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On Continuous Dynamic Programming 
with Discrete Time-Parameter 

MANFRED SCHAL 

1. Introduction 

A rigorous foundation of stochastic dynamic programming was given by 
Blackwell [2] and Strauch [11], who treated stationary models. The decision 
model which is taken as a basis of the present work is a slight generalization of 
the model of Blackwell and Strauch allowing the discount factor to depend on 
the state of the system and the selected action. Thus we include models arising 
from Markov renewal processes or semi-Markoff processes, respectively, as well 
as from stopping and search problems. This model is a special case of a non- 
stationary decision model as defined by Hinderer [5], but preserves the stationary 
structure of the model of Blackwell and Strauch. Thus, on the one hand a series 
of results obtained by Hinderer [5] and [6], e.g. the universal measurability of 
the optimal return and the validity of the optimality equation, apply to our 
model. On the other hand, results of Blackwell and Strauch ([2, 3, 11]) concerning 
the stationary character, e. g. the optimality of stationary plans, can be generalized 
to our model by using many of their ideas. In [9] it was investigated to what 
extent it is justified to confine ourselves to stationary plans. The main purpose of 
the present paper is to give sufficient conditions for the existence of optimal and 
e-optimal plans. We assume the reward, the discount factor, and the transition 
law to depend continuously on the actions. Then, under certain convergence 
conditions on the expected total return under admissible plans, there exists a 
stationary e-optimal plan and, if moreover the sets of admissible actions are 
compact, there exists a stationary optimal plan. Similar results were obtained by 
Maitra ([7, 8]) who on the one hand presumes a weaker form of continuity (more 
precisely the upper semi-continuity) but on the other hand assumes the reward 
and the transition law to depend continuously on both the states and the actions. 
As to the convergence conditions imposed on the expected return, we will 
essentially treat the negative bounded case (in the terminology of Strauch). 
However the assumption that the reward is negative will be generalized to a large 
extend, thus including the so-called discounted case. These conditions were found 
by Hinderer in [6] for the more general non-stationary model and were adjusted 
to the model of the present work. 

2. The Decision Model 

The decision model is a tupel ((S, ~), (A, 9.1), D,p, q, ~, r) of the following 
meaning: 
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(i) (S, ~) stands for the state space. (S, ~) is assumed to be a standard Borel 
space, i.e. S is a non-empty Borel subset of a Polish (complete, separable, metric) 
space and ~ is the system of all Borel subsets of S. 

(ii) The standard Borel space (A, 92[) is the space of actions. 

(iii) De ~ | 9.I is assumed to contain the graph of a measurable map of S into 
A. D s, the section of D at s, is called the set of admissible actions if the system is in 
state s. 

(iv) p is a probability measure on S, the so-called initial distribution. 

(v) The so-called transition law q is a transition probability from S x A to S. 
q(s, a, ") is the distribution of the state next visited by the system if the system is 
in state s and the action a is taken. 

(vi) fl is a bounded measurable map o r s  x A x S into the set of the non-negative 
numbers and can be interpreted as a discount factor. 

(vii) The reward r is an extended real valued measurable function on S x A x S 
such that 

~(s, a)=S q(s, a, dr) r(s, a, t) (2.1) 

exists for any seS ,  aeA .  

It is sufficient that q is defined on D and fi and r are defined on D x S; their 
definition can be extended to S x A x S in an arbitrary manner. 

We write H 1 =S , /4 ,+  1 = D  x/4 , ,  h e N  1. As usual, a randomized plan n=(n , )  
is defined as a sequence of transition probabilities n, from H, to A such that 
nn(Sl, a l , . . . ,  s,, Ds,)= 1 for any (s 1, aa, . . . ,  s , ) eH, ,  neN.  A deterministic plan is a 
sequence f = ( f n )  of measurable maps f , :  Hn---,A such that f,((s~, a 1 . . . . .  s,))eDs. 
for any (sl, a l , . . . , sn )EH, ,  n e N .  Obviously a deterministic plan can be de- 
scribed by a randomized plan n where the probabilities n,(h, .) are concentrated 
at the point fn (h). A plan n or f is called a Markov plan, if n n or f , ,  respectively, 
does not depend on (s> a 1 . . . . .  an_l). Thus, a randomized Markov plan n =  (n,) is 
given by a sequence of transition probabilities n n from S to A and a deterministic 
Markov plan f =  (s is determined by a sequence s  s, where 

DS= {g; g: (S, ~)  ~ (A, 9.1), g(s)eDs for s e S } .  

