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Summary. By an extension of the idea of the multivariate quantile trans- 
form we obtain an explicit formula for the Wasserstein distance between 
multivariate distributions in certain cases. For  the general case we use a 
modification of the definition of the Wasserstein distance and determine 
optimal 'markov-constructions'.  We give some applications to the problem 
of approximation of stochastic processes by simpler ones, as e.g. weakly 
dependent processes by independent sequences and, finally, determine the 
optimal martingale approximation to a given sequence of random vari- 
ables; the Doob decomposition gives only the 'one-step optimal'  approxi- 
mation. 

1. Calculation of the Wasserstein Distance 

For a polish space (M,9.I) with Borel a-algebra 9.1 and a non-negative, pro- 
duct-measurable function a: M x M ~ R  define the (generalized) Wasserstein 
metric w.r.t. ~ for probability measures P, Q on 9A by: 

~(P, Q)= inf{~ o-d2; 2eM(P, Q)}, (1) 

where M(P, Q) is the set of probability measures on 9.i | 9.I with marginals P, 
Q. There are good historical reasons to call o-(P, Q) the Kantorovic, Rubinstein 
distance (cf. the survey article of Zolotarev (1982)) but we would like to follow 
the notation "Wasserstein distance" as is done in the most papers on coupling 
of distributions. 

There are not many explicit results for the determination of the Wasserstein 
distance ~(P,Q). If M = R  1 and ~(x,y)=lx-y], then a(P,Q)=~LF(x) 
-G(x)ld21(x)=~lF-l(u)-G-l(u)ldu where F, G are the dfs of P, Q (cf. 
Dall'Aglio 1956; Kantorovic and Rubinstein 1958; Vallander 1973). If for 
general M ~ is the discrete metric and is measurable, then a (P ,Q)=sup  {IP(A) 
-Q(A)[, AsgX} = IIP-Q[I, so cr is up to a factor 1/2 the total variation distance 
(cf. Dobrushin 1970). For  multivariate normal distributions and o-(x, y)= Ix -y ]  2, 
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x, y~R", the Wassers te in  distance was calculated by D o w s o n  and L a n d a u  (1982) 
and Olkin  and Pukelshe im (1982). Fur thermore ,  there is the wel l -known con- 
nect ion between the P r o h o r o v  distance and  the Wassers te in  metr ic  due to 
Strassen. Fo r  some related results concerning Levy- type  and  Hausdorf f - type  
distances we refer to Rachev  (1982) and  Zolo ta rev  (1982). 

Let  now (M, 9~)=(R",~3"), let h: R " ~ R  ~ be measurab le  and  let p ~ M I ( R  ", 
~3") - the set of  dis tr ibut ions on (R", ~3") - have the d f  F. Let, fur thermore,  
S, U 1 . . . . .  U, be independent  r a n d o m  variables  on a space (M', 9.1', R) such that  S 
and  h have identical distr ibutions,  i.e. R s = p  h and the U~ are R(0, 1)-distributed, 
R(0, 1) denot ing the uni form distr ibut ion on (0, 1). Wi th  F~(xilxl, . . . ,x ,_  1, s) we 
denote  a regular  condi t ional  df  w.r.t. F of  the i-th c o m p o n e n t  given the first i 
- 1  componen t s  are x 1 . . . .  , x i -1  and  given the condi t ion h = s, in other  words  

Fi(xilxa, ..., x i-  1, s)=p~d . . . . . . . . . . . .  ,=x,_ 1,h= s( _ oo, xl] , 

where rc~: R"--*R denotes  the i-th project ion,  l<_i<_n. Let  H - l ( u )  be the 
general ized inverse of a r ight -cont inuous  d fH,  i.e. H -  1 (u) = inf {y, H(y) > u}. 

