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On Strassen's Version of the Law 
of the Iterated Logarithm for Gaussian Processes 

HIROSHI OODAIRA 

1. Introduction 

In [8] Strassen presented the following version of the law of the iterated 
logarithm for the Brownian motion process {B (t, co), 0_<_ t < oo }. Define, for each co, 
a sequence of functions {f, (t, co), n > 3} in C [0, 1] with the usual sup norm [l" Ilc by 

f,(t, co)=B(nt, co)/(2n log log n) ~, 0_<t-< 1, n=3,  4, .... (1) 

Let K be the set of all absolutely continuous functions hsC[O, 1] such that 

1 
(dh/at) 2 at<= 1. 

0 

Theorem (Strassen). For almost every (a. e.) co, the set of limit points of the 
sequence of functions {fn(t, co), n> 3} coincides with the set K. 

Basing on this theorem and making use of Skorokhod representation theorem, 
Strassen further proved an invariance principle for the classical law of the iterated 
logarithm. Later Chover [21 gave a proof of Strassen's main result by using 
Esseen's estimate for the central limit theorem. An extension of the result to some 
classes of stationary random sequences satisfying mixing conditions has been 
given in [7]. 

The purpose of this paper is to generalize the above theorem of Strassen to 
a certain class of Gaussian processes including the Brownian motion process. 
Observe that the set K appearing as the set of limit points of {f,,(t, co)} is the unit 
ball of reproducing kernel (r.k.) Hilbert space corresponding to the Brownian 
motion process. Thus, if we consider an analogous sequence of functions {f,(t, co)} 
for a Gaussian process {X(t, co), 0_<_t <oo}, then we might expect that the set of 
limit points of {s co)} is characterized as a bounded set K of the r.k. Hilbert 
space corresponding to {X(t)}. In this paper we shall show that this is indeed the 
case under some conditions on {X(t)}. Precise statements of conditions and results 
will be given in the next section. 

2. Results 

Let {X(t, co),O<t<oo} be a separable, measurable, real valued Gaussian 
process defined on a probability space (f2,~,P), with X(0)=0, EX(t)-O and 
covariance kernel R (s, t)= EX(s)X(t). Put a 2 ( t )=R (t, t). 

The followint conditions will be assumed. 
20* 
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Condition (I). For any T > 0, there exists a positive, nondecreasing function 
g(h, T), h>0,  such that 

]R(t+h,t+h)-2R(t+h,t)+R(t,t)[=<g(h,T)~O as h ~ 0 ,  
(2) 

for all t, t + h E [0, T], 
c~ 

{g(1, T)} -~ S g~(e -u2, T) duN C<oo, (3) 
i 

and 
a2(T)/g(1, T)Too as T ~ .  (4) 

Condition (II). There is a positive function v(r), r>0,  such that v(r)T~ and 

R(rs, rt)=v(r)R(s,t) for all r>O,s,t>O. (5) 

Condition (II'). R (s, t) has a representation of the form 
S A t  

R (s, t) = ~ Q (s, 2) Q (t, 2) d,t, 0 =< s, t < oo, (6) 
0 

t 

where ~ Q2(t, 2) d2< oo for all t>_0 and there is a function u(r) such that Q(rt, r2) 
0 

--= u (r) (2 (t, 2) for all r > 0, t, 2 > 0 and v (r) = r u 2 (r)T oo as r ~ 0% and further 

6 

sup ~QZ(t,,~)d2--,0 as 3 ~ 0 .  (7) 
O<t__<l  0 

Examples. Gaussian processes having covariance kernels 

S A t  

R(s,t)= S (s-J')~(t-2) 13d2, - 1 / 2 < f l < o o ,  (8) 
0 

satisfy Conditions (I) and (II'), and hence (II). This class includes the Brownian 

motion process {B(t)} (with fi=0) and the process B(u)du (with f i=l) .  

Similarly, processes with Q (t, 2) = p (t) q (2), e. g., p (t) = t, q (2) = 1, satisfy Conditions 
(I) and (II'). Processes with stationary increments having covariance kernels 

R(s, t)=(�89 0<c~<2, (9) 

satisfy Conditions (I) and (II). 

