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Compactness Conditions on Markov Semi-Groups 

J. R. CUTHBERT 

1. Introduction 

An earlier paper, [1], was concerned with the theory of strongly continuous 
semi-groups of operators {T t; t > O} satisfying the condition 

T t - I  compact for some t>0 .  (1) 

Let {Pt; t_>0} be a Markov semi-group of operators on 11; that is, {P~} is the 
semi-group formed by the transition probabilities of a time-homogeneous, 
standard, discrete state Markov process: let {P~} have infinitesimal generator A. 
Then it was shown in [1] that if {P~} satisfies (1), A is bounded, and in fact compact. 

It is natural to ask whether A must possess a corresponding compactness 
property when condition (1) is modified to 

Pt - k I compact for some k > 0 and t > O, 

or, more generally, 

Pt--diag{pll(t),P22(t), ...} compact, and infpu(t)>O, for some t > 0 .  (2) 

This paper is concerned with examining this question, in a rather more general 
context. 

In addition to using compactness, we introduce two other types of operator 
on 11, which we call the "sc" and "sc*" operators, defined in terms of the uniform 
convergence of the row and column elements of the operator to zero. We also 
define a class, 5 ~ say, of simple operators, containing, besides others, those 
invertible operators conformed like permutation operators. Then it is shown that, 
if {Pt} satisfies the condition 

P t - S  compact, sc, o r s c * f o r s o m e t > O ,  and SeSP, (3) 

then S is, apart from a possible finite number of terms, a diagonal operator, and 
the infinitesimal generator A is necessarily bounded, and satisfies an appropriate 
condition in terms of compactness, or the sc or sc* properties. 

2. Preliminaries and Results 

Throughout this paper we shall be concerned with a Markov semi-group 
{Pt; t>0} of bounded linear operators on the Banach space 11 of absolutely con- 
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vergent sequences: that is, the matrix Pt, t_>_ 0, consists of transition probabilities 
pi j( t) satisfying 

(i) pij(t)>O, and ~ p ~ j ( t ) = l  forall  t>__0; 
J 

(ii) Pij(S+t)=~Pik(S)Pkj( t  ) for all s, t_>0; 
k 

(iii) tlim+p~j (t) = 6ij. 

Pt acts on the space 11 according to the formula 

[P, x]~ = y~ xi pie(t), x ~ 11. 
i 

It will be assumed throughout that all operators act by right multiplication in 
this way. 

We recall that a bounded operator B =  [ b J  on In is compact if and only if 

lira sup ~ Ib~2l = 0  
n~oe  i j = n  

(see e.g., [4]). The compact operators form a closed two sided ideal in the algebra 
of bounded linear operators on 11. 

In addition to the compact operators, we shall use two other classes of operator 
on ll ; these are defined now. The defining property of the first of the classes, which 
we denote the "sc property", is a weakening of compactness. 

Definition. A bounded linear operator C = [cij] on 11 is said to be "sc" if and 
only if 

lim sup Ic~j-I =0 .  
j--, oo i 

That is, the sc property is equivalent to the uniform convergence to zero of 
the row elements of the matrix representation of the operator. Note that the 
sc operators may be characterised as fo l lows: - i f  7"1 denotes the space of elements 
of 11, with the topology induced by the supremum norm, then C o n  I 1 is SC if and 
only if C is a compact map from ll to I'1. 

The following properties of sc operators will be needed for the development 
of the theory. 

Properties of  sc Operators 

(I) The set of sc operators is closed under addition, scalar multiplication, and 
in the uniform topology. 

This may be verified easily. 

(II) I f  C is sc, and B bounded, then B C is sc. 

Take cj$0 such that sup ]cifl-__ c j; then lim sup I~  bik Ckjl <-lim 11B L[ cj = 0. 
J i k J 

(III) I f  C is sc, and B bounded, and such that in any row or column of B there 
are at most K non-zero terms, then CB is sc. 
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Take cj as in (II); let the row index of the first non-zero term in the j-th column 
of B be denoted by k (j). Then, since there are at most K non-zero terms in the 
j-th column of B, since ]bik]< IIBH for all i, k, and since ej is decreasing in L it 
follows that 

lira sup ]~Cikbkj[ =<lim K IIBII ck(j). 
J i k J 

It is now shown that, as j--~ ~ ,  k(j) ~ .  

