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On the Influence of Moments on Approximations 
by Portion of a Chebyshev Series 

in Central Limit Convergence 

C. C. HEYDE and J. R. LESLJE 

1. Introduction 

Let Xi, i = 1, 2, 3 . . . .  be a sequence of independent and identically distributed 
random variables with EXi=O and varX~=l.  Write F(x) for the distribution 

R 

function and f( t)  for the characteristic function of X~ and put S, = ~ X~. Then, 
i = 1  

x 

1 [. e__~,~du 
- 

as n---, c~. We shall herein be concerned with the influence of moments of X~ 
on the rate of convergence to zero of 

where 

Ak, = sup IF. (x) - Gk, (x)l 

1 k 
__ - � 8 9  2 

Gk, (x)-- ~b (x) + ~ e ~ Q~ (x) n-  ~ 
V Z T ~  s = i  

is a given portion of the Chebyshev series corresponding to the X i (see for example 
Gnedenko and Kolmogorov [2], Section 38), the Qj(x) being polynomials of 
degree 3 j - 1  whose coefficients depend on the first ( j+2)  moments of X i. Now, 
Cram& (see [2], Section45) has shown that for distributions satisfying the 
condition (C) (that is, l imsupr f ( t ) l< l  ) and if ElXilk+2<oo (k>l) ,  then 

t ~ o O  

Ak, =O(n-k/Z)) as n-~ o0. Furthermore, Ibragimov [4] has produced necessary 
and sufficient conditions, under (C), for (i) Ak,=o(n -k/2) ( k > l )  and (ii) Ak,= 
O(n-(k+a)/2), 0 < 6 < 1 ,  k > l ,  but these conditions are not in general moment 
conditions. We shall provide, also under (C), some necessary and sufficient 
conditions in terms of moments on the rate of convergence of Ak, to zero. 

In order to avoid presupposing the existence of moments of higher order 
than the second, we shall follow the formulation of [4] and prescribe an arbitrary 
numerical sequence /31=0, f12 = 1, f13, fi4, .... On the basis of this sequence we 
form polynomials Qk(X) in such a way that their coefficients are expressed in 
terms o f / ~ ,  ..., fik+z in the same way as the coefficients of the classical poly- 
nomials Qk(X) are expressed in terms of the cumuiants ~q, ..., ~ck+ ~ of X i. That is, 

.jk! \~ .  ] "'" \ ~ 1  H3a+'"+(k+Z)J~-l' 
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where the summation is over all non-negative solutions of j~ + 2ja +.. .  + kjk= k 
and H m (x) is the Hermite-Chebyshev polynomial 

d m 
Hm(x)=(_ Dm e~X 2 _  -~xz , d x  m e 

(Petrov [8]). Qk(X) will henceforth be interpreted in this way. 

Let ~a=O, c~ 2 = 1, %, c~4, ... be the "moment"  sequence corresponding to the 
"cumulant"  sequence ill--O, f12= 1, f13, f14, .... We shall establish the following 
results. 

Theorem 1. In order that 

n -l+(k+a)/z sup IF, (x ) -  Gk,(X)I < oo (1) 
n=l x 

where k is a non-negative integer and 0 < 6 < 1, it is necessary and for k = 0 or for 
distributions satisfying ( C) also sufficient that 

EIXi[k+2+~<oO and ~=EX[ ,  j = l ,  2 , . . . , k + 2 .  (2) 

Theorem 2. In order that the relation (1) hold, where 0 < 6 < 1 ,  it is necessary 
and for distributions satisfying ( C) or for k = 0  also sufficient that 

k+2(it)s  } 
f ( t)  = exp ~ Y' ~ i~-  fis + L t I k § 2 7 (t) , (3) 

~s=  2 S. 

where for A > O, 

i ly(t)l dt<oo.  (4) t--rVr- 

Unfortunately it has not been possible to treat the case 6 = 0  in general and 
then not without certain presuppositions on the existence of moments. In this 
case we find the following result. 

Theorem 3. Suppose ElXi[k+ 2 < oo where k is a non-negative even integer and 
aj=EX{, j = l ,  2, . . . , k+2 .  Then, for (1) to hold with c5=0 it is necessary and for 
k = 0  or for distributions satisfying ( C) also sufficient that EIX~I k+ 2 log(1 + [X~[)< oo. 

These theorems extend the work of Heyde [3] where the results for the case 
k = 0 were obtained. 