Remark. Under Condition (I) processes {X(t),O<t<T} have continuous 
sample paths a.e. for any T >0  (Fernique [3]). 

Define, for each coef2, a sequence of functions {f,(t, ~o), n>3} in C[0, 1] by 

f,(t, cn)=X(nt, co)/(2aZ(n)loglogn) ~, 0<_t<l ,  n=3 ,4 , . . .  (10) 

Let H(R1) be the r. k. Hilbert space with reproducing kernel (r. k.) R (s, t), 0 < s, t < 1. 
We refer to Aronszajn [1] for the theory of reproducing kernels. Define the set K by 

K= {heH(RO[ Ilhllu < l/a(1)}, (11) 

where ]]. [], denotes the norm of H(R1). Note that H(R1)c C[0, 1] since R is as- 
sumed to be continuous. 
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Our main results are the following: 

Theorem 1. I f  Conditions (I) and (II) are fulfilled, then, for a. e. co e ~2, the sequence 
of functions { f ,  (t, co), n > 3 } is equicontinuous. 

Theorem 2. Under the same assumptions as in Theorem 1 the set of limit points 
of the sequence of functions {f,(t,  co)} for a.e. co is contained in the set K. 

Theorem 3. I f  Conditions (I) and (II') are satisfied, then, for a.e. co, the set of 
limit points of {f,(t, co)} contains the set K. 

From Theorems 2 and 3 we have 

Theorem 4. I f  {X(t, co)} satisfies Conditions (I) and (II'), then, for a.e. co, the 
set of limit points of {f,(t,  co)} coincides with the set K. 

3. Proof of Theorem 1 

The proof is similar to that  of Chover [2] except a use of Fernique's lemma [3]. 
We show that  for any e > 0 there is a 3 = b (e)> 0 such that for a.e. co and for some 
integer N = N(co)> 3, we have 

If,(t, co)- f , (s ,  co)[ <e  (12) 

if [ t -  s] < 6 and n > N. Let q = q (~) be an integer, which will be specified later on, 
and put 6 (e)= 2 -q. F rom the definition o f f , ,  (12) may be written as 

[X(n t ) -  X(n s)l< e (2 a 2 (n)log log n) ~, 

where I t - s l  < 6 =  2-q, O<=t,s<= l. 
Let 

A,={col sup IX(n t ) -X(ns ) l>e(Ra2(n ) log log@-} .  
I t - s l < 2 - q  
O < s , t < l  

(13) 

(14) 

(15) 

Then it is enough to prove that  P(lim sup B~)=0. Let 

C~= {co I sup I X ( t + h ) - X ( t ) l > e ( 2 a 2 ( T ) l o g l o g U )  �89 } 
0 < h < 2  r+ l  q 

O<=t<t+h<2 r+l 

and 
C~)={co I sup I X ( t + h ) - X ( t ) l > ~ ( 2 a 2 ( T ) l o g l o g  2r)~}, 

t , t+hel (r ,v )  

where 
I ( r , v ) = [ ( v - 1 ) u - q + l , ( v + l ) U - ~ + i ] ,  v =  1 , 2 , . . . , 2 q - 1 .  

(16) 

(17) 

Since B r ~ C r 
2q--1 

U C~ ~', it suffices to show that for each fixed v P(lim sup C~ ~)) = 0. 
v = l  

B~={co[ max sup q[X(nt ) -X(ns) l~e(2az(2~) loglogU)~} .  
2~=<n<2 ~'+l ] t - s [ < 2 -  

O=<s,t=<l 

It suffices to show that  P ( l i m s u p A , ) = 0 .  Consider the subsequence {n~=2 r, 
r > max (q, 3)} and let 



292 Hiroshi Oodaira: 

Let 
D~)= {co [ s~p )IX(t) - X(tOI > (e/2)(2 a 2 (2") log log T)~}, (18) 

where t~=(v-1)U -q+l. Then we have P(C~))<2P(D~V)). To evaluate P(D~ ~)) 
we need the following lemma due to Fernique [3]. 