A deterministic Markov plan is called a stationary plan if f n = f  for some f e D  s 
and all n. For  such a plan (f,) we write ftoo). The initial distribution, the transition 
law and a plan a define a probability measure P~ on 

(H, g3)=(S x A x S x A x ...,  ~ | 1 7 4 1 7 4 1 7 4  

and therefore a random process (sl, al, s2 . . . .  ) (cf. I-5] p. 80). Sn and a n stand for 
the projection from H into the n-th state space and the n-th action space, respec- 
tively, i.e. the random variables g, and a, describe the state of the system and the 
action at time n. If the history of the system up to the (n+l ) - th  stage is 
(s1, al, ..., s,+~), then one will receive during the n-th time period 

r , (s l ,al  . . . . .  sn+l)=f l (s l ,a l ,  s2 ) . . . f l ( sn_ l ,a ,_ l , sn ) r ( s , ,a , , s ,+ l )  (2.2) 

i Let N denote the set of the positive integers. 
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(especially r 1 -=r). As the reward depends on the whole history at time n, the 
decision model cannot be regarded as a Markovian decision model in the sense of 
Blackwell and Strauch. 

3. Selection Theorem 

The proof of the existence of an optimal or e-optimal plan rests on a selection 
theorem which is proved in [10] and will be quoted below. The selection theorem 
will play the same role as the selection theorem of Dubins and Savage in the 
paper [7] of Maitra. A preliminary result for the proof of the selection theorem 
in [10] is the following lemma which will also be used in Section 5. 

Throughout  this paper, we shall make the following 

Assumption A. D S is compact for s~S or D s is closed for s~S and A is locally 
compact. There is a denumerable set A ' c A  such that A'c~ Ds is dense in D~ for 
any seS. (A' is independent of s.) 

Note that if A is assumed to be locally compact we still assume that A is 
separable. Then A has a countable base. The condition that A' c~ D~ is dense in D~ 
is likely to be satisfied in any practical problem. In the important case where 
Ds=A for s~S, AssumptionA is satisfied if A is locally compact. Then the 
separability of A ensures the existence of such a set A'. 

Lemma 3.1. I f  u is a real measurable functlon on D such that u(s, ") is con- 
tinuous for any s~ S, then sup u (s, a) is a measurable (possibly extended real valued) 
function on S. a~D, 

The proof of Lemma 3.1 rests on the fact that 

sup u(s, a) = sup u(s, a). 
a~Ds a~A'~Ds 

Theorem 3.2. Let u satisfy the condition of Lemma 3.1. 

a) I f  Ds is compact for scS, then there exists some f e D  s such that 

u (s, f(s)) = max u (s, a). 
aEDs 

b) I f  the function u(s,') attains its supremum on D s for s~S, then there exists 
some f ~ S s such that 

u(s, f (s))= max u(s, a). 
a~Ds 

c) I f  ~ is a strictly positive measurable function on S, then there exists some 
f ~ D s such that 

u (s, f(s)) > sup u (s, a) - e (s). 
a~Ds 

4. Convergence and Continuity Assumptions 

In this section we first introduce a condition which ensures that the decision 
model with infinite horizon can be approximated by a model with finite horizon 
in the following sense: the positive part of the tail of the total return can be 
neglected such that the method of proof described by Strauch [11] as "the method 
of improving the tail" is applicable. 
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We write a +- =max(0,  _+a) for any real a, 

R,. + = ~ r + and W,, + =sup E~(R,, +[~l). 
v = n  

Throughout  the paper (exept for Theorem 6.3 below), we shall make the 

Assumption B. Wl,+(s)< oo, W,,+ ( s )~  0 ( n ~  oo) for seS. 

Assumption B holds if the reward is negative of if the reward is bounded from 
above and the following condition K is satisfied. 

