1.5), e.g., as 0. 
This completes the proof of Theorem 1. 
Mtiller's method can also apparently be used to give a strong analogue of his 

weak convergence result. 
The technique used in (4.18)-(4.22) to treat sums of non-iid processes has 

broader usage, whose statement we forego. 
In view of our comment in Section 1 that (1.5) is a statement about an imperfect 

method rather than anything intrinsic about ~ and ~*, we forego any lower class 
considerations. 

5. Breiman-Brillinger Brownian Bridge 
In the second paragraph of Section 1 we mentioned Breiman's representation 

in terms of iidrv's Y~ with df l ' e  (y+l)+. In view of the shortcomings we have 
described for this representation, it will not be worth while to do more than 
sketch the results alluded to in [123, although some elements of the proofs may 
warrant mention. Also, as discussed in the next section, certain results about 
Breiman's scheme, used with Miiller's approach, could possibly improve on some 
of our results; unfortunately, those results will not be found here. 

Let Zo=0,  Z ,=~,Yi ,  and Z'.=Z,+n. From our remarks about {Z']Z',+ 1, 

1 < i<  n} in Section 1, the random function 

G'"  fi/(n+l) if t=Z~i/Ztn_bl, 
, i t )= ~linear for te [Z'i/Z',§ Z'i+l/Z',+l], 

0 < i < n + l ,  
(5.1) 

O<_i<_n, 

is distributed as the continuous strictly increasing (wp 1) piecewise linear version 
of the sample df for uniform rv's; it will be obvious that the conclusions contained 
herein are true for the common discontinuous versions, but the use of the invertible 
G, of (5.1) simplifies notation and arithmetic. 

We hereafter write m = n + 1. 
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Let {41(0, t>0}  be a standard Brownian motion defined on a probability 
space on which are also defined nonnegative iidrv's {Ti} which yield a Skorohod 

n 

embedding of {Z,} in 41; that is, if U, = ~  TI(U o =0), then {41 (U,),n>0} is distrib- 
1 

uted as {Z,}. Here ET~ = EZ 2 = 1. A number of different embeddings are available, 
as mentioned in Section 6, with various finite values of/~ = vat (T~) (see Section 6D). 
We assume such an embedding and corresponding/~ are chosen, and hereafter 
identify Z,  with 41(U,). We also define Z t to be linear in t~[n, n+ 1], and write 
Z' t = Z t + t. Also define r(t)= Z t -  ~1 (t). As usual, the development can be stated 
in terms of continuous t or discrete n, and we shall not distinguish (e.g., in the 
subscript of U,~) between a real t and its integral part. From (5.1) and the LIL for 
Z m, we have, uniformly for 0_< t___ 1 as m- ,  oo, wp 1, 

, , ~ / z f Z m t - - t Z m ]  
ml/2[G~l(t)-t]=ml/2EZmt/Zm - t ] = m  ~ Zm+rn 

= m-1/2 (Zmt_ t Zm) + O(n-1/2 (log log n) 1/2) (5.2) 

= m -  1,2 [~1 (m ~) - t 41 (rn)] + rn-  2/2 [r (m t) - t r (rn)] 

+O(n-1/Z(log log n) 1 2). 

It ~b known from [10] that 

lim sup + [2/~ t(log t) z log log t ] -  1/4r (t)= 1 wp 1. (5.3) 

This would yield an estimate of" the term m-~.,2 [r(m t ) - t  r(m)] in (5.2) for fixed t, 
but not the right constant; n or would it yield an estimate for the supremum over t 
of this term. However, slight modifications of the proof of (5.3) give the desired 
result, upon which we shall comment after a sketch of the proof. We apologize in 
advance for the sketch which follows, which can be made intelligent only by 
reading it with [10]; this results from our decision to document the assertions in 
as little additional space as possible ~ . 

Theorem 5. For fixed c~, 0 < ~. < 1, 

lim sup _+ [r (c~ n) - c~ r (n)] " o ,, qog///)2 log log n] 1/4. 