Lemma (Fernique). Let {Y(t), 0=<t=< 1} be a continuous, separable, real valued 
Gaussian process with mean zero and continuous covariance F (s, t). Suppose that 
E { Y( t ) -  Y(s)} 2 <= ~2 ( l t -  s]) and that ~P(h), h >= O, is positive and increasing. Then 
for all positive integer p and all x >->_ (1 + 4 log p)+, we have 

P Ilgllc>X IlFllc+4~tP(p-"2)du ~4p 2 e-U2/2du, (19) 
1 

where II" Ilc is the sup norm. 

Remark. A similar probability bound obtained by Marcus [6] may also be used. 
To apply Fernique's lemma, let 

Y(s)=X(s. 2r-q+2 + tv), 0_<s_<l. (20) 
Then 

E { Y(t)- Y(s)} 2 =E{X( t .  2 r-q+2 +tv) -X(s .  2 r-q+2 + tv)} 2 

( t + ~ ,  v - 1  =v(T_q+2){ R v - 1  t + ~ )  

v-1 v-1 s + ~ ) }  s ( s + ~ ,  v - 1  + ~ - - )  +R - 2 R  ( t + ~ ,  v - 1  

<=1)(2 r-q+2) g(It-- Sl, 2 q-l) 
and 

(21) 

IF(t, s)[ < {E [X(t T -q+2 + 2 * 2 * �9 t~)-X(6)] }~{E[X(s. T-q+2+ = t,)-X(t~)] }3 

[ v + l \  [ v + l ~  
<v(T-q+ 2)g~ It ' ~ }  g+ ~s, ~ ]  

<v(2~-q+2) g(1,2a-1). 

(22) 

Hence we have 

P ( W  )) = {~ [ II Y II c ~ (e/2)(2 a 2 (29 log log U) 4} 
c o  

<4P 2 S e-"2/2 du, 
Yr 

where 

y~ = (e/2) (2 log log 2r) } {a (2") v--~ (T -q+2) g-4 (1, 2q- 1)} 

�9 l+4v-~(2"-q+2)g-~(1,2q-1)Sv~(2r-q+2)g-~(p-"2,2q-1)du . 
1 

(23) 

(24) 
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By the assumptions (3) and (5), 

1 + 4g-~(1, 2 q-l) S g~ (P-"~, 2q-1) du 
1 (25) 

=l+4g-~-(1 ,2q-1)( logp)-~  ~ g~(e-"2,2q-X)du 
( l o g p ) � 8 9  

= C 1 < ~  

and a(2") v-~(2 r-q+2) g-~(1, 2q-1) = a(2 ~-2) g-~(1, 2q- 1), and hence 

y r = ( e / 2 C 1 ) { a ( 2 q - 2 ) g - ~ ( 1 , 2 ~ - l ) } ( 2 1 o g l o g 2 r ) ~  as r ~ .  (26) 

Choose q sufficiently large such that 

(e/2 C1) z a 2 (2 q- 2) g-  1 (1, 2 q- 1) = e' > 1, (27) 

which is possible because of the assumption (4). Thus we have 
~3 

P (C~ ~)) < 8 pe ~ e- ,2/2 du < C' (log 2 r )- ~' < C" r -  ~' (28) 
Yr 

and ~ P(C~ ~)) < ~ .  Hence, by the Borel-Cantelli lemma, P(lim sup C~ ~)) = 0. This 
r r 

completes the proof. 
The following corollary can be proved in a similar way as Corollary 2 of [2], 

and hence the proof is omitted. 

Corollary. For any ~ > 0 there is a 6 = 6 (e) such that for a.e. co and for some 
integer N =  N (e) we have ]1 f , , - f ,  llc <~ for all m, n > N with 11 -(m/n)[ < ~. 

4. Approximation Lemma 
To prove Theorems 2 and 3 we shall approximate a subsequence {f,r(t, O9)} 

by a sequence of functions in H(R1) obtained by taking partial sums of norm con- 
vergent expansion of {X(t)} (see [4], [-5]). The key lemma is the following Lemma 1. 