K: supE~(fl(~l,fil,gZ)...fl(~k_l,~k_l,~k)l~l=s)<l forsome k e N .  

As has been shown by Hinderer in [6], the total return R = ~ r v exists [SS, P~] for 
any plan re. Moreover, v= 1 

( i )  I~=-E~(RI~I) and I~=E~ r~l~ 
\ v = l  / 

are defined. I~(s) and I~(s) are the expectations of the total return or of the return 
up to the n-th stage if we start in s. By Lemma 4.2 in [9] we have (if we choose p 
as the probability concentrated at any point seS): 

Lemma 4.1. I,~-* I~ (n ~oo). 
If P and Q are two propabilities on (S, ~), we write ]lP-QI] for the total 

variation of the set function P - Q. Then ]l P -  Q II = 2 sup ]P(B)-  Q (B)[. Throughout  
this paper we make the B~| 

Assumption C. 1) ~(s, .) is a continuous function on D~ for seS. 
2) [Iq(s, a', . ) -q(s ,  a, ")ll ~ 0  as a ' ~  a for seS. 
3) fl(s,., t) is a continuous function on D~ for s, teS. 

In many practical problems r(s, a, t) does not depend on t, hence r=~.  If not 
so, a simple sufficient condition for Assumption C. 1 is the following: If r is bounded 
and r(s,., t) is a continuous function on D~ for any s, teS, then ~(s, .) is continuous. 
The proof is similar to the proof of Lemma 5.2 below. A well-known theorem of 
Scheff6 (cp. [1]) yields a simple sufficient condition for Assumption C.2: If the 
probability measures q (s, a, ' ) ,  a eD~, are dominated by a o--finite measure # (/, 
may depend on s), i. e. if q (s, a, d t )=p  (s, a, t) # (d t) for some non-negative function p, 
and if p(s, ", t) is continuous on D~ for teS,  then ~ [p(s, a', t ) -p(s ,  a, 01 #(dt)~O as 
a'--,a and hence ]lq(s, a', . ) -q(s ,  a,-)[] ~ 0 .  

It is clear that Assumption C is satisfied if A is countable. Then the sets D~ 
are compact if they are finite. Thus the results of the present paper can be regarded 
as a generalization of the corresponding results where A is assumed to be count- 
able or "essentially countable by some plan re" in the terminology of Blackwell [2]. 

5. The Operators L and U 

In this section we introduce some operators which are well-known in the 
theory of dynamic programming. We make use of the following notation. Let 
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supp (Q) denote  the support  of the probabil i ty measure Q on S. Then we write for 
an arbi t rary  function u on S 

Ilulls=sup {lu(t)l, t e  ~) supp(q(s, a, .))} 
a~Ds 

and define the set M of measurable function u on S by M = {u, [I u lts < ~ for s~S}. 
Obviously every bounded  measurable function is contained in M. In many  
practical problems, it may  happen that  for any s~S there exists a compact  set K* 
such that  q (s, a, K s) = 1, i.e. supp (q (s, a, .))  c K s for a ~ D s. Then for example 
every cont inuous function is contained in M. As usual we write Nult = sup l u(x)l 
for any extended real valued function u defined on any set X. x~x 

For  any u e M  we define 

Lu(s,a)=F(s,a)+~q(s,a, dt)/3(s,a,t)u(t) (s,a)eD 

Liu(s)=Lu(s , f (s)  ) f s D  s 

g u (s) = sup Lu (s, a). 
a~Ds 

We may interpret  Lu (s, a) as the expected return if we are in state s, take action a, 
and receive a terminal re turn of u (t) at the resulting state t. If in the above definition 
r is replaced by 0, then we write L and U, respectively. 

The following lemma interrelates the operators  L, U and L, U. It is easily 
proved by induct ion on n. 

Lemma 5.1. Let u, w M. 

(a) L~, (u+v)=L)u+L)v  if L ) u , L ) , w M  l<_v<n-1 ,  
(b) U"(u+v)<U~u+fT"v i fU~u , (2~veM l<_v<_n-1. 

Further ,  we can prove 

Lemma 5 . 2 . / f  uEM, then Lu(s, .) is continuous on D, for any ssS  and Uu(.)  
is measurable. 