2. Preliminary Lemmas 

Lemma 1. Suppose E IXilr< oo for some integer r >-_ 2. Then f(t)  is representable 
in the form 

( (_, (i t) s 
f ( t )=exp~  2., - 5 -  G +  Itlr y(t)j (5) 

{.s= 2 S. 

where 7(t)=o(i) as t--*O and G denotes the s-th cumulant of X i. Furthermore, 
there exists an e>0  such that for 0 < t < e ,  I~(t)l>0 or I~(t)[-0. If  Iy(t)[=-O for 
0 < t < e, X i has a normal distribution. 
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Proof The representation in the form (5) with 7(0=o(1) as t ~ 0  follows 
simply from a Taylor expansion of logf(t) (e.g. [2], p. 64). 

Next, suppose ?( t)=0 for all te{tk} where {tk} is a sequence of non-zero 
real numbers converging to zero. Then, 

expls=pZ,2~G+[t]~7(t) =exp s ~ 2 ~  G (6) 

for all te {tk} and applying Theorem 4.2.1 of Linnik [5], we have that (6) holds 
for all real t. However, this is impossible unless r = 2  since the left hand side 
of (6) represents a characteristic function and the right hand side does not, in 
view of Marcinkiewicz's Theorem (e.g. Lukacs [7], p. 147), unless r=2.  Thus, 
if r > 2  we must be able to choose e>0  so that ?(t) has no zeros in (0, e). If t"--2, 
on the other hand, either (6) holds for all t in which case ? (t)=-0 and X i has a 
normal distribution or Zero is not a limit point of a sequence of zeros of 7(t) 
and hence we can choose an interval (0, e) containing no zeros of ? (t). 

Lemma 2. Suppose E ]X i[r < oo for some integer r > 2. Then, f(t)  is representable 
in the form ti t~ s 

f i t ) =  ~, ~ # ~ + ] t ] r f l ( t )  (7) 
s=O S. 

where fl (t)= o (1) as t-~ 0 and #~ denotes the s-th moment of X i. Furthermore,for any 
A A 

A >0 and O< 6 < 1, the conditions ~ [fl(t)[ t -(1+~) dt < oo and S [7(t)[ t-(a+~) dr< oo 
0 0 

are equivalent, 7(0 being given by (5) and these conditions are in turn equivalent 
to ElXir+~< oo if6 >0, E[Xi] r log(1 + IX/I)< (30 i f r  is even and 6 =0. 

Proof Firstly, the representation off(t) in the form (7) with fi(t)=o(1) as t--, 0 
follows simply from a Taylor expansion off(t).  Also, from Lemma 3 of [4] we 
find that as t ~ 0, 

( i t F  ~ titF A .  
logf(t)- F, ~ G=f(t)-  y Y@-~+~( i t ) '+~+o( t~+~) ,  

s = 2  S. s = 0  S. 

where Ak+ 1 is a constant, so that 

i t l~,( t )=ltFfl( t )_~ /r+l 
i f + l ) !  

and we readily deduce the equivalence of 

A 

~[fi(t)[t-(l+~) dt< oo and 
0 

Now suppose that 

This implies 

18" 

(i t) r + 1 + o (t r + ~) (8) 

A 

j'lv(t)lt-"+~ dt< oo, 0<,5<1. 
0 

A 

I/3(t)l t - " + ~  d t  < oo. 
0 

A 

j ]Re f l ( t ) l  t -~1+~3 d t <  oo 
0 
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where Re denotes the real part and hence that 

a dt !Refi( t )  t -(1+~) < ~ .  

It is with this last condition that we shall work. We have 

ARefi(t) dt A 1 |  - ~ ( i tx)  s 

ARe / itx ~ ( i tx)  ~ 

= _~dF(x)!  ~ [e tr+O+,--*~O--~--"} dt (9) 

dt 

where R=[r /2 ] ,  the integer part of r/2. But, after two integrations by parts, 

R 2s . . . .  ( t x )  
A c o s t x -  ~ t - l ~  ~--g;Vi-~T ! 

s=0 ~,z.,S). ! 
J ' -  V+a+ 1 dt 
0 

- c o s A x -  ( - 1 ) s ~ )  x E ( - 1 )  * ( 2 s+ l ) '  s inAx 
s=0 s=O " 

( r+6)A  "+a 

[R--1 s A { Y ( -  1) (t x) 2s 
x2 S "s=O (2s)! 