If not, there exists N such that k ( j ) < N  infinitely often: hut this contradicts 
the fact that B has at most K non-zero entries in each row. 

Thus lim Ck(2)=0, SO CB is sc. 
j ~  09 

The sc operators form a one-sided ideal in the algebra of bounded operators; 
property (III) plays a crucial role in giving closure on the other side in the sub- 
sequent theory. The other special class of operators we consider, defined in terms 
of the transpose of the sc property, has even weaker closure properties. 

Definition. A bounded linear operator C = [ c J  on 11 is said to be "sc*" if 
and only if 

lim sup ]cij] =0.  
i j 

That is, the sc* property is equivalent to the uniform convergence to zero of 
the column elements of the operator. 

We establish some properties of sc* operators which will be required. 

Properties of  sc* Operators 

(I) The set of  sc* operators is closed under addition, multiplication, and in the 
uniform tlorm. 

This is easily verifiable. 

(II) I f  C is sc*, and D is a bounded diagonal operator, CD and DC are sc*. 
This too can be readily verified. 

(III) I f  B and C are sc*, so is BC. 

Take any e > 0; then there exists N > 0 such that 

]cij[<_e forall  i > N ,  a n d f o r a l l j .  
Then 

N - 1  

tZ  bj, C,k] <e IIBII + II CII Z lbjir, 
i i = l  

and the latter term on the right becomes arbitrarily small for large j. 

Having introduced the special types of operator to be employed, it is still 
necessary to introduce some further notation. 

Definitions. An "ar ray"  is defined to be an infinite matrix of zeros and ones; 
the class ~ of arrays is defined as follows: 

R e ~  if and only if R has exactly one non-zero entry in all but a finite number 
of rows and columns, and, in addition, an at most finite number in each column. 
19 Z. Wahrscheinlichkeitstheorie vervv. Geb_, Bd. 21 
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For R an array, the operator Pt (R) is defined by 

[Pt(R)]ij=Pij(t) for (i, j )ER ,  

[P~(R)]ij= 0 for (i,j)q~R, 

where "(i, j ) ~ R "  denotes " rij = 1". 

With these preliminaries, we can now define precisely the sense in which the 
compactness condition (3) holds. For simplicity we consider the condition as 
holding at time t = 1 ; this involves no real loss of generality, since we may change 
the time scale of the process by a constant multiple without altering its fundamental 
structure: we are then concerned with Markov semi-groups {Pt} satisfying 

(~) P1 -P1 (R) is compact, sc, or sc* for some R ~ ,  

and (4) 

(fl) inf pij(1)>O. 
(i, j ) E R  

Condition (fl) is necessary to prevent (~) holding in a trivial sense, in which case 
a completely different type of theory results. 

In the introduction, this compactness condition was described in terms of a 
class 5" of simple operators. We may define 9" as follows: a real, non-negative 
operator S=  [ s J  is in 5 P if and only if it satisfies the following two conditions: 

(~) there exists R ~  such that sij>O ~:~ (i, j ) ~ R ;  

(fi) inf sij> O. 
{(i, j): s l j  > 0} 

Then it is not difficult to verify that the compactness condition (4) holds if and 
only if 

t]1 - S  is compact, sc or sc* for some S e 5 ~. 

Note that ~ contains the operators k I, k > 0, and, more generally, the invertible, 
non-negative diagonal operators, which will prove to play a central role in the 
subsequent theory. 

One final piece of notation is needed before we can start to develop the theory 
of Markov semi-groups satisfying (4): 

we define the function pj(t), t>0 ,  as 

pj(t) = sup pij(t) 

Note that 
pj (s + t) = sup ~ Pig (s) Pkj (t) <= sup Pkj(t) = pj (t), 

i k k 

so that p~(t) is non-increasing. 
We are now in a position to investigate in detail the implications of the com- 

pactness conditions (4). The first result to be proved is a rather technical lemma, 
which is, however, of fundamental importance in the subsequent theory. 

Lemma 1. Let {Pt; t>=0} be a Markov semi-group such that condition (4) holds 
for the sc property. 
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Then there exists t~ >0, k~ >3, and a positive integer da, such that, if pi(s)>kl 
for some i > Y~ , and some s < h,  then 

pii(s)=pi(s), and Pki(s)<kt for k+i .  

Proof Define g = inf Pu(1). 
(i, j)~ R 

If the k-th row of R contains a unique non-zero element, denote its position 
by 2 (k). 