The  following cons t ruc t ion  generalizes the mul t ivar ia te  quanti le  t ransform.  
Define inductively the vector  X - - ( X  1 . . . .  , X,,) by: 

XI=P)-a(UllS) ,  X z = F z 1 ( U z l X 1 , S ) , . . . , X , = F , - l ( U n l X 1  .... , X , _ I , S  ). (2) 

Proposi t ion 1. The random variable X on (M', 9.1', R) has the following properties: 

a) R x = p  b) h ( X ) = S [ R ]  

Proof By our  independence  assumpt ion  

RXllS=s= RVC ~(UllS)lS=s = RF~ ~(U~ls)= p~lph=s ' 

Similarly, 

implying that  

RtX~'X~)lS=~(A x B) = ~ R x:l~' S(B) dRX'l~(xl) 
A 

= ~ p,2t~ . . . .  h= ~(B) dP € ~(xl) = P (  . . . .  2) lh= ~(A x B). 
A 

Inductively,  we obta in  R xls= ~ = p ' lh  = ~. Therefore,  

RX(A)=~RXlS=~(A)dRS(s)=~P~lh=~(A)dPh(s)=P(A), A ~ " .  

Since a lmos t  surely w.r.t, ph holds P~lh=~{x;h(x)=s}=l,  we obta in  
RXlS=~{x; h(x)=s} = 1 [R s] and so 

R{h(X)=S}=yRXlS=~{x:h(x)=s}dRS(s)  =1. [] 

Returning  to the Wassers te in  dis tance let 

h,g:(R"'~")~(R~,~Y"),  (p: (R2", 232")--+(R+,~3+) 

and ~(x, y) = q)(h(x), g(y)), x, y e  R". 
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Theorem 2. For P, QeMI(R n, ~") and a(x,y)=cp(h(x), g(y)), x, yeR", holds: 
a) a(P,Q)=o(Ph, Q g) 
b) I f  m = l  and Fh, Gg are the df's of ph, Qg and (o(h,g)=q~(h-g), q9 convex, 

1 

then a(P, Q)= ~ (p(F h l(u) - G 2  l(u)) du. 
0 

Proof a) Clearly, a(P,Q)>q)(Ph, Qg). Conversely, let s , s  be random variables 
on a probability space (which is rich enough) with distributions ph, Qg. By 
Proposition 1, we can construct random variables X ~ P ,  i.e. X has distribution 
P, and Y ~ Q  such that almost surely h(X)=S and g(Y)=S. Since Ea(X,Y)  
= E (0 (h (X), g (Y)) = E q0 (S, S), we get the converse direction. 

b) Follows from a) and a well-known one dimensional coupling result (cf. 
Cambanis et al. 1976; Major 1978; Rtischendorf 1983. [] 

Remark. a) Theorem2 Could be proved for more general spaces, since only 
essential use has been made upon regular conditional distributions. But no 
explicit construction of random variables could be given in this case. 

b) A similar idea as in Theorem 2b) is implicitely contained in the paper of 

Major (1978) for h(x)=g(x)= ~, x i. [] 
i = 1  

Generally, one can not expect explicit results for the Wasserstein metric since 
its determination leads already in the most simple discrete cases to a difficult 
and unsolved rearrangement problem. We consider, therefore, the following 
modification of the definition, allowing to use inductive arguments. 

Let (M, 96) = (M i, 9211) | (M2 ,  "~[2) and let P, Q e MS(M, 96) with factorization 
P=PxxPa, Q=QyxQ 1, where P1,Q1 are the marginals on ~ i  and Px, Qr are 
(fixed) conditional distributions. 

Define the following subclass M1,2(P, Q) of M(P, Q): 

Mi ' 2(p, Q) = {R(X, r); R(Xl, r,)eM(P~, Q i), 
(3) 

e(X2, r2)lxi,y, EM(Pxl ' Qy,), xi ' Yl 6M1} = M(P~, Qy) x M(P1, Q1)- 

So Y2 is conditionally independent of X 1 given Yi and X 2 is conditionally 
independent of Yi given X 1. For this reason we call elements of Mi.2(P,Q) 
markov-constructions. Clearly, this definition extends to higher products of 
spaces. 