-~ ( r + 5 ) ( r + 6 _ l )  ~ t r+a-1 

so that, recalling that E[X~lr< o% we must have using (9), 

( ~ 1 (  ([x)2S ~ 
oo ~ c o s t x -  - 1 ) s ~ !  

s=O 
_~x2 dF(x)! ff+5-1 

Continuing this reduction, we find ultimately that 

dt < - 0 f f + ~ + l - 2 R  O0 

which transforms to give 

oo (Alxl } S 1 - c o s ,  
--oo 1.0 ur+5+l_2 R du dF(x)<oo.  

Thus, if r is even, R = r/2 and 

(Alxl t 
- ~  l o  ut+~ du dF(x)<oo,  

(r +(~)(r +(5-- 1) A ,+a-1 

cos t x) dt, 

dt <oo. 

(lo) 
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while if r is odd, R = ( r -  1)/2 and 

oo ( AIx I } 
5 ixl,+a~ y 1 - c o s u  

-oo t o ue+a du dF(x)<oo. (11) 

(10) and (11) are clearly equivalent to EIXilr+a<oo if c5>0. On the other hand, 
when 3=0 ,  we have for Ix[>1 

alXldu alxicosu Atxl 1--COSU 1--COSU 
du= du+ j ~ - -  ~ du-loglx I 

0 bl 0 Ig U 

as Ixl --, c~ so that (10) is equivalent to the condition E Ixil ~ log(1 + Ix i l )<  co when 
A 

3=0.  We have thus shown that S[fi(t)jt-{*+a~dt<oo implies ElXilr§ if 
o 

0 < 3 <  1, ElXif log(1 +[Xi[)< oo if r is even and 3=0 .  
Finally, suppose that E [Xd r+~ < 0% 6 > 0, or that E IX lit log(1 + IX i[) < oo if r 

is even and 6 = 0. Then, 

lfl(t)] dr- A f(t)-- ~ #~ 
~ = o  . dt 

/71+0 - -  0 j t r+ l+O 

it ~ dF(x) dt 1 i,x ( x) 
= 'o (e -5o ) 

[ it,, ~, (itx)S~ (12) 

=< t r + l + a  d t  dF(x) 
-oo 

~ Ixlr+a { ~x' ei"--si--~ du}dF(x). 

But, using the inequalities 

r i s 
i x _  y ( i x ) *  < Ixt ~+1 for Ixj -<l ,  e 

~--~o s! = ( r + l ) !  

i~ ~ ( i x )  s < 
e - - s = ~  = ( l + e ) l x [  r for ]x l> l ,  

(for the first of these see e.g. Lemma 1 of [4] while the second is obtained by 
taking the modulus of each of the terms and bounding this) we have 

i. r (iu)S 

AIxt e --s~=o~- " 
I(Ix]) = ~ ur+l+~ du 

0 / i.u ( r+  1)! o u ~ 

G 1 a du Alxl du 
J C ~ - + ( l + e )  ! u X++~ 

( r+  1)! o u 

for I x l < A  -1 

for I x l > A  -1, 
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Thus, I (]x]) < c t if 6 >0,/(Ix[)_-< c 2 log(Ix[ + 1) if 6 = 0, where q and c 2 are positive 
constants and using these results in (12) we have 

A 

S Ifl(t)] t -(1+~ dr< oo 
0 

if 6 > 0 or if r is even and 6 = 0. This completes the proof  of the lemma. 

L e m m a  3. Suppose (1) holds and that E IXir < oo for some integer 2 <_ r<- k + 2. 
Then, aj = EX], j = 1, 2 , . . . ,  r. 

Proof  The result of the lemma is true by specification for r = 2 and we develop 
a p roof  by induction. 