Consider the r.k. Hilbert spaces H(R1) and H(R,) with r.k. R,=R(s ,  t), O<s, 
t < n. From the assumption (5) it follows that 

(R (, ,  n t), R (, ,  n s)), = R (n t, n s) = v (n) R (s, t) 

=v(n) (R( . ,  t), R(. ,  s)) 1 (29) 

=(v~(n)R(. , t ) ,v-~(n)R(. ,s)) l  for 0<s ,  t < l ,  

where ( . , . ) 1  and ( . , . )n  denote respectively the inner products of H(R1) and 
H(Rn). (29) implies that there is an isometric isomorphism 0, from H(R1) to H(R,) 
such that 

O,(v~(n)R(. , t ) )=R(*,nt) ,  0_<t_<l. (30) 

Note that for any heH(R1) 

0, h (n t) = (0,  h (,), R (,, n t)),  

= v~(n) (h(.), R(. ,  t)) a (31) 

=v~(n)h(t) for 0 < t < l ,  
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and if {e j ( . ) , j= l ,  2, ... ,J} is a system of orthonormal functions in H(R1), so is 
{enj(*)=O . ej(*),j= 1, 2, ..., J} in H(R,). 

It is well known that there is an isometric isomorphism between H(R,)  and the 
closed linear manifold L 2 (X) spanned by {X(t), 0 < t < n}, and if ~, j , j  = 1, 2 . . . . .  J, 
are the random variables e L z ( X )  corresponding to orthonormal functions e,j(.), 
j = 1, 2, ..., J, then ~,j are independent and normally distributed with mean zero 
and variance one. 

Lemma 1 (Approximation Lemma). Suppose that a sequence of  families of  
orthonormal functions {e}k)(.), j =  1, 2, ..., Jk < ~ } ,  k = 1, 2 , . . . ,  in H(R1) satisfies 
the following condition: 

R (t, s~ sup t ) -  ~ {ef)(t)} 2 0 as k ~  0o. (32) 
O < t < l  j = l  

Let {~k)} be the Gaussian random variables corresponding to {e~](*)=O,e}k)(*)}. 
Then, for any geometric subsequence of  indices {n~= [Cr], C> 1} and any e>O, 
there exist for a.e. co some integers k o = k o (e) and r o = r o (e, co) such that 

f , ,(t ,  co)- J~ ;(k) (co )(t) < (33) sup (2(72 (1)log log nr)-~ E ~,~j. )e~ k e 
O=<t__<l j = l  

for all k >= k o and all r >= r o . 

Remark. Let {ej( . ) , j= 1, 2 . . . .  } be any complete orthonormal system (CONS) 
k 

in H(R O. It is known [5] that the partial sums ~ e~ (t) converge to R (t, t) uniformly 
j = l  

in t~[0, 1]. Hence the condition (32) is satisfied for the families {ej( . ) , j= 1, 2, . . . ,  k}, 
k = l, 2, ..., and we have, for all sufficiently large k and r, 

-~ k ej(t) sup f , ,(t,  co)-(2a2(1)loglognr)  ~ , , j  <e.  (34) 
O < t < l  j = l  

Proof Let 

A~k)= co sup co)- (2az(1) loglognr  Z ~)(co)e~k)(t) >=e 
O_<t<_l 

_ _ j = l  
(35) 

= {col 0__<t__<,sup v- '(n~)X(n~t)-~ j=a~"~jejSk y(k) (k)(t)..[=> e (2 a2 (1) log log nr 

and put 
Jk 

y2k)(t)=v-~(n~)X(nrt)_ ~" "~nrJ~J(~(k) p(k) t# ]\vl, O<t<l-- __ . (36) 
j = l  

Then EY,(k ) (t)= 0 and, noting that 

we have 

E { x  (n~ t) ~(k) ~ _ < R ( *, nr t), e(.k)j (*) >. = e.~(~) ( n r t) = v~ (nr) e} ~) (t), " ~ n r j .  - -  

J k  

F (k) (s, t) = E Y,(k)(s) Y(k)(t) = R (s, t) - Z e} k) (s) e} k) (t). 
j = l  

(37) 
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Since 
Jk 

E { yik)(t) - y(k)(s)} 2 = E {v- ~ (n,,) [X (nr t) - X (nr s)] }2 _ ~ {e}g)(0 - e} k) (s)} 2 
j = l  