Take any kt such that 1 >k~ >max[�88 (1-g)] ,  and let e~ = g - ( 1 - k 0 .  
Since/]1 -p(R) is SC, there exists J2 (taken so large that all rows and columns 

of R after the J2-th contain a unique non-zero element) such that 

Pij(1)<81 for all j > J 2 ,  and ( i , j )r  (5) 

Since there are only a finite number of non-zero elements in each column of R, 
we may choose J~ >Jz such that, for all k>J i ,  2(k)>Jz.  

Then take q < 1 such that 

p. ( t )>kl  for all t < q ,  and i<J~. (6) 

Now suppose that there exists i>J~, s < q,  and states l, j, with l+j,  such that 
p.(s) > kl, pji(s) > kl : suppose, without loss of generality, that pti(s) > psi(s). Note 
that both I a n d j  are >J l :  for, suppose 1 is <J1; then, from (6), pn(s)>kl,  and so 
1 > p .  (s) + p .  (s) > 2 kl > 3, which is impossible; an exactly similar argument holds 
forj .  

Thus 

Then, 
g__< pjz(~)(1)----~ pjk(S) pka(j) (1 --S) 

k 

___< pj~(s) p i ~ ) ( 1  - s) + Y~ pjk(s) 
k ~ i  

= Psi (s) Pixu)(1 - s) + (1 - Pji (s)) 

< Pji (s) p~ ~, ~s) (1 - s) + (1 - k 0 .  

Po.u)(1)>=pu(s)pizu)(1 --s)>=pji(s) piz(j) (1 - s) > g-- (1 -- kl) = z 1 . 

But J>J1, so 2(j)>12: thus, by (5), (l, 2(j))eR; but this is impossible, since 
(j, 2(j))eR, 2(j)> Jz, and there is exactly one non-zero element in each column 
of R after the J2-th. 

Thus, for i > J  t, pki(s)>kl for at most one k for each s<t l .  
Now suppose that i>J~, and &(s)>kl ,  for some s<fi"  then, since Pi( ') is a 

non-increasing function, it follows that p~(t)>=p~(s), O<t<s .  By the preceding 
remark, there exists a unique k for each such t such that 

pi(t)-~pki(t), and Pli(t)<kl for a l l f~=k.  

Thus, by the continuity of the functions Pll (t), P i (t)=Pkl (t) for a fixed k, 0 < t <  s. 
Thus k = i, by standardness, and the assertion is proved. [Note that this lemma, 
and its proof, is reminiscent of the type of argument used by Speakman, I-3], in 
her Lemma 2.] 
19" 
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We recall that the infinitesimal generator A of the semi-group {Pt} is defined by 

A x =  lira t- l(Pt-1) x, 
t ~ O +  

for all x in l~ for which the limit exists. Boundedness of A is equivalent to the 
uniform continuity of the semi-group at the origin; in this case, 

Pt =exp(t  A), 

and A is the uniform limit of t - l (Pt- I )  as t ~ 0 + .  

The essential difficulty in establishing the results of this paper is to prove that 
A is necessarily bounded when {Pt} satisfies condition (4). This step is carried 
out in the following theorem, with the help of Lemma 1 : we are also able to deduce 
in this theorem that, if (4) holds, R must be a diagonal array, apart from a possible 
finite number of terms. 

As is a standard notation, the function g (t) is defined by 

g(t)=inf pu(t), t>O. 

Theorem 1. Let {P,; t_> O} be a M arkov semi-group with infinitesimal generator A: 
let R ~ ~ be such that 

(~) P~-P~(~) is so, 
(fl) inf Pij(1)>O. 

(i , j)~R 

Then A is bounded, and R is, apart from a possible finite number of terms, a diagonal 
array. 

Proof As in the proof of Lemma 1, let g = inf pij(1), and, if R has a unique 
(i, j )eR 

non-zero element in its j-th row, denote its position by 2(j). Since the postulates 
of the theorem are precisely those of Lemma 1, the lemma holds, and we take 
tl, kl and J1 to be as they appear in the statement of the lemma. 