Suppose that E [ X i l S < ~ ,  some s > 2  and c~j=EX{, j = l , 2 , . . . , s .  Then, if 
E [Xi] s + 1 < o% let Q* (x), 1 < j < s -  1 be the classical Chebyshev polynomials  
expressed in terms of the cumulants  ~cj, j =  1, 2, . . . ,  s +  1 of X i and write 

1 5--1 1 
G * - l , , ( x ) = q ) ( x ) + ~  e -~ /2  Z Q~(x) nJ/2 . 

y z ~  j = l  

We have 

s u p l G ~ _ z , , ( x ) - G *  l , , ( x ) l < s u p l F , ( x ) - G ~ _ l , , ( x ) l + s u p l F , ( x ) - G *  l,,(x)[, (13) 
x x x 

and from Theorem 1 of  [4], 

n(S- 1)/2 sup IF, (x) - G *  1,, (x)l = o (1) (14) 
x 

as n --. oo. Also, from (1), 

liminf n (k + ~)/2 sup IF, (x) - Gk, (x) l = O, 
n ~ x 3  x 

so that  

liminf n (s- 1)/2 sup IF n (x) - Gs_ 1,, (x) l 
? 1 ~ o o  x 

< liminf n ~-  1)/z sup IF, (x) - G k , (x) l + liminf n (s- 1)/2 s u p  I Gk  n (X) - -  G s _ 1, n (x ) l  ( 1 5 )  
x n ~ o o  x n ~ o o  

= 0  

since 
k 

1 e-XZ/2 E Qj(X) lq -)/2. GR. (x) -- G~_ 1, ,, (x) = ~ j =s 

Consequently,  using (14) and (15) in (13), 

liminf n (~- 1)/2 sup I G~_ 1.. (x) - Gs*_ 1.. (x) l = 0. (16) 
n ~ o o  x 

But, 
1 1 

* - - - e  [Qs_l (x) -Q*_l(X)]  n(S_ 1)/2 G ~ _  1 . .  ( x )  - C s _  1 , .  ( x )  - _ x2/2 

since ~2 = EX/, j =  1, 2, . . . ,  s implies Qj(x)= (2* (x), 1 < j < = s - 2 ,  and hence (16) can 
only hold if Q~_ 1 (x) = Q*_ 1 (x). This gives ~:s + 1 = fls + 1 upon identifying coefficients 
and hence 0~+I=EX~ +1 as required. 
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3. Proof of Theorems 
We start by proving Theorems 1 and 2 simultaneously in the following three 

steps. Firstly we note that the equivalence of (2) and (3), (4) follows immediately 
from Lemmas 1 and 2. Next we shall show that (3), (4) ensures (1) under (C) or if 
k=O and lastly that (1) ensures (2). 

(3), (4) ~ (1) under (C) or if k=0.  

Firstly we note that Gkn(X) has a bounded first derivative; let IG'kn(X)I<=B. 
Then, using a bound due to Esseen ([2], Section 39), we have for any T > 0 ,  

1 r d t + c ~  if.(x)_ak.(x)l<__ j fn(t)--gk.(t) B (17) 
7~_T t 

where f~(t) and gk.(t) are the characteristic functions corresponding to F.(x) and 
Gk. (x) respectively and c is a positive constant. 

Now, using (3) we have 

( k + 2  
= exp ~ 2 (i t) ~ fl~ 

ks=2 S[ gl{s-2)/2 

while from Lemma 5 of [4], 

fk+2 
gk"(t)=exp ~,~=2 (i t)~S! 

where D(t)=O(]n --~ t] k+t) as t ~ 0  so that 

fl~ ~-D{t)} 
l~(s - 2)/2 

IL(t)-gk.{t) l~ exptk~ 2(it)s exp(n  t k+2 t 
I.s=2 S' /1 (s~-2)/2-} ~ 7 ( ~ ) ) - - 1  

(k+2 } 
+ exp ~ 2 (i t)' [3~ __gk, (t). 

ks=2 S! H (s-2)/2 

Now in view of Lemma 1, we may choose a, 0 < a < 1, so small that max IV (t)l <�88 
Itl<a 

Then for Itl<al/~, using the inequality l eX- l l< lx l  elXl, the first term on the 
right hand side of (18) is bounded by 

t ( I t l  ~§ t 
exp t s=~ ' - l lS i2s )  ! ~ i j ~  

/[�89 t2s f12~ l i t  k+2X) t k+2 )~ t 

=exp(-- t2/8)  n 

(19) 
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for n sufficiently large since f12 = 1. Also, from Lemma 5 of [4], the second term 
on the right hand side of (18) is bounded  by 

C 
H(k+l)/2 (Itl 3{k+1~ § Itl k+l) e -~2/4 (20) 

for I t J < b ] / ~  when b is sufficiently small, c being a positive constant.  Then, 
choosing c~=min(a, b) and using (18), (19) and (20), we have 