,~oo =[c~4+2c~3+c~? ~'4 P l .  (5.4) 

Moreover, 

limsup_+ sup [r(c(n)-~r(n)]/[2#n(iogn)21oglogiTj .... ~ 2 w p l .  (5.5) 
n ~ o o  0 < _ ~ < 1  

Proof of (5.4). Mainly, one studies the variations in 41 produced by both 
deviations U~,-c~ n and U , - n ,  rather than by just the latter as in (5.3). (Similar 
considerations have just appeared in [6b];  see also Section 6A.) For  the upper 
class proof, we use a LIL for linear combination of partical sums (which has an 
obvious extension to more than the two summands for which we state and use it): 

We simplify this discussion by using the same nongeometric n~ for upper class results, as in Theorem 1 
of [10]. (In the lower class proofs here and in Theorem 2 of [10], geometric n~ are used.) However, it 
should be noted that geometric n, can be used, both in [10] and the present paper, with corresponding 
changes in the values chosen on the bottom of p. 326 of [10] to apply Lemma 1 there. We also take 
this opportunity to apologize for the misprints in the Summary of [10], where # was erroneously 
defined as EX~ instead of as var(T~). 
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Lemma 7. For real constants a~ , a~ and c~, with 0 < c~ < 1, 

lira sup [a 1 (U, - n) + a~ (U, ~ - n ~)]/[2 fln log log n 31/2 

= [~(a~ + a~) 2 + (1 - ~) a221/2 wp 1. (5.6) 

This is proved in standard fashion, either by direct treatment of the rv in square 
brackets, or by approximating the event in question by a union of events which 
are quadrants in the space of {U, -U,~ ,  U,~}; a finite number of such events 
suffices by the marginal LIL's. For use in the upper class proof of Theorem 5, it 
is critical also to establish the analogues of the finer conditions used in (2.8) of [10]. 

We continue with the proof of Theorem 5. Using the {nr} of Theorem 1 of 
[10], if Uh, ~ -- h n r = u h [2fi n r log log n~] 1/2 for h = 1, ~, one computes the conditional 
probability of the event {141 (Th,) -- 41 (h n) l > (1 + 8 e) c h [2 fl n~ (log n~) 2 log log n~] 1/4 
for h n suitably close to h n r (made precise in (18)-(21) of [10]), h=  1, c~} to be 
<exp{-(l+20(logr)(cZ/lull+cZ/Lu~[)}.  A finite number of quadrants of the 
form {(xl, x,): •  _+x~>c~} with cf/rul[+cZ/[u~[=l covers the region 
_+ ( x , -  c~ xl) > ([ u~[ + e2 [u 1[)1/2 (1 + e) in the (xl, x,)-plane. Using (5.6) with a 1 = _+ 0~ 2 
and a~ = _+ 1, one obtains the upper class result. The lower class proof entails 
similar modifications of the proof of Theorem 2 of [10] ; it is important to under- 
stand that one works with u h which the Uh," oscillations exceed infinitely often, 
and then shows that oscillations in 4~ produced by these Uh occur for almost all r. 
One obtains - (1 -~) [c2 /u l  +c2 /u j  (log nr)/2 for the joint probability replacing 
(49); the detailed changes in definitions (38)-(39) require space which is not 
warranted here; one crucial change will be alluded to just below, since it reflects a 
difference between (5.4) and (5.5). 

Proof of (5.5). This turns out to be somewhat easier. The upper class result 
follows at once upon noting that the function [2fl n(log/,/)2 log log n]1/4 (1 +e) is in 
the upper class for each of 141 (U,) - 41 (n)[ and sup [41 (U~,) - 41 (c~ n)]. The crucial 

O<ct<l 
feature in the lower class proof, which can only be understood by reading [103 
in detail, is that when we vary e near 1 we no longer need (as one does in the 
lower class proof of (5.4)) the same i for the C'r,i,h associated with h=.l  and 
in the analogue of Q', of (39). The event C~hW / C' used instead yields, for r, i, h 
log P { C'~, i, h}, twice the value obtained just above for (49) as c~ ~ 1, and this yields 
the desired result. 