< E {v- ~ (n~) [ x ( ~  t ) -  X(nr s)]} ~ 

and 

= R(t, t ) -  2 R(t, s) + R(s, s) 
~ g ( l t - s [ ,  1) 

(38) 

IF(k)(s, t)l ~ {F(k)(s, S)} ~ {F(k)(t, t)} ~ 

< sup F(k)(t, t), (39) 
0__<t<l 

we can apply Fernique's lemma to obtain 

P(A~k))<4p 2 ~ e -":/2 du, (40) 
y(k) 

where 

oo 

g~ (p ,1) du}-l. �9 (k) = e (2 a2 (1) log log n~)+{[ sup F(k)(t, t ) ]~+4 ~ -"~ 
Yr 0_<t_<l 1 

We may choose k and p sufficiently large such that  

(41) 

e '=e  2 a2(1)~[ sup F(k)(t, t)] ~ ~ ! _,~ t -1 fg~(p ,1)du  > + 4  1, (42) 
( 0 < t < _ l  1 ) 

because of the condition (32) and 

• --U2 �9 ~g=(p ,1)du=(logp) -�89 g~(e-"~,l)du~O as p ~ o o .  
1 (log p)�89 

Then 
P(A~k))< C(log cr)-~' = C' r -~' (43) 

and ~P(A~g))< oo for all sufficiently large k. By the Borel-Cantelli lemma we 
r 

obtain the desired conclusion�9 

5. Proof of Theorem 2 

Let K~ denote the e-neighborhood of K. To prove that  K contains all limit 
points of {f,(t, co)} it suffices to show that  for arbitrary e > 0  the sequence {f,(t, co)} 
ultimately lies in Kay. Consider a subsequence of indices {nr= [cr], c >  1}. Then, 
for any n, there are n r and nr+ 1 such that  n~<n<nr+~, and choosing c=c(e)  
sufficiently close to 1, we can make 11- (n/n~)[ arbitrary small. Thus, by Corollary 
to Theorem 1, it is sufficient to show that  the subsequence {f,r(t, co)} ultimately 
lies in Kz~. Then, by the remark following Lemma 1, it suffices to prove that  

k 

Z(t, co, k, nr)=(2 a2 (1)log log n~) -~ ~ ~,rJ(co) ej(t) (44) 
i=1 
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with a sufficiently large k ultimately lies in K~. Finally it is enough to show that 
]] Z U ~ < (1 + e)/~ (1) ultimately, for then (1 + e)- 1Z ~ K and since 

]lZ-(l +~)-l Zllc=e(l +e) -1 HZ]lc<e(l +e) -1 UZU~ sup R~(t, t)<=e 
o_<t_<l 

we have Z ~ K.. 

Let 
At= {~0[ IIZ (., co, k, nr)ll2 > (1 +e) = 0-- 2 (1)} 

={co j~,rj(~o)e~(.)~>(l+e)2(21oglogn~)} (45) 

={coj~l{~,rj(co)}2>(l+e)z(21oglogn~) }. 

If ~(x)  denotes the distribution function of z/-distribution with k degrees of 
freedom, we have 

P(A~) = 1 - ~ ((1 + e)2 (2 log log n~)) 

< C {(1 + e) 2 log log nr} k- 1 (log n~) -(1+~)2 (46) 

C' r  -(1+~)2, 

and hence, by the Borel-Cantelli lemma, P( l imsupA~)=0.  This concludes the 
proof. 

6. Proof of Theorem 3 

First we prove the sup norm compactness of bounded sets of any r.k. Hilbert 
space H(R) with continuous r.k. R(s, t), 0 <  s, t <  1, and hence, in particular, that 
of the set K. We shall write Q~ ~ ~2 if the difference Q2 - Q1 of any two kernels 
Q2 and Q1 is nonnegative definite and denote by II" II~) the norm of r.k. Hilbert 
space H(Q) with r.k.Q. 