~. ~/~ L(t)-gk.(t  ) 
yl-l+(k+6)/2 f 

n=l _al/~ t 
dt 

~C E F1-1-(1-6)/2 ~ (It[3k+2 +ltlk)e-t2/4 dt 
n=l -~l/n 

+ 2 n-1+6/2 J" e-'~/8 [ t[k+l dt 
n=l -~1/~ 

~A-}- ~ y/tk+a)/2 ~ [ulk+l Iv(u)l e -""2/s du, 
n=l --C~ 

(21) 

A being a finite constant.  Fur thermore ,  using a s tandard Abelian theorem (e.g. 
Feller [1], Vol. II, p. 423), we have 

oo 
lim (1 - t) (k+2 + 6)/2 2 yl(k+ 6)/2 tn = F((k Jr- 2 + fi)/2) 
t~l n=l 

so that  for u 4= 0 it is possible to choose a constant  K a > 0 such that  

• n(k+ 6)/2 e-,,2/8 _< KI(1 _ e-,2/a)-(k+ 2+6)/2 
n=l 

Also, [ul~0~<l, so that 

1 - e-"2/8 > ~u 2 (1 - l~C~ 2) 

and hence 

~ H(k+a)/2 e-n.2/8 <=g 2 [uJ -(k+2+a) 
n=l 

for some K 2 > 0. Consequently,  not ing that  17 (t)l is symmetric in t, we have 

n (k+6)/2 S lUl k+l ]7(U)[ e -""~/s du 
n=l --Ct 

= 2 S u  k+x l?(u)l n (k+6)/2 e -""2/8 du 
0 n 

= U < 2 K  r i g (  1[ = 2 . 1 ~ d  u<O0 
o u 

in view of (4). 

(22) 
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Next  write T~ = { t: ~ ] /n  < I tl < a n (k + 1)/2 }, noting that  T, is empty if k = 0. Then, 
using condit ion (C), max If(t)] = 0 < 1, so that  for t in T~, 

and hence 
r dt 

y d t<20  ~ ~ ~On(k+l) logn 
T~ - -  a 1/n t 

as n ~ oo. Consequently,  

n--l+(k+a)/2 S s t) dt < oo. (23) 
n = l  T= 

Fur thermore ,  by the rules for forming the polynomials  Qj(x), 

k 

where Pj is a polynomial  of degree 3j determined from the formal  identity 

(j~=3J ! n(J-2)/2 j=l 
Thus, 

3k 

]gk.(t)]<=e --~'~ [1 + ~, an,'d 
L j~l 

where the an; are polynomials  in n -~ which tend to zero as n--* oo. Consequently,  
we certainly have 

g k ~  d t ~ K  e-~2n/2 risk(k+1)~2 Y 
T~ 

for K a positive constant  which gives 

n -  l+(k + ~)/2 dt < oo, (24) 
n = l  

and from (23) and (24) we obtain 

II L(t)-gk"(t)  dr< ~ s dt+ ~ g k " ( t ) d t < o o .  (25) 
T~ ] t T~ t T~ t 

The required result (1) then follows, using (17) with T = e n  �89 in view of (21), 
(22) and (25). 

(~) ~ (2) 
Firstly we symmetrize the Xi's. Consider  the sequence Y~, i =  1, 2, 3, ... of  

independent  symmetrized random variables; each Y~ having the distribution of 
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the difference between two independent Xi's. Clearly the Y~ have characteristic 

function If(t)[ 2 and the distribution function of Z , = n - - ~ Y i  is F,(x), 
i = 1  

( 1 - F , ( - x - O ) ) = F * ( x ) .  Write G~,(x)for the convolution Gk,(x)*(1--Gk,(--x)). 
Then, 

~ ,  Yl-  1 + (k + 5)/2 sup IF.* (x)- G~,  ( x )  l 

n = l  

oo 

= 2 n  -1+(k+6)/2 sup f , ( x ) , (1 -F , ( -x -O) ) -Gk , (X)* (1 - -Gk , ( - -x ) )  ] 
n=l  

00 
2 / " / - l + ` k + O , / 2  sup f.(x), (1-F.(-x-O))-Gg.(X)*(1-F.(-x-O)) I 

n = l  

(30 

+ 2 n-l+(k+~)/2 supIGk.(X)*(1 -F,(-x-O))-Gk,(x)*(1 --ak.(--x))l 
n = l  

< 0 0  

(26) 

in view of (1). 