Define for a: M x M ~ R +  

(71, 2(P, Q) = inf{~ a d2; 2eM, ,  z(P, Q)}, 

and the section of cr in (xl, Yl) as 

%.,1(x~, y9 = G((x~, x2), (y~, yg). 

Theorem3. For 2=)~(x,r)x#eM1,2(P,Q ) holds: ai,2(P,Q)=~ad2<oo if and 
only if 

a) h(x,y)=~ a~,yd2(~,r)=ax, r(P~,Qr)< ~ for # almost all (x,y)eM 1 x M 1 

b) h(Pi,Q1)=~hd#<oo. 
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Proof If 2eM1,2(P,Q ) satisfies a), b), then for any 2=2(~,y)x#eM1,2(P,Q ) 
holds 

S o d,1 = S (I d,1(x,,) dr (x ,  y) 
= I h d # <= f h d# < t (S ax, yds d fi(x, y)= I a ds 

Let now, conversely, ,1eM1,2(P,Q ) satisfy al,2(P,Q)=Sad,1. Define the func- 
tion T from M 1 x M 1 into the compact, convex subsets of MI(M2 x M2, 9/2 
@9.12) by T(x,y)=M(Px, Qy). T defines a multifunction whose graph belongs to 
~1 | ~la | ~3, where 9/1 is the universal completion of 9/1 and ~3 is the Borel 
a-algebra on Ml(M2xM2,9 /2 |  supplied with weak topology (cf. 
Th. III.30 of Castaing and Valadier 1977) and observe that T is lower semicon- 
tinuous). Therefore, by LemmaIII.39 of Castaing and Valadier (1977) there 
exists a markov kernel ,~ from (M 1 x M1, ~i I | 911) to (M 2 x M2, 9/2 | 9/2) such 
that 

~a~,ydf~(~,y)=a~,y(P~,Qy) for all (x ,y)sM 1 •  1. 

If a) and b) would not hold true, we could construct a measure ,1 =,1(x ,y) x S on 
~1 @9/2 | @9/2 with ~adf~<~ad,1=a~,2(P,Q). With ,1" - the restriction of 
,l on 9/ |  9 / -  we would obtain a contradiction. [] 

The idea of Theorem3 also works under certain additional restrictions 
which are motivated by strong approximation results (cf. Schwarz 1980, Lem- 
ma 2). 

Let e.g. P1 =(21 and let 

/~r(p, (2)= {,1~M(P, Q); ,1{n i =~z3} = 1}. (5) 

rc~, i=  1, 3, denoting the projections on the i'th components of M 1 x M 2 x M 1 
x M2; M(P,(2)cMi2(P,Q ). 

Proposition4. Let ,1=,1(x,~ )x #sf4(P, Q), then fl(P, Q)= inf{j a d2; ,~M(P,Q)} 
= ~ a d'1 if and only if ax,~ (Px, (2~) = ~ a~, ~ d,1(x" x) [P~]" 
Examples and Remarks. a) Let M 1 = M  2 and a be the discrete metric on M. 

Corollaryl .  a) al,2(P,(2)= [[Pa -(2111 +~ HP~-Q~[[ dP1AQI(x) where Pa AQI(A) 
=inf{P~(AO+Qa(A2); A~ +A 2 =A} 

b) []P-Q[I <-_al,2(P,(2). 
c) If P1 =Q1 then HP-(211 =a(P,Q)=al,z(e,(2)=fi(P,(2) . 

Proof a) From Theorem 3, al,2(P, Q)=inf{~hd#; #mM(P1,Q1)}, where 

1 if x + y  
h(x,y)=a~,y(P~,Qy)= I[P~-Q~[[, if x = y  

using Dobrushin's result. Therefore, 

al ,2(P,(2)=inf{#{x*Y}+ ~ ]]P~-Qx[Id#;#eM(PI,Q1)} 
{x = y} 

= i n f { l +  ~ (I[P~-Q~II-1)dI~t;#~M(P1,QO}. 
{x = y} 
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L e t / ~ e M ( P  l, Q1) satisfy 

/~(A (A)) = max {R(A (A)); R ~ M(P~, Q 1)} 

=P1AQI(A), for all Ae~l 

where A(A)={(x,x); xeA} (for existence and construction of/~ cf. Riischendorf 
1981, Prop. 3). 