Proof. In view of Lemma  3.1, it suffices to prove the continuity of Lu (s," i. Now, 

ILu(s, a)-Lu(s ,  a')l 

< 1~ q (s, a, d t) [-/3 (s, a, t) - / 3  (s, a', t)] u (OI 

+ I~ q(s, a, dr)/3(s, a', t) u( t ) -~ q(s, a', dr)/3(s, a', t) u(t)l 

<' . .+l lq(s ,a , ' ) -q(s ,a ' , ' )[I  11/311 Ilulls. 

F r o m  the dominated  convergence theorem it is clear that the first term converges 
to zero as a'--,  a. Also, by Assumpt ion  C.2, the second term converges to zero. 

6. The Functions v* and u~ 

As a consequence of Theorem 3.5 in Hinderer  [6] one obtains 
n _  /1 sup I ~ -  U O=:u~. (6.1) 

We are interested in the two functions 

uoo = li_m u,, v* = sup I= 
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and their relationships,  u, is the op t imal  return if we terminate  at the n-th stage 
with no terminal  re turn and v* is the opt imal  return f rom infinite stage play. It  
is known (cf. Theorems  3.2, 3.3 in Hindere r  [6] or T h e o r e m  7.1 in [9]) that  u,, 
nEN,  and v* are universally measurab le  and that  v* satisfies the opt imal i ty  
equa t ion  

v* = U v*. (6.2) 

Ano the r  opt imal i ty  equat ion is W, + 1, + = 0 W,, + which implies 

Wn+l, + =  [.~n W 1 ,  + . (6.3) 

(6.3) derives f rom Eq. (2.10) in Hinderer  [6] and is proved  by modifying the original 
decision model  such that  r v = 0 1 < v < n, n + 1 and rv = r + v > n, n + 1. 

Theorem 6.1. lim u, = uo~ exists and u~o > v*. I f  r is bounded or more generally 
/f [[u, lls<oe, s~S, n~N,  then u~ is measurable. I f  sup [[u, lls<oQ for s~S, then 
U uo <=uo~" 

Proof In order  to show lim u, = l im u,, we m a k e  use of 

sup u,<u,,  + Wm+~, +. (6.4) 
n>m 

By use of Assumpt ion  B, we conclude that  

lim u,, = lira sup u, 
m n>=m 

_<lim um+l im Win+l, + = l i ra  u,, 

which establishes the existence of lim u,,. Since I~<u,,  we know by L e m m a 4 . 1  
that  lim I~ = I~ < lira u, for any re, hence v* < uoo. If II u, [1~ < 0% s ~ S, n s N,  then it is 

easily established that  u, is measurable  on mak ing  use of  L e m m a  5.2. Hence  u~ 
is measurable .  If moreove r  sup II u,/Is < oo, then u~ ~ M. By means  of the domina ted  

n 

convergence theorem,  we finally obta in  

sup Lu~ (s, a) = sup (lim Lu, (s, a)) 
a a n 

_< lim sup Lu, (s, a) 
n a 

= lim u, + 1 (s), 
n 

hence U uoo < u~o. 

The  assumpt ion  sup Ilu, il~<oo, seS, is used in the present  paper  several 
n 

times. Therefore,  we give a sufficient condi t ion in the following 

L e m m a  6.2. I f  Hv*][s< oe and II WI,+[[~< oo, s~S, then sup [[u,[[~<o% s~S. 
n 

This l emma is a consequence of the following inequalities, which derive f rom 
T h e o r e m  6.1 and (6.4): 

W1, * >u,>uoo - W,+l, + >v*--  W1, + . (6.5) 
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The conditions of Lemma 6.2 are satisfied if r is bounded and condition K holds. 
The awkward case that Assumption B holds and II W~,+ IIs = ~ for some seS  is 
not likely to arise in any applications of the theory. If we know that ]l W1, + t] s < o% 
e. g. if r < 0, then it is clear that II v* Ils< ~ ira plan a can be found such that ]11~ IIs < oo. 

It is known that the functions u~o and v* are identical in the "positive case". 
This fact is generalized in the following theorem. It is to be noticed that the 
proof  of Theorem 6.3 will be carried through without use of Assumption B. 