Next we shall show that (26) implies E]YiJk+2< oQ and hence E[xi[k+2< oe. 
We note that 

2 n-l+(k+~)/2 {1 --a*, (x,)} < oo 
n = l  

where x, = {(k + 5 + 1) log n} ~, so that from (26). 

n-l+(k+o)/ZP Yi >n~x, <oo. (27) 
n = l  i 

But, for symmetric random variables, 

>�89 Ykl>n~x.) (28) P >n X n ~_- 

i 

(e.g. [1], Vol. II, p. 147) and from Bonferroni's inequalities (e.g. [1], Vol. I, p. 100) 
we have 

n P(I Y~I > n~x,){1 -�89 

-<P max IYkl>n~x.)<nP(IY~l > n Xn),  
- -  (l<_k<_n 

n x,) -~ 0 as n --+ ~ since EY/2 --2EX 2 < ~ .  Consequently, while nP(IYi[> ~ 

n- x.)~ n P(I Y~l > P(max IYkJ> �89 n-x.)  
l = k = n  

as n ~ oo and hence, from (27), (28) and (29), 

(29) 

oo 

n(k + ~)/2 p(] Y~I> n ~ x , )< oo. (30) 
n = l  
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But, 
oo 

EIY~I k+2= - ~ x k+2 dP(I Yil >x)  
o 

oo 

<(k +2)5 xk+ 1P(] Yi] > x) clx 
o 

co x~+l(n+ 1)�89 

= ( k + 2 ) ~  ~. xk+lP([Yi]>x) dx 
n = O  x n n  2 

/I=0 

<=c ~ nt'/Z(logn)k/2P(]Yi[> �89 n-Xn)< OO 
n = O  

in view of (30), c being a positive constant. It then follows that ElXilk+2<oc 
and an appeal to Lemma 3 gives c~j = EXi, j = 1, 2, ..., k + 2. 

$ Now we note that the characteristic functions of F*(x) and Gk,(x ) are 17,(012 
and [gk~(t)l 2 respectively. Then, integrating by parts in the equation 

we obtain 

Also, 

IL(t)12- Igk.(t)l 2= e ̀ '~ d {F~* (x) - Gk* (x)}, 
- o o  

oo 

IL(t)12-1g~"(t)lZ = ~ e"X{Fn*(X)-GL(x)} dx. 
i t  _~ 

oo 

i r e _ t 2 / 2  ~ eitx X e_X2/2dx, 

and we obtain from Parseval's identity 

{If.(t)l 2 -[gk.(t)[ 2} e -'~/2 d t = ] / ~  ~ (F*(x) -G~.(x)}  x e -x~/2 dx.  
- - o 9  - - o 0  

Thus from (26) 

~ dt 2 n-l+(k+a)/2 _~ {[/.(t)[ 2 -]gk.(t)] 2} e-t~/2 
n=l 

oo m dX 

<= 2l/2-~ ~ n-  ' + (k +a'/2 SUxP lF* ( x ) -  G*.(x)] < c~. 
n=l 

Furthermore, we note that for 0 < e < � 8 8  

~ n-l+(k+a)/217e-,Z/21[f(Di2 ,,, ( D , 2 1 d t  

n = l  

o(3 co  

<2 ~ n -l+(k+a)/2 5 e -t2/2 d t<  ~ ,  
n = l  n ~ 

(31) 
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so that  in view of (31) 

n -l+(k+a)/2 e-t2/2{[fn(t)lZ--[gkn(t)[2 } <O0. (32) 
n = l  

Now from Lemma 5 of [4], letting R = [�89 + 2)], we have for t<c ' ] fn ,  c' some 
suitably small positive constant,  

'gk"(t)'2--exp (-~1 t2s2'C2s ) C ~_ (-1)~ (2s)! n ~ 1  < n (k+a)/2 ([t[3(k+l)~-Itlk+l)e-t2/4 

for some c > 0 since ~i -- EX{, j  = 1, 2, . . . ,  k + 2 ensures flj = ~cj,j = 1, 2 , . . . ,  k + 2. Thus, 

"i{e {)1 t } n -l+(k+a)/2 xp (-- 1) s 2K2s --[gkn(t)] 2 e -tz/2 dt 
. = ~  ~ ( 2 s ) r  n ~ -~  

(33)  