Since IIPx-Q~I]-1 <0 , /~  solves the inf problem, implying a). 

b) Follows from Dobrushin's result saying ]IP-QII = a. 

e) Let P = f v ,  Q=gv and let P = P ~ x P  i, Q=Q~xQi ,  v = v x x v i ;  then as is 
well-known from the theory of conditional tests 

and 

dP1 
dr1 

Therefore, 

--(x)=~f(x,y')vx(dy') ,  P~<v~[vi] 

dP x f (x, y) 
~(Y) dP~ --(~) 

dv 1 

HP-QH =g~ f - g l d v  

~o dPx dQ~ dP~ 
=~j Tvx(Y)-~v (y) d~(X) dv(~, y) 

=~ IIe~-Q~hl dPKx)=GI2(P,Q). 

The identity with fl(P, Q) is immediate from Proposition 4. [] 

For  Q =Q1 | Q2 in part c) of Corollary 1 cf. Schwarz (1980), Lemma 2, and 
Volkonskii and Rozanov (1961), Lemma 4.1. 

b) If (M,9.I)= (Mi,9.Ii) and a (x ,y )=  ai(xl,yi), then for P = @ P / ,  Q 
i = 1  i = 1  i = 1  

= Qi holds n 
i= 1 a(P, Q) = ~ ai(P i, Qi). 

i ~ l  

V 
2 

P~=N x, a 2 - , 
\ i f 2  

V 2 
Qy = N y, z 2 - . 

Therefore, with ~(x, y) = Ix - - y l  2 = (X 1 - -  y l )  2 + (X 2 - - y 2 )  2 

~x,,(e, e,)=(x_y)2 + (~x  v -~y} +A, 

where A= ((,,~_,o~l~ ~ v ~  
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By Theorem 3 it holds that ~1, 2 (P, Q) = A + h(N(O, a~), N(0, 272)), where 

h ( x , y ) = ( ~ + l ) x 2  2 ( ~ + l ) x y  (~+v 2 1)y2. 

By simple calculation 

h(N(0, ~), N(0, 27~)) 

p2 2 10V 27 2 V2 = ( ~ g + 1 1 6 2 - 2  (--f~_2+l)p2 +(~-2+1)  z2. [] 
\ a 2  ] I \0"2 '['2 

d) Let P, Q be distributions on (R2,~ 2) with first marginals P~,Q1 and 
conditional distributions P~, Qx. Let a(x, y) = cp(x 1 -YO + @(x2 -Y2), where r 
are convex and let * * (XloX2), (Y*,u be the two-dimensional quantile trans- 
forms, i.e. 

X*=Fa-t(U1), Y*=G~a(Ua), X*=F:~a(U2), Y*=Gfr~(U2), 

F1,G 1 being the df's of P1,Q1; F~, Gy the df's of P~,Qs and U1, U 2 are inde- 
pendent and uniformly distributed on [0,1]. Under the assumption of mo- 
notone regression dependence the quantile transforms yield the best markov 
constructions. 

Corollary2. I f  F~, Gy are both monotonically nondecreasing (or nonincreasing) 
in x, y, then ~I,2(P,Q)=Ea((X*,X*),(Y*, Y*)). 

Proof By Theorem 3 it is sufficient to show that 

a) a~,y(Px, Qy)=~ G~,y(F~- 1(u2), G; l(u2))du 2 and 

b) inf{~ax, y(P~,Qr)dR(x,y); R~M(P~,Q~)} 
= ~ a~,r (P~, Qr) dRX~' r~ (x, y). 