Remarks on Theorem 5. (1) Many applications (e. g., statistics of Kolmogorov- 
Smirnov type) can be phrased in terms of the deviations of G~-I rather than of G. 
For this purpose, Theorem 5 gives the asymptotic maximum deviation (wp 1) of 
m l / 2  [ G  n 1 ( t )  - -  t ]  - -  m 1/2 [41 (m t) - -  t 41 (m)], for a fixed t or for the maximum over t. 
(2) The weak law corresponding to the above is not difficult; that corresponding 
to (5.8) below is harder. The comments made in connection with Theorem 4 
indicate why it does not seem worthwhile to spend more space on this. (3) For the 
deviations of m 1/2 [ G  n ( t )  - -  t 3 - -  m- 1/2 [41 (m t) - t 41 (m)], there remains to be studied 
the difference 

R,(t) = m 1/2 [G,(t) - t] - m 1/2 It - -  G21 (t)], (5.7) 

which is the deviation between the sample df and sample quantile process first 
studied by Bahadur [13, and the exact behavior of whose oscillations was deter- 



Multivariate Skorohod Embedding 31 

mined for fixed t in [9] and for sup +_R,(t) in [11]. The oscillations of the latter 
l 

are of the same order as those of n -1/2 sup [r(en)-c~r(n)], but the constant on the 

right side of (5.5) gets replaced by 2 -~/4. From this, one obtains the result 

lira sup sup ]m 1/2 [G , ( t ) -  t] 
, 4 ~  , ( 5 . 8 )  

- m -  1/2 [-t ~1 (n) - ~1 (n t)] ] ~ I n -  1 (log n) 2 log log n] a/'~ = f2(1) wp 1. 

The upper bound part of (5.8) was given by Brillinger. His proof is certainly suc- 
cinct; however, we have given the present analysis, with a different breakup from 
that of [4] of the components of the difference of (5.8), because it may offer better 
insight as to the source of deviations. We now sketch very briefly how the somewhat 
complicated correct constant on the right side of (5.8) can be computed. Roughly, 
for the more difficult lower class proof, one notes that, with n,. ~ 7' and 7 large as 
in [11-], a deviation G,. (po)-  Po ~ +- Cpo [2n 71 P0 (1 - Po) log log n,.] 1/2 for infinitely 
many r produces a deviation of sup + Rnr (p) > (1 - -  •) el~ 2 [n,.(log n,) 2 log logn,] 1/4 

- -  PO 
[P-- PO[ < e  

for almost all of those r, wp 1. This and the proof of(5.5), which shows that values c~ 
near 1 are crucial for sup [r(~ n ) - e  r(n)], shows that the event 

{ sup +_R..(p)>c~v/o 2 [n.(log n,.) z log log n.] ~/4, 
] p - p o [ <  e 

sup _+ [r (~ nr) - c~ r (n,)] > 2 c I In, (log n~) 2 log log n,] } 

occurs infinitely often wp 1 if exp{-(1  +e)EcZ/lu~l+c~o/[upol] log r} is not sum- 
mable, where the uh's are exceeded infinitely often as normalized deviations of the 
Uh,., as in the proof of Theorem 5. Maximizing Cl/2-k2Cl subject to c2/[u~]+ 

Po 

C~o/[Uvo[= 1 - 2 e  involves solving a cubic, and then P0 must finally be chosen to 
give the overall maximum C* (say) of e~/o z + 2Cl, using Lemma 7 or quadrants for 
the Uh, .. The geometry of the quadrants for ~ deviations, used as in the proof of 
(5.4), makes the upper class proof follow for this C*. For fixed p the conclusion is 
simpler, since [9] R,(p) has smaller order than sup[r(en)-c~r(n)].  Thus, the 
upshot of this paragraph is, finally, 

Theorem 6. There is a positive constant C* such that 

lira sup sup Im t/2 [G. ( t ) -  t] 
. . . .  ( 5 . 9 )  

- m -  1/2 [t  ~1 (n) - ~1 (n t)] ] / [ n -  l (log n) 2 log log n] 1/4 = C *  w p  1 ; 

moreol)er, 

lim sup + {n 1/2 [G,(0 - t] - n -1/2 [t ~(n) - ~l(n t)]}/[2/~ n(log n) 2 log log n] 1/4 
" ~  ~ ( 5 . 1 0 )  

= I-t4 + 2t 3 + t ]  1/4 wp 1. 