Lemma 2. Let f s  C [0, 1] and f(s, t)=f(s)f(t), and let a be a positive constant. 
I f  F ~ a 2 R, then f s H (R) and II f I[ n(R) <= a. Conversely, if [[ f t[ mR) < a, then F ~ a 2 R. 

Proof. If F ~ a 2 R, then f e  H(F) c H(a 2 R) = H(R) (set theoretically) and 

]If lime) > [tf[[Fl~a2R) =a-1 [If[[//(g) (see [1]). 
Since 

f2 (t)= F(t, t)= [IF(., t)[] 2(F ) = [[ f( .)  f(t)[I 2(v)= f2  (t)[1 f 112(v), 

we have a -  1 [1 f [t n(g) < [I f I] mr) = 1. The latter half is obvious. 

Lemma 3. The set K,= {heH(R)[ [[hi[mR)<--_a} is compact in C[0, 1]. 

Proof The relative compactness of K,  is well known. That K,  is closed is 
easily shown by applying Lemma 2. 

To prove that K is contained in the set of limit points of the sequence of 
functions {f,(t, co)} for a.e. co, it suffices to show, because of compactness of K, 
that for any h e K and for any e > 0, there are, for a. e. co, infinitely many f,r (t, o)) in 
some subsequences {f,.(t, co)} such that I[f,-h]lc<3e. To prove it we shall 
approximate {f,~(t, co)} and h in the following way. 
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The assumption (6) implies that H(Ra) is isometrically isomorphic to the 
L2-space on [0, 1], L2[0, 1~, spanned by the family of functions {)~(t, 2)Q(t, ~), 
0_< t_< 1 }, where )~ (t, 2) = 1 for 2 < t and 0 for 2 > t. 

For any 0 < 6  < 1, define the kernel R~(s, t), 0<s ,  t<  1, by 

1 

R~ (s, t) = j" Z (s, 2) Q (s, 2) z (t, 2) Q (t, 2) d)~, (47) 
6 

and let 

R*(s,t)=R(s,t)-Ra(s,t), O<=s, t<l. (48) 

H(Ro) and H(R~) are isometrically isomorphic to the subspaces L~ [~, 1] and 
L 2 [0, 6] of L]~ [0, 1] spanned by 

{(1-)~(6,)o)))~(t, 2)Q(t, 2),O<t<l} and {Z(&2)z(t, 2)Q(t, 2),O<t<l}, 

respectively, and hence H(R 0 = H(Ra)@ H(R*). Take any CONS {e j(.)} in H(Ra). 
The convergence of ~ e~(t) to Ra(t , t) is uniform in te[0,  1], and also, by the 

j = l  

assumption (7), sup R~' (t, t) --+ 0 as 6 --+ 0. Therefore, first choosing 6 sufficiently 
0__<t__<l 

small and then taking a CONS {e j(.)} in H(Ro) and m sufficiently large, we can make 

sup R(t,t)- ~=l o~,_<1 e~(t) arbitrary small. Hence, by Lemma 1, for any ~>0 and 

for any geometric subsequence {n~ = [d] ,  c > 1}, we have 

f..(t, co)-(2a2(1)log log n~) -�89 ~ ~..s(co) ea(t) c<e (49) 
j = l  

for a.e. co and for all r sufficiently large. Let {e*(.)} be a CONS in H(R*). Then 

R~ (t, t) = ~ e* a (t) and h s K has the expansion 
i = 1  

h(t)= ~ h j e j ( t ) +  ~ h*e*(t) with 
j = l  i = 1  

hf+ ~ h*2 ~ l/a2(1). 
j = l  i=1  

m 

Let h,~(t)= ~ h~ej(t). Then 
j = l  

Ih(t)-hm(t)]< ~=~+lhjej(t) + i~__lh*e*(t) 

< 2 h~ ~ e~(t)+ ~'h .2 2 e * 2 ( t ) t .  
j = m + l  / j = m + l  X i = l  / H = I  l 

(5o) 

IIh-hm]lc<e. (51) 

Therefore, again choosing 6 sufficiently small and then m sufficiently large, we 
can make, for any e > 0, 
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Let 6 and m with a CONS {e j(.)} in H(R6) be so chosen that (49) and (51) hold. 
Then it is sufficient to show that for a.e. co there are infinitely many nr such that 