Condition a) is implied by Cambanis et al. (1976) or Riischendorf (1983). 
Similarly, 

inf{~ a~, r (P~, Qr)dR(x, y); R~M(P~, Q 0} 

= inf {~ (~ a~,y(Fs l(uz), G~- ~(u2) ) duz) dR(x, y)} 
R 

> f inf{~ ax, r(F 2- ~(u2), G~- ~(u2) ) dR(x, y)} du 2 . 
R 

But 
Cx,, (v~ -~  (u 2), 6 ;  -1 (u 2)) = ~o (x - y) + O (FZ 1 (u 2) - 6 ; -  ~ (u 2)) 

is for each fixed u 2 a L-superadditive function of ( x , - y )  (cf. Marshall and 
Olkin 1979, p. 151-152) implying as above that the distribution of (F~-I(U~), 
G~I(UI)) minimizes the inner integral for each u 2. [] 

By induction the optimality of the quantile transform under all markov 
constructions (for similar distances and under monotone regression depen- 
dence) extends to R", n > 2. 
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2. S o m e  Approximat ion Results  

Using the inductive idea of Theorem 3 we obtain several approximation results, 
which are useful e.g. for the proof of invariance principles for weakly de- 
pendent random variables (cf. Berkes and Philipp 1979; Eberlein 1983). We 
give some results under different conditions on the dependence. The simplicity 
of the proof is a consequence of an adaption of an idea of Schwarz (1980). 

a) Consider the situation of Berkes and Philipp (1979), Theorem 2, i.e. let 
(Xk) be a sequence of random variables with values in complete seprable 
metric spaces (Sk, ak), k eN ,  satisfying a (p-mixing condition 

[P(XkeAk, X(k- a)eBk) --P(XkeAk) P(X(k- 1)EB/)[ ~ (,Ok P(X(k- i)6Bk) (6) 

for all AkE~3k, the Borel a-algebra on S k and 

B k e ~ l @ . . . ~ k _ l ,  X(k_I)=(X1 ... .  ,Xk_O, keN .  

Propos i t ion5 .  Under assumption (6) there exist stochastic processes Y=(Yk), Z 
= (Zk) with : 

a) X ~  Y, X=(Xk)  (~  denotes: "same distribution") 
b) {Zk} independent, Z k ~ X k ,  keN ,  
c) P(Zk 4= Yk)<(pk, for all k~N.  

Proof For k e n  let (as in the proof of Theorem 3) 2 k be a markov kernel from 

with 

such that 

k-1 k--1 \ 
i~=~ Si, i~=~ ~ i )  t o  (Sk,~k) 

2k eMipxklx(k- ~) pxk~ 
X(k-  1) \ ' l 

]IpXklx(k-1) __ pxkll = S a(Xk' Yk) "~kx(k-~) (d(xk, Yk)) (7) 

a denoting the discrete metric (pX, lx(o)_px~, 1 _ a - 2x(o)-2 ). By Ionescu-Tulcea's 

theorem we can construct a probability measure 2 on @ (~k |  with 
k=l 

)(Yk, z~)l(y(~ .,z(~-~,)=2k (Yk,Zk) denoting the projection on S k x Sk, implying Y(k - i )  ' 

that Y = (Yk) ~ X, {Zk} independent and Z k ~ Xk, keN.  
By formula 17.2.10, p. 308 of Ibragimov and Linnik (1971) the mixing assump- 
tion (6) implies 

II vX~lx<~ - ~> _ px~ II <= (Pk [pX<~ - 1)]. (8) 

Therefore, P(Yk 4:Zk)<(p k. [] 

Remark. 1) Proposition 5 sharpens the result of Berkes and Philipp (1979), Theo- 
rem2,  saying that an approximation is possible with P(ak(Yk, Zk)>6(pk) 
<6(pk. 