Remark (4). For application to distribution-free functionals, the results as 
stated in Theorems 5 and 6 suffice. For other functionals (e.g., linear combinations 
of sample quantiles, as mentioned in Remark 2 to Theorem 4), corresponding 
results can be stated by transforming from uniform rv's s as in [93 and [11]. 
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In the next section we shall return to Breiman's representation in conjunction 
with Miiller's proof. 

6. Other Results and Possible Directions 

A. Theorem 1, or its analogue for the embedding of Lemma 2, implies that 
various results obtained by Strassen [21, 22] from his strong invariancr principle 
for sums of iid random variables from corresponding Brownian motion results, 
have analogues for the sample df process (1.3) in terms of ~*. Thus, if there were a 
simple Motoo-type proof of the upper-lower class results for r we would have 
an immediate proof of Chung's corresponding result for S,. Strassen's elegant 
characterization of the closure of the functions {n -1/2 ~ (n t), n~ Z +, t e l }  where ~t 
is standard Brownian motion in any number of dimensions, has no startlingly 
different counterpart for {n-1/2 4" (s, n t)} : as in [21], after dividing by (2 log log n) 1/2, 
one again obtains that the closure consists of integrals (now in s, t) of functions 
ofL 2 norm < 1, and this yields results for {n 1/2 ~(s, n t)} as mentioned at the begin- 
ning of this section. Such calcuh~tions can be viewed as extensions of those which 
appear in the proof of Theorem 5 and in Section 1.8 of [6 b]. For fixed t, the cor- 
responding closure and iterated logarithm results for {n 1/2 ~(s, n)} have recently 
been published by Finkelstein [6a], Recently Wichura [22a] has obtained very 
general results which include Strassen-type conclusions for the sample df for 
vector rv's of any dimension r. Wichura's approach uses classical Kolmogorov and 
Hartman-Wintner approximation techniques rather than Skorohod embedding. 
While it does not yield explicit error estimates like ours, it appears much more 
expeditions for its purpose than the embedding techniques of the present paper, 
which can apparently be extended to higher dimensional cases (and to the in- 
dependent increment cases of [22a]), but which then require even lengthier calcula- 
tions than those herein. Bickel has recently applied an estimate with exponent 1/4 
(on n) replaced by 1/2(r+ 1) in Theorem 5, in connection with density estimation 
in dimension r. 

My belief is that techniques used in recent work of Nagaev will yield sharper 
estimates than those obtainable by embedding, especially in higher dimensional 
analogues of (1.6)-(1.11). 

Asymptotic properties of processes with multidimensional time are surveyed 
in depth in two papers of Pyke [14a, 14b], which also contain new results. The 
idea of using embeddings like the one arising from (2.2) surely occurred to Pyk~ 
and Root and to Brillinger, and probably to others. 

B. We have mentioned in Section 1 the limitations of Skorohod embeddings 
for the problems we consider, and we shall return to this in C below. Nevertheless, 
it may be worthwhile knowing how far such methods can be pushed. There is 
certainly no obvious invitation for improvement of the exponent 1/6 in our proof 
of Theorem 1 and 2. On the other hand, it is conceivable that the exponent could 
be improved to 1/4 by either of two attacks. Firstly, it is clear from Mtiller's proof 
([14], p.207) that, if only one had suitable "exponential bounds" for adding his 
sample df embedding error ([ 14], p. 199), the exponent could be increased from 
1/6 to 1/4. We do not now see how to obtain such bounds; and in fact equation (4) 
of [14] uses a break-up in s the need for which might not be unrelated to ours. 
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Perhaps such bounds are more easity obtained for Breiman's representation, 
which, incidentally, can be used in place of Miiller's in the latter's proof outlined 
in Section 1. Secondly, the "near miss" of (2.4) offers some hope, in that the 
joint distribution for large m will be very close to normal; this embedding did not 
evidence ~ explicitly, but it does not have the disadvantageous delicacy of balancing 
errors from small B, in Lemma 1' against those from large B, in Lemma 4'. In- 
cidentally, Professor Mtilter has given convincing heuristics against the possibility 
of improvement beyond n -~/4, and in view of the comment below (1.11) this 
strengthens my belief, mentioned earlier, that Nagaev's approach witl yield more 
than embedding does for weak laws. 