(2a2(1)1og ~ i~=lhjej(t) c log n~)- ~ ~,~j(co) e j ( t ) -  <e.  (52) 
j = l  

We take the subsequence of indices {nr= [(2/6)']}. 
Let 

{ m hjej(t) c< } A~= co (2a2(1)loglogn,)-�89 ~ ~,rj(co)ei(t)- ~ e (53) 
j = l  j = a  

and 

B~ j)= {col ]1 {~,rJ(co)- ~r (1) hj(2 log log nr) ~} ej(t)IIc < (elm)(2 o -2 (1)log log nr)~}. (54) 

Then A~= ~ B~ j~. Noting that Ilejllc <_ ]]ejllH sup R~(t, t)=o-(1), let 
j = l  O--<t-<l 

c ? =  {co I I ~.#co)- o (1) h j(2 log log n~)-~ [ < (~/m)(2 log log n~)~}. (55) 

Then B(/)~ C~ j), and hence it is enough to show that for each fixed j, l<j<m, 
P(lim sup C7))= 1. 

Let {(pj, j =  1, 2, ..., m} denote the orthonormal functions in L]~[6, 1] cor- 
responding to {e j(.), j =  1, 2, ..., m}. Then 

t 

ej(t)=v (n,) ~ ~ojQ(t, 2)d2 e~j(nrt)=v~(nr) 
0 

nrt 

(56) 
0 

tlrt 

= ~ n~ q)j(#/nr)Q(n~t,#)dg for O < t < l  
0 

Put ~o,,j (#)= n;- ~ q~j(#/n~), 0 < I~ < n,. (56) shows that ~o,~j (#) corresponds to e,r ~ (*) 
under the isometric isomorphism from H(R,,) to L~t o , 1, the L2-space spanned 
by functions {z(t,#)Q(t,#), 0 < t < n , } .  If p < r ,  L]~ [0,n:]  can be regarded as a 
subspace of L z [0, n~] in the obvious manner, and q),;j(#)corresponds to q)* j(#) = 
q~,~j(#) for O<#<n v and 0 for nv<#<=n ~. Accordingly, H(R,~)cH(RJ and 
e,~j( .)sH(R~) corresponds to 

nr  

e,*j(.) = ~ ~p* j(#) Q(., #) d#~H(RJ. 
0 

2 ~ L  z Therefore the random variable ~,~fiL,,(X) ,~(X) corresponding to en~j(. ) 
also corresponds to e*j (.) under the isometric isomorphism from H(R,~) to LZ}x). 
Now we have 

0 
tip np 

= S %J(#) ~o.##) d# = % n~)-~ ~ ~o~(#/~) q,~(#/n~) d# (57) 
0 0 

= %/~r)* ~ q~(,~) ~o~((,,d~r) ,~) d,~ 
0 

= 0 ,  
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since np/nr<6 and ~0j(2)=0 for 0_<2<6. Thus, for each j, l< j<m,  {~,.j} is a 
sequence of independent Gaussian random variables with mean 0 and variance 1. 

Let ~ denote the distribution function of standard normal distribution. We 
have 

p(C~ j)) = q~({cr (1) hj + (elm)} (2 log log nr) ~) 

-~b({a(1)  hj-(e/m)} (2 log log n~) ~) 

> ~({I cr (1)h;I + (2 e/m)} (2 lo8 log n~) ~) (58) 

~b(la (1) hi[ (2 log log n )1) 
r 

> C(log log n~) -~ exp(-[~r(1) hjl z log log n~), 

and, since a 2 (1) h~ < 1, 

P( C~ ~)) > C (log log nr)- ~ exp ( - log log n~) 

(59) = C (log log n~)--(log n~)-1 

= C'(r log r) -1 

and ~P(C~J) )=~ .  Since {C~ j)} are independent, by the Borel-Cantelli lemma, 
r 

we obtain P(lim sup QJ)) = 1. This completes the proof. 

The author wishes to express his sincere thanks to Professor G. Kallianpur for helpful discussions. 
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