Theorem 6.3. Suppose that W1, _ (s) < oo for s ~ S. 

(a) I f  sup F(s, a)>O for s~S, then u,~u~ = v* and v* is measurable. 
aeDs 

(b) I f  Wn,_(s)~0 as n - .oo  for ssS,  then uoo--v*. I f  moreover IJu,;-Ils<oo, 
n~N,  s~S, then v* is measurable. 

Proof. First we note that if for any measurable function u the negative part u -  
is contained in M, then U u is measurable by Lemma 5.2; for we can write U u = 
sup U rain (n, u). 

1! 

(a) By assumption we have UO=ul>=O so that U"ul>=U"O, i.e. u,+l>u ~. 
Since u~>__0, u~ is measurable for any n and hence u~ is measurable. It can now be 
shown as in Blackwell [3] that u~o is the smallest non-negative fixed point of U. 
To identify v* with u~, it suffices to show v*=>0. By Theorem 7.1b in [9] v* is a 
fixed point of U. Choosing p as the probability concentrated at s, we obtain from 
Lemma 4.2 in [9] that I :  ~ I~. Since I:__< un, we have I x __< Uoo for any ~z and hence 
v* ____u~o, as in Theorem 6.1. But uoo is the smallest non-negative fixed point so that 
v*=u~.  In order to show that v*_>_0, choose e > 0  and pick e,, n~N,  such that 

oo 

~. II/~ll~__<~. From Theorem 3.2 there exists some f~eD s such that r(s,f~(s))>= 
v = l  

sup r(s, a ) -  e, >= - e~. Proceeding inductively we obtain 
a 

I:--L~,... LfoO>__ - ~ II/~11'-1~__> - ~  where ~=(f,,A,f~,-..).  
i= l  

Now I~ -~ I~, so that I x > - e. Thus v* _-> - e for any e > 0, which completes the proof  
of (a). 

(b) The first assertion of (b) is Theorem 7.1 c in [9]. Now the fact that u y ~ M  
implies the measurability of u,+~, n~N.  Thus u~ is measurable. 

It is to be noticed that Assumption B as well as the assumption of Theorem 6.3 b 
are satisfied if r is bounded and condition K is satisfied, especially if we have the 
"discounted case". Using the terminology of Dubins and Savage [4] and Strauch 
[11] we say that U conserves v e M  if Uv>v.  Such functions are lower bounds for 
v* as is shown in 

Theorem 6.4. Suppose that U conserves v e M  and v<c W~,+ for some c>=O. 

(a) I f  D S is compact for sES, then there exists a stationary plan f(~l  such that 
b,~,>v. 

(b) For any e > O, there exists a deterministic Markov plan lr such that I x > v - e .  
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Proof (a) Referr ing to T h e o r e m  3.2 a, we know that  there exists some f ~  D s such 
that  

Lz v (s) = L v (s, f(s)) = max  L v (s, a) = U v (s) > v (s). 
aeDs 

Proceeding inductively, we obta in  by L e m m a  5.1 and Eq. (5.3) 

v<=L~v 

=e o+L" v 
O+c G + 

O" + 

=LoIO+c W,, + . 

N o w  the fact tha t  IYf 0 = I~,~ --* Iy~=, and W,, + ~ 0 implies v < Ii , .~. 

(b) Pick ~,, n e N ,  such that  ~ Llfill~G<e. By T h e o r e m  3.2c there exists some 
v = l  

f ,  E D s such that  L r, v > U v -  e, > v -  ~,. It  is easily established inductively that  

L f . . . L f v > v -  i II/~ll~-~ ~ -  ->v-~.  
v = l  

Paralleling the p roof  of  a), we finally obta in  I ~ > v - e  where n = ( f~ , f 2 , f z ,  ...). 

Corollary 6.5. I f  sup II u.ll. < ~ ,  s ~ S, and U conserves u~, then U u~ = u~ and 
Uov ~ V* .  n 

Proof By Theorem6 .1  we know that  u , ~ M ,  u~o>v*, and Uu~<uo~. On 
identifying v = u~ and c = 1 in T h e o r e m  6.4, however,  we have v* > uoo. 