C. We have described in Section 1 why the order of error in the results we 
obtain does not seem sharp. We now describe why we think this is inherent in 
vector Skorohod embeddings. The idea is explained in a remarkable trick of 
arithmetric extracted and simplified from Skorohod's proof [20], pp. 177-178. 
Suppose ~1 is a standard Brownian motion and we want to estimate P,= 
P{~(t)<g(t), 0<t< l+~ , , }  in terms of P{~(t)<g(t), 0 < t < l }  as e,,~0. One 
possibility is to begin by estimating the difference between ~1 (t) and ~1 (t (1 + e,))= 
~l(t') (say), and then estimating P, in terms of ~,(t'), 0 < t ' < l .  Since ~l(t)-  
~,a(t(1 +e,)) is E2p(e~/2), this last is a lower limit on the result. Skorohod avoids 
using this. Instead, he writes 

P~=P {(l +e,)-l/2 ~l(t(l +en))<(l +s,)-'/2 g(t(l +~,)). 0 < t < l } ,  

and then estimates the right side of the inequality as g(t)+O(e,), and this O(~,) 
then yields (with a logarithmic term) the final error. In Skorohod's context the 
e, corresponds to our n-l(z2-zO-tU{~)z2-1, which is Op(n-1/2). But in our 
vector embeddings of Sections 2.2 and 2,3 we do not have a single counterpart of 
(1 + e,) to use in Skorohod's manner. Rather, we have a different such value for 
each (z;_,, zi), and must thus use the first, inferior, arithmetical scheme, based on 
the differences q(zi_a,zi; (Zi_l- -Zi)  -1 U(zT) l, zi)--l~(Zi_l , Zi ; n), the counterpart of 
which is what Skorohod avoids. In the absence of the ingenuity to circumvent 
this difficulty, we cannot improve the exponent 1//4 of (1.7) by the Skorohod 
technique. 

D. If one is using a Skorohod embedding, say for iidrv's, should one use that 
of Skorohod, Dubins, Breiman, Hall, Root, or some other? If ~ is standard and T1 
is the Skorohod rv such that ~1 (T0 has the desired distribution of a given rv X l 
with EX, =0, EXZ=tr 2, EX~< 0% then all of the above methods have ET 1 = 0  .2 

and var(T 0 < oo, and in view of the results of [1t3] quoted in Section 5, and analo- 
gous weak laws such as [19], it seems desirable to use the method with smallest 
var(T 0. Intuitively, Root's nonrandomized stopping boundary (unique according 
to results of Loynes) would be guessed best, but we do not know how to prove this. 
However, an easy comparison of two of the methods is sometimes possible. 
Skorohod's method differs from Breiman's [3] except when X~ takes on only two 
values. Since the former chooses at random a pair of functionally related constant 
stopping bounds for ~,  while the latter chooses them with additional randomness 
so that they are not functionally related, we guessed the latter was inferior. To the 
contrary, a simple computation shows 
3 Z. Wahrscheinlichkeitstheorie verw, Geb., Bd. 24 
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T h e o r e m  7. I f  X 1 has a symmetric law and EIXll '=vr,  then 

ET12, BRahMAN = [ V 4 + 
4V2 

V~ ]/3<=5vJ3=ET12'sK~176176 (6.1) 
!) 3 

with equality if and only if IXll takes on only one nonzero value. 

T h e  supe r io r i t y  of  B r e i m a n ' s  m e t h o d  is ac tua l ly  s o m e w h a t  m o r e  g e n e r a l  t h a n  

for  s y m m e t r i c  X 1 . T h e  s u p r e m u m  of  the  ra t io  o f  the  two  sides of  (6.1) is o f  cou r se  5. 

(Sawyer  [19]  has  g iven  b o u n d s  on  ET~,sK in general . )  S h o u l d  (6.1) shake  one ' s  

i n tu i t i on  tha t  R o o t ' s  least  r a n d o m i z e d  T~ is best?  
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