~C n-l-(1-a)/2~e-3t2/4(t3(k+l)+tk+l)dt<oo.  
n = l  0 

Also, from Lemma 1, 

[fn(t)12 = f --exp ( - 1 )  ~ 
$ 

(2s)! n~_ 1 + 2 ~ R e 7  t , 

and using this result in conjunction with (32) and (33), 

o(3 
H-l+(k+6)/2 

n = l  

�9 ! e  -t2/2exp s ( -  1)~ (2s)! n s - l  1 - e x p  
2 / : k+2  t 

I t \  
Now Lemma 1 tells us that for n large enough, Re7 [--~} will be of constant  
sign for 0 < t < n ~ and hence \ V n  I 

2~c2~ 1--exp - -  d t < m  n s- 1 ~2 nk/2 Re 7 

~, gl- l + (k +6)/2 

n = l  
n~ ( R t2s 

" ! e-t2/2 eXP~s~=l(--1)s (2s)! 

so that  

• n- -  1 + ( k + ~ ) / 2  

n = l  

. ! e x p  -3 t2 /a+s=2~(-1)s  (2s)! n ~-1 1 - e x p ' 2  n ~ - R e 7  d t < o o  

which implies 

"=1 n-l+(k+a)/2 1--exp 2n~w-Rey  d t < o o .  
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However, as n + oo, 

so that 

t k+2 t 
l _ e x p \ 2 n ~ T y R e T ( ~ ) )  _ 2ttlk+2 R e y ( ~ n  )1(1+~ vlk / 2 

~n-1+a/2~ tk+2 7 dt<oo,  
n=l 0 

and, upon making the transformation u = t/l/n, this yields 

Now 
i/I/Y 
S 
0 

1/Un 
~, n (k+ l +a)/z y uk + 2 lUe y(u)l du < oo . (34) 

n=l  0 

u k+ 2IRe ~ (u)ldu is monotone decreasing as x increases so for X > 1, 

x (i/r } 
1 ~x(k+l+6)/2~! Igk+21ie~(u) ldu dx  

[X] n + 1 (1/Vx } 

"~ n=12 nt x(k+l+a)/2 t ! uk+2]Reg(u)[ du dx 

[x] ligg 
2 (n+ 1) (k+1+6)/2 I uk+2lRey(u)[ du 

n=l  1 

ix] 1/V~ 
<=C 2 n (g+l+a)/2 ~ uk+ZlReg(u)[ du, 

n=l  i 

c being a positive constant such that (n + 1)(k+1+6)/2< C rl (k+ 1+6)/2 for all positive 
integral n. Consequently, using (34), we have 

yx(k+1+6)/21! uk+2[Re,(u)ldu dx<oo.  
1 

Now in view of (35) we must have 

as co ~ oo and 

2~, (*/Vx } 
x(k+l+a)/22 ~ uk+elRev(u)ldu dx-~O 

2~o (1//s } 
* x(k+l+a)/2~ ! uk+21ReT(u)]du dx 
co 

1/V2-d 
>CO(k+a+a)/2 ~ uk+2leey(u)[du>O ' 

0 

so that, putting v = 1 / 1 ~ ,  we conclude that 

v 
v (u+3+a)~ uk+2 lee  7(u)[ du - ,  0 

0 

(35) 

(36) 
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as v-~ 0. Then, upon making the transformation v = 1/~/x, (35) becomes 

[. [uk+2[Ue?(u)ldu v-(k+'~+~)dv<oo 
o ko 

1 
and, in view of (36), the fact that y IRe?(t)[ t -(1+~) dr< oo holds follows imme- 

0 
diately from an integration by parts. Lemma2 then enables us to conclude that 
EIYilk+Z+o<oo from which we deduce that ElXilk+2+~< cO. This completes the 
proof that (1) --, (2) and hence the proof of Theorems 1 and 2. 

For the proof of Theorem 3, we note firstly that the above proof that (3), 
(4)~(1)  under (C) or if k = 0  together with Lemmas 1 and 2 show that 
ElXi[k+alog(l+[Xi[)<oo implies (1) with 6 = 0  under (C) or if k=0. On the 
other hand, the above proof that ( 1 ) ~  (2) shows that (1) with 6 = 0  implies 
1 
S IRe 7(t)] t-1 dr< oo. Thus, from Lemmas 1 and 2 we have EIYi] k+2 log(1 + IYiL)< oo 
o 
from which we deduce the required result that E IX il a+ z log(1 + IX il) < oo. 
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