2) With QI=PX% Qz=PX(~-' |  Corollary 1, c) and (8) imply that a 
consequence of the (p-mixing condition (6) is 

[[px,~) _px(~-~)| "((pk' k~N.  (9) 
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So for Proposition 5 the mixing assumption (6) could be weakened to condition 
(9). That (9) is a consequence of (6) was already noted by Eberlein (1979) and 
has useful applications for the proof of the central limit theorem. 

b) In the situation of example a) replace the ~0-mixing assumption (6) by 

Eak(PXklX~k-~),PXk)<=(pk , keN. (10) 

This is a kind of weak Bernoulli condition. Similarly to Proposition 5 we 
obtain: 

Proposition6. Under assumption (10) there exist processes Y=(Yk), Z=(Zk) with 
a) Y ~ X ,  b) {Zk} independent, Zk~Xk,  keN, c) EtTk(Yk, Zk)~@k, keN. [] 

A similar result was given (for stationary processes) by Strittmatter (1982), 
Theorem E. 

c) Assume that 0<q~k, t/k, 0 k < l ,  l~N, 

P(ak(PXklX(~-~',PXk)>=q)k)<=tlk , k e n  (11) 

which is a very weak Bernoulli-type condition and was considered by Eberlein 
(1983) (in a somewhat modified but essentially equivalent form). The following 
proposition corresponds to his Theorem 1. 

Proposition 7. Under condition (11) there exist processes Y=(Yk), Z=(Zk) with a) 

Y ~ X ,  b) {Zk} independent, Zk~Xk,  keN, c) P(ak(Yk,Zk)>Ok)<__tPk~k~k , keN. 

Proof. For the proof of Proposition 7 we may assume that a k< 1; then we 
obtain E ak(P xklx~-'~, pxk) N~o k+tlk. Therefore, Proposition 7 follows from 
Proposition6 and the Tschebycheff-Markov inequality. [] 

Remark. If we consider more generally also approximations by non inde- 
pendent sequences, the problem arises how to replace the assumption (10) on 
the conditional distributions by a different workable hypothesis. 

If P, Q are distributions of infinite sequences then the meaning of the 
corresponding condition 

"E ak(P x~I X(k- 1,, QwkI w(k-1~) < (Ok,, 

is unclear, Xk, W k denoting the corresponding projections. But one can con- 

struct as in the proofs of Propositions 6, 7 a probability measure 2 on (~) (Sk, 
~3k) with k= 1 

ak(Xk, Wk ) .~(Xk. Wk)l(X(k 1), w(k-1))(d(Xk, Wk)) = ak(PXklx(k-,,, QWkl wtk-1,) (12) 

Now the inductive condition 

E~ak(px~lx(~-~,QWklW(k-~')<--qok, k e n  

is well defined and implies the existence of processes 

Y=(rk)~n,  Z=(Zk)~Q, (13) 



Wasserstein Distance 125 

and 
Eak(Yk,Zk)<q~, keN.  

Example. Let P, Q be the distributions of two real random walks with initial 
df's  H a, L 1 and conditional transition df's 

Fk(xklXk_a)=Hk(Xk--Xk_l), Gk(XkIXk_I)=Lk(Xg--Xk_I). 

For ak(Xk, Yk)=(xk--Yk) e, the proposed construction of Y, Z leads to: 

Yn = ~ Hi-a(Ui), Zn= ~ LT1U( i), n~N,  (14) 
i - -1  i = 1  

where U/are independent, R(O, 1)-distributed. 
So our sufficient condition of (13) reads: 

n 1 2 

3. Martingale Approximation 

Let X = ( X  1 . . . .  , X n )  be n real random variables on a probability space 
(M, 9.1, P) and let 9.11 c g.l 2 c ... c 9.i n be the sub o--algebras of 9.I such that X k is 
9Ik-measurable. We consider the problem of finding the optimal approximation 
of X by a martingale (Yk, 9"lk), 1 <--_ k <-_ n, w.r.t, the 'Wasserstein distance' generat- 

ed by a (x ,y )=  ~ ( x l - y i )  2, where EXi ,  l<_i<_n, are assumed to exist, i.e. 
/ = 1  

E ~ (X~- y~)2 is minimal w.r.t, all martingales. 
i = i  

This problem is interesting in connection with a method of proving central 
limit theorems due to Gordin (1969) and Statulevi~ius (1969) and worked out 
by Philipp and Stout (1975). In a first step one considers approximations by a 
martingale sequence and then applies martingale embedding theorems. 