Take a fixed integer n > 1 : 
let j be > J~ ; then, since each column of R after the J~-th contains a non-zero 

dement, it follows that pj(1)~g. 
Thus, since pj(.)is non-increasing, p j (1 -  n -z) ~ g. 
Take a fixed e in the range 0 <e  <g, and define the function ~(j) as follows: 

(j) is some integer such that p~ (j) j (1 - n - 1) ~ (g _ e): 

note that this is well defined for j>Jj  since p j ( 1 -  n-1)~g. Notice that, for any i, 

~(j)--i for at most (g-e) -1 values o f j .  (7) 

Now, from the properties of ~ ,  the domain of 2(~ consists of all but a finite 
number of states, and there exists a constant K', say, such that, for any j, 2 (o )= j  
at most K' times. By this remark, and (7), there exists J3 > J~ such that, 

for J>J3 ,  ~(J) is in the domain of 2, and 2 [~b(j)] >J1. (8) 
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The operator Q1/. is now defined as follows: 

[Q1/.3ji=0, J<-J3; 
-1 [Qi/n]ji=t~i~.[r n ), J >  Ja. 

Then the operator Q1/. has at most one non-zero entry in each row, and, by (7) 
and (8), at most (g -~ ) -SK non-zero entries in each column: further, the first J1 
columns of Qu. are zero. 

Now, since P1 -/]1 (R) is sc, 

P~(j) i (1) ~ 0 as i ~ oo through values other than 2 [q5 (j)], uniformly in j > J3. 

But, 
P4,(j) i(1) > Peu) j ( 1 - n-S) Pji (n-i) > (g - e) pji(n-  s), 

by definition of ~b. 

Thus pji(n -1) ~ 0 as i--+oo through values other than 2 [q~(j)], uniformly in 
J>J3 .  That is, since the sc property is not affected by the behaviour of any finite 
number of rows, 

P1/, ,-Qu. is sc. (9) 

Suppose now that, for some r >  1, P~/.-Q]/. is sc: then consider the identity 

P ( r  - -  t ~ r + l  r +i)/. ~11,, = PlI.(P~In-Q11.)+(P111.-Q1/,,) Qral,,. 

The first term on the right is sc by Property II of sc operators; the second term on 
the right is sc by Property III of sc operators, and the remarks above on the form 
of QI/.: thus, by Property I, 

g'lr +1 P(r+l)/n-- Ul/n is SC. 

Thus, using induction on (9), it follows in particular that 

P1-QT/,, is sc, 
and hence that 

QT/,,- ~ ~R) issc. (10) 

Q"a/. has exactly one non-zero element in each row with sufficiently large row 
index: it follows from (10) that, for large enough row index j, this element is in 
the 2(j)-th position, and, further, becomes arbitrarily close to pjau)(1). 

Recall the definitions of tl and kt in Lemma 1, and take e as before such that 
0 < e < g :  take n so large that 

k ~ < g - e ,  and n - * < q .  (11) 

By the preceding remarks, there exists N such that, for r > N, there is a non- 
zero element in the r-th row of QT/,,, and this element is greater than g - e .  

Take r > N :  then the non-zero element in the r-th row of Q~/. is of the form 

P~i, ( n - l )  Pil iz ( n -  1) �9 n - 1  "'Pi.-li .(  ), 

where, since the first J1 columns of Qs/, are zero, i k>J  1 for k =  1 . . . . .  n. By (11), 
at least one of the Pi~ , i, (n-1) is greater than k 1 . Hence, since n-a < fi, and ij > J1, 
it follows from Lemma 1 that i j_ i - - i / t h u s  is . . . . .  i, = r. 
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That is, the non-zero entry in the r-th row of Q1/, is the r-th entry, and 
p,, (n- 1) > kl : further, from the proof of Lemma 1, 

prr(t)>ki for all t < n  -1. 

Since this holds for all r > N, it follows that 

lira inf [g (t)] > kl, 
t ~O+  

and so, by a well known result of Reuter, (see, e.g., [2]), A is bounded. 

The assertion about the form of R follows immediately, either by taking 
powers of Q1/,, which we now know to be diagonal, apart from a finite number of 
terms, or on noting, by an elementary argument, that g ( t )>e  -+ llall t, and hence, 
in particular, g(1)> 0, and considering this in conjunction with the postulates of 
the theorem. 

This concludes the proof. 
As an immediate corollary, the following holds. 

Corollary. The conclusions of Theorem 1 are still valid if compactness or the 
sc* property replaces the sc property in the statement of the theorem. 

Proof It is trivial to verify that, if P~ -ptR) is compact or sc*, then/]1 -p(R)is  SC. 