7. Optimal Plans 

In this section, we shall give sufficient condit ions for the existence of an 
opt imal  plan. A plan n is called op t imal  if 1~ = v*. n is said to be e-optimal  for some 
~ > 0 i f I ~ > v * - ~ .  

Theorem 7.1. Suppose that v* is (Borel-)measurable and Hv*H~< ~ for s~S. 
I f  L v* (s, " ) attains its supremum on D s for s ~ S, then there exists a stationary optimal 
plan f(o~). 

Proof By L e m m a  5.2, we know that  L v* (s , ' )  is cont inuous  since v* ~M.  An  
appeal  to T h e o r e m  3.2 b proves  the existence of an f~  D s such that  L~ v* = U v* = v*. 
Proceeding inductively we obtain 

v* = L~ v* = L~ O + ~y v* 

= I~,~, + W,, +. 

Now,  the obvious  passage to the limit proves  v * <  ly~).  
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Note that Theorem 6.3 yields sufficient conditions for the measurability of v*. 
If we require that D~ is compact, Theorem 7.1 quarantees the existence of an 
optimal plan. We shall give here another proof which can be carried through 
without the assumption of the measurability of v*. It is clear, however, that the 
existence of an optimal plan (or more generally the existence of z-optimal plans 
for e > 0) imply the measurability of v*. 

Theorem 7.2. I f  D~ is compact and sup ][u,[[s<OO for s~S, then there exists a 
n 

stationary optimal plan f ( ~  and u~ = v*. 

Proof In view of Corollary 6.5 and Theorem 6.4, it suffices to prove that U 
conserves u~. Fix some s e S. By Lemma 5.2, the function L u,_ l(S,. ) is continuous 
for n > 2  and hence attains its supremum on D s in a,, say. Now there exists a 
subsequence (a,~) of (a,) such that a,~---, a~D~ (say). Set ~ = s u p  [[u,[]~ and choose 

n 

e>0.  Then there exists some v o such that for V>Vo [~(s,a)-g(s,a,~)[<e/2 and 

]lq (s, a," ) -q(s ,  a.~ ," )[I II/~ll +~ q (s, a, dr)[]~(s, a, t)-/~(s, a.~, t)l < e/2 N. 

These inequalities imply 

e 
ILu,,~_,(s, a)-Lu, , ._l(s ,  %)1 < ~ - + ~  [lu.~_lll <e .  

Thus, 
LUn~_l(S, a)> Lu.  _l(s, a.~)-e 

:-  g u n v _ l - -  e~-Un - - e .  

From the dominated convergence theorem we know that Lu.~_l (s, a) ~ Luo~ (s, a). 
Hence U u~ (s) > L u~ (s, a) > u~ (s) - e and, since e is an arbitrary positive number, 
u u~ (s) >= u~ (s). 

8. e-Optimal Plans 

Let c be any positive function on S. Then Ci(s)= ~ L~c(s)(where L~ 
v - -O  

can be interpreted as the total return under plan f ( ~  if we start in ~1 =s  and 
receive a return of c (~,) at the n-th stage independently of the action c~,. 

Lemma 8.1. I f  U conserves v e M  and v<=~/ W1, + for some 7>=0, then, for any 
positive function c on S, there exists a stationary plan f(o~) such that I:(~) > v -  C:. 

Proof From Theorem 3.2c we conclude that there exists some f ~ D  s such that 
L~ v > U v -  c, and hence L~ v > v -  c. By use of Lemma 5.1, it is easily established 

n - - 1  

inductively that L"f v > v -  ~ L~ c. We can now show exactly as in the proof of 
v = 0  

Theorem 6.4 that Ii(~ > v - C j.. 

Theorem 8.2. I f  r is bounded and condition K is satisfied then there exists a 
stationary e-optimal plan floo). 
20 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 21 
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Proof. It is easily established that the assumption imply that 

v=~ ~ 1 =sup ~ L )  <oe and ]]v*ll<oe. 
o 

From Theorem 6.3 b we conclude that v* is measurable. On identifying v = v* and 
c=e/V~ for any e>0,  we know by Lemma 8.1 that there exists some stationary 
plan f(~) such that 

If(~)>v * - ~  ~ L~r 1->_v*-e. 
m v=o 
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