The prominent candidate for a good approximation is the martingale 
arising from the Doob-decomposition (w.r.t. 9.Ik) X k = M k + Z k ,  l<_k<n, in a 
martingale M and a predictable process Z with normalization 

k 

M I = X ~ ,  i.e. Mk= ~ (X~--E(X~hg.I~_I))+X1, 2 < k < n .  (15) 
/ = 2  

But this construction has only a restricted optimality property. 

Proposition 8. Let X k = M k + Zk, 1 < k <__ n, be the (unique) Doob-decomposition 
with M i  = X  a. Then M is the optimal one-step approximation to X w.r.t, o-, i.e. 
for all O<_k<_n-1 holds: E(Xg+I--Mk+I)2<E(Xk+I--Yk+l)  2 for all Yk+l such 
that M 1 . . . . .  Mk, Yk+ l is a martingale w.r.t. 9.11 . . . . .  9.Ik+ 1. 

Proof For k = 0  the statement is trivial. While for k<=n-1 by Jensen's in- 
equality 

E(Xk + 1 -- Yk + 1) 2 ~ E(E(Xk + 1 I~[k)  - -  Mk)2 
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and equality holds iff 

Yk+ 1 = X k +  1 - - E ( X k + l l g . ~ k ) + M k = M k + l .  [ ]  

Clearly Proposition 8 holds true also for distances of the form a(x, y)= ~ q~(x i 
i = 1  

-y~), ~oi convex, with a different normalization for M 1. The weakness of the 
Doob-decomposit ion is that it is blind for the further future of the process X k. 

Lemma9.  Let Z I ..... Zk~L2(gx, P) and define for ~c9.I F• 
E(YI~)=O). 

Then a) Y*= i~= (zi-g(z~l~))~f• 

b) For all Y~F• holds 
k k 

E 2 ( Z , -  y)2 > E 2 (Z, - y,)2 
i = l  i = 1  

k k 

c) E ~ (ZI-Y*)2=E Z Z2-kE(Y*) 2 
i = 1  i = 1  

Proof. a) is obvious 

b) An element ~'eF• is the 'projection' 
k 

iff E ~ (Z~-~')  Y = 0  for all YeF• 
i = 1  

(For the proof consider the Hilbertspace {(Y, .... Y); Y~F• and project 
k 

Z=(Z 1 ..... Zk) on it w.r.t. (X,Y>=E ~ X~Yv) Since 
i = l  

k k 

(Z,-  Y*)= ~ E(Z, I~) 
i = 1  i = 1  

and for 

Y~F• 
k k 

E ~, E(Z,I~) Y = E ~ E(Z i[~) E(X I~) = O, 
i = l  i = 1  

Y* is the projection. 

c) From the orthogonality condition 

k k k k k 

E 2 (Zi-Y*) 2=E 2 (Zi-Y*)ZI=E 2 Z2-E  2 ZIY*=E ~ Z2-kE(Y*) 2" 
i = 1  i = 1  i = 1  i = 1  i = 1  

[] 

Define now for k,l<n, mk, l=E(Xk[~il) and 1-- n X I +  y '  ml, 1 
/ = 2  

ml,k--~ml,k--1 +Yk-1 1 ( X k + ~  Yk-n_k+ ~ 
l = k + l  l=k 

1 i - n - k + 1  (mZ'k--ml'(k--1))+ Yk-l' 
l=k 

2<k<n. (16) 
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Theorem l0. Let ( X k , ~ k )  , l <_k<n, be a stochastic square integrable sequence; 
the optimal martingale approximation (Yk,9~k) to X w.r.t, to the "Wasserstein 