The important part of Theorem 1 is the implication that A is bounded when 
the compactness conditions (4) hold: we have seen that the other assertion, on 
the form of the array R, can be made to follow as an easy consequence of this. 
Using the boundedness of A, and restricting attention to the diagonal case, as 
we are now justified in doing, it is not difficult to prove the following theorem. 

Theorem 2. Let {Pt; t > 0} be a M arkov semi-group with infinitesimal generator A. 
If 

(~) P1-diag {p11(1), P22(1), ...} is compact, sc or sc*, and 

(fl) g(1)>0, 

then A is bounded, and 

A -  diag {a 11, a2 2..-} is compact, sc, or sc* respectively. 
Further, 

and 
Pt - diag {P]I (1), p~ 2 (1), ...} 

P, - diag (Pl a (t), P2 2 (t) . . . .  } 

are correspondingly compact, sc or sc* for all t > O. 

Proof. (a) The result is proved first for compactness. 

By Theorem 1, A is bounded, and so g (t)> 0 for all t. 
Let D t =diag {Pll (t), P 2 2  (t)...}, and O A = diag {a11, a 2 2  . . . .  }.  Then, since 

plj(1)>pu(1 - n  -1) pij(n-1)>=g(1 - n  -1 ) pij(n-1), 

P~/,-Da/, is majorised, element wise, by a constant multiple of P~ -D1 ,  and so 

P~/,-D1/. is compact for all n >  1. (12) 
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Since A is the uniform limit of n ( ~ / , - I ) ,  and DA of n(D~/ , - I ) ,  as n ~ c ~ ,  it 
follows from (12) that A - D a  is compact, thus establishing the first assertion of 
the theorem. 

From the identity 

(P - Q)(R - S) = (PR - Q S ) -  Q(R - S ) -  (P - Q) S, (13) 

it is seen that if P -  Q and R - S are compact, so is P R -  QS. It follows readily from 
this, and (12), that 

P1 - DT/,, is compact for all n => 1. 

Thus, since Pt -D1 is compact by hypothesis, 

DT/ , -D~ is compact. 

But it is readily verified that 

D'~/,-D~ is compact 

.*~[p~j(1/n)-pjj(1)] ~ 0  as j ~ o o  

r  as j --. oo 

.*:~D~/,,-(DO v" is compact. 

Thus P~/,- (D~) 1In is compact for all n, and, by the identity (13) again, 

P, , / , -  (DO "/" is compact for all m, n. 

It follows, on taking uniform limits, that 

P , -  (D1) ~ is compact for all t > 0. 

It is a straightforward deduction from this that P t -  Dt is compact for all t > 0, 
on noting that the moduli of the elements of P~- (DO t majorise the elements of 
P~ -Dr .  

(b) The proof of the theorem for the sc and sc* cases is on exactly similar lines: 
while care has to be taken with use of the identity (13), it is not difficult to verify that 
the manipulations used in (a) can always be justified by means of the closure 
properties for sc and sc* operators outlined above. It is interesting to note that the 
above proof still holds in the compact and sc cases if(13) is replaced by the simple 
identity 

P R  - QS = P ( R  - S) + ( P -  Q) S, 

but that the weaker closure properties of the sc* operators necessitate the use of 
the more cumbersome identity. 

Acknowledgements. The author  is indebted to Professor J .F,C. Kingman  for advice and en- 
couragement.  

The work of this paper was done during the tenure of a Science Research Council Studentship. 



278 J.R. Cuthbert: Compactness Conditions on Markov Semi-Groups 

References 

1. Cuthbert, J.R.: On semi-groups such that T t - I  is compact for some t>O. Z. Wahrscheinlichkeits- 
theorie verw. Geb. 18, 9-16 (1971). 

2. Kendall, D.G.: On Markov groups. Proc. Fifth Berkeley Sympos. math. Statist. Probab. II, part II, 
165-174 (1967). 

3. Speakman, J.M.O.: Some problems relating to Markov groups. Proc. Fifth Berkeley Sympos. 
math. Statist. Probab.; II, part II, 175-186 (1967). 

4. Taylor, A.E.: Introduction to functional analysis. New York: Wiley 1958. 

Dr. J. R. Cuthbert 
Department of Statistics 
The University 
Glasgow, W.2, Scotland 

(Received October 25, 1970) 