distance" generated by a(x, y)= ~ (x i _yl)2 is given by (16). 
i = 1  

Proof. First note that (Yk, 92k) is a martingale, since 

1 " 
E(Yk[92k- 1)= Yk- 1-+ - - i ~ = k  (E(ml'klg"lk- l l -mt 'k-  O= + l = 

We prove by induction that an optimal martingale (Zk,9~k) satisfies (16), 
starting with k = n. By Jensen's inequality 

n - - 1  

E (X,-Z,.)2>E(m,,,, l - Z , ,  1)2+E ~, (Xr-Z,.) 2 
r = l  r = l  

while equality holds iff Z , = X , - m  . . . .  1 + Z,_ 1. 
Assume now that an optimal martingale (Zk,9.1k) satisfies (16) for indices 

r ~ k  + l, i.e. 

Z r - - -  ml, r -  ml,~_ 1 +Z~_I,  r_>k+l  
n - - r + l  l=r l=r 

and use that 

k - - 1  

Y, (xr-z,)  2 Y (x -zr) Z (X,--Zr+Zk--Zk_ W, 2 = 1 - -  k) 
r = l  r = l  r=k  

where W k = Z k - Z  k_ l ~F• 1)" 
By Lemma 9 we get a lower bound for the expectation of this expression by 

the choice 
n 

W,--k n--k+ll_ t~=kES~--Zt+Zk--Zk= - 1--(m~,k-l--Zk- l+Zk-1  --Zk- O] 

1 { ~  k ~ ~ } - -  m r ,  l - -  Z z  - m z ,  k -  1 + ( n  - -  k )  Z k . 
n - k + l  z= Z=k+l l=k 

By induction hypothesis 

/ = k + l  / = k + l  l = k + l  

implying that W k - - - -  Xk+ ml, k -  ml, k_ 1 i.e. (16) holds also for 
the index k. n - k + 1 l = k + l  l = k  

In the final step we have to minimize 

E = E  2 
r = l  r = l  

as function of Z~, since Z ~ - Z  1 = ~ (Z z - Z  t_ 1) depends only on functions of 
1 = 2  

X and its conditional expectations. But it is well known that this expression is 
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minimized by 
n 

z, =~ E (x~-(z~-zo) 
r = l  

1 (x~+ ~ x. ~Z~-(n-1)ZI) 
l~ r = 2  r = 2  

n 

So we obtain  that  an opt imal  mart ingale fulfills (16). [ ]  

Remark. a) The construct ion of an opt imal  mart ingale approximat ion  for 
a(x,y)=~q~(x~-y~), ~o convex, can be given along similar lines, but  does not  
allow to get explicit general terms. For  n = 2  we get e.g. Y 2 = X z - m 2 ,  1 q'- Y1, 
where Y~ is a m i n i m um  point  of  y ~ r  1 -y)+qg(m2,  a -Y).  

b) For  n = 2  the best mart ingale approximat ion  has the distance �89 
- X 0  2. The Doob-decompos i t i on  mart ingale has the distance E(m2, 1 - X 1 )  2, 

while the best approx imat ion  by r a n d o m  variables (W 1, 9.I 0, (W 2, 9.12) with E W  1 
= E W  2 has the distance 1 (EX1 _EX2)2 .  

c) If 9.1(Xk)Cf~kcg.I k, k<n, 9.1k, 23 k increasing, then each Nk-martingale Yk 
can be improved  by a Sk-martingale,  namely I'k=E(Ykl~k). SO the best choice 
in this case is ~k=gA(x1,  ...,Xk). 

For  general increasing sequence ~[k and any 9.1k-martingale (Yk) holds 

= - -  k )  
k = l  k = l  k = l  

so the opt imal  approximat ion  can be read off f rom Theorem 10 (replacing X k 
by E(Xklg~k) ). But it seems to be difficult to find the opt imal  sequence 9.1 k. One 
problem arising in this connect ion is to determine for 

X, YeI~(9.I,P), inf{E(X - E ( Y [  ~3))2; ~ c 9~}. 
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