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Summary. Many of the classical submartingale inequalities, including 
Doob's maximal inequality and upcrossing inequality, are valid for se- 
quences Sj such that the (S j+ 1 - S ) ' s  are associated (positive mean) random 
variables, and for more general "demisubmartingales". The demisubmar- 
tingale maximal inequality is used to prove weak convergence to the two- 
parameter Wiener process of the partial sum processes constructed from a 
stationary two-parameter sequence of associated random variables {Xij } 
with ~ ~ Cov(Xoo, Xi:) < oo. 

i j 

1. Introduction 

A finite collection of random variables, X 1 . . . .  , Xm, is said to be associated if 
for any two coordinatewise nondecreasing functions f, g on R m, 

Cov(f(Xl,...,Xm),g(Xl,...,Xm))~O, (1) 

whenever the covariance is defined; an infinite collection is associated if every 
finite subcollection is associated. This definition was introduced in [-5] and has 
found several applications in reliability theory [1]. The basic concept actually 
appears in [8] in the context of percolation models and it was subsequently 
applied to the Ising models of statistical mechanics in [-6]; in the statistical 
mechanics literature (see, e.g., [9]), which developed independently of reliability 
theory, associated random variables are said to satisfy the F K G  inequalities. 

One of the results originating in statistical mechanics which is of particular 
probabalistic interest concerns a central limit theorem for certain stationary d- 
parameter arrays, {X)-: f~7z a} of associated random variables [10]. The follow- 
ing theorem is a modified version of that result; it is a direct consequence of 
[10, Theorem 2] and standard arguments. 
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Theorem l. Let {Xf: f = ( J l ,  .-.,Je) ~77d} be a strictly stationary (with respect to 
translations in Z d) array of finite variance, mean zero, associated random vari- 
ables such that 

0- 2 -= _~ Cov(X~, Xj) < az. (2) 
j~Z d 

For {=(t l ,  ...,t~) with each t~>=O, define 

[t~tl] [nta] 

W,([) =n-d/2 Z "'" 2 X;, (3) 
Jl= 1 Ja= 1 

where [ . ]  denotes the usual greatest integer function, and let W({) be the d- 
parameter Wiener process, a mean zero Gaussian process with 

d 

C o v ( W ( / ) ,  W ( s ) ) = 0  -2 l -I  m i n ( t i ,  s i ) ;  (4) 
i=1 

then the finite dimensional distributions of W~ converge (in distribution) to those 
of W. 

The question of whether there is weak convergence of W, to W (in an 
appropriate function space sense) was left open in [10] but was answered 
affirmatively in [111 for the case d = l .  In order to obtain weak convergence, it 
is necessary to have a sufficiently good estimate concerning the tail of the 
distribution of sup(lW,({)l: O<tl  <1 ....  ,O<td<l) ;  such an estimate was ob- 
tained for d = l  as a consequence of certain maximal inequalities (see [11, 
Theorem2]  and Corollaries 4 and 5 below) which seemed related to some of 
the standard maximal inequalities for martingales. The results of this paper 
were motivated first by a desire to obtain weak convergence for d > l  and 
second by the related need to better understand the relation between sums of 
associated random variables and martingales. The key to that relation is given 
in the following proposition which is an immediate consequence of the de- 
finition of association. 

Proposition2. Suppose X1, X 2 . . . .  are L ~, mean zero, associated random variables 
and S j=X~  + ... +X j (S  o=0); then 

for j = 1, 2,.. . ,  E((Sj+ 1 - Sj)f(Sa ....  , S j)) >= 0 
(5) 

for all coordinatewise nondecreasing functions f 

such that the expectation is defined. 

We note that if f is not required to be increasing, then (5) becomes 
equivalent (with the obvious choice of 0.-fields) to the condition that S 1 , S 2 . . . .  
be a martingale; on the other hand, if f is required to be nonnegative (re- 
spectively, nonpositive) rather than nondecreasing, then (5) becomes equivalent 
to the condition that S1,Sz , . . .  be a submartingale (respectively, supermar- 
tingale). We will call an L ~ sequence satisfying (5) a demimartingale; if (5) is 
modified so that f is required to be nonnegative (resp., nonpositive) and 
nondecreasing, the sequence will be called a demisubmartingale (resp., demi- 
supermarting aIe). 
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The real justification for this terminology is given by the results of Sect. 2 of 
this paper where we show that both Doob's maximal inequality and the 
upcrossing inequality are valid for demisubmartingales. The usefulness of de- 
mimartingales is demonstrated in Sect. 3 where they play an essential role in 
obtaining weak convergence for d=2.  The problem of proving weak con- 
vergence for d > 3 is presently an open question. 

2. D e m i m a r t i n g a l e  Inequal i t ies  

The following theorem and proof are based on Garsia's version of Doob's 
maximal inequality [7]. We extend the inequality from submartingales to 
demisubmartingales and (at almost no extra cost) from the maximum, 

S,-* = Max(S1, ..., Sn), (6) 

to more general rank orders Sn,j, defined by 

S ( j th  largest of (S1, ..., S,), if j<n,  
, j =  (7) 

' -]rain(S1,  . . . ,S , )=S .... if j>n,  

-- $ so that S , . 1 -S , .  In this theorem and this section, we do not explicitly consider 
the demisupermartingale case since that may be obtained from the demi- 
submartingale case by replacing all S~s by their negatives. 

T h e o r e m  3. Suppose $1, $2,... is a demimartingale (resp., demisubmartingale) and 
m is a nondecreasing (resp., non-negative and nondecreasing) function on 
( -0% or) with m(0)=0; then for any n and j, 

and thus for any 2 > O, 

Sn, j 
(8) 

2P(S , , j>2)<  ~ S, dP. (9) 
{Sn, j > ;t} 

Proof. For fixed n and j, let Yk=Sg,j and I1o=0; then 

n--1 n--1 
Snm(Yn) = 2 Sk+x(tTl(Yk+l) -rn(Yk))-]- ~ (Sk+ l-- gk)m(Yk)" (10) 

k=0 ~ k=l 

Note from the definition of S,,j, that 

for k<j, either Yk=Yk+I or Sk+l=Yk+l, ( l la)  

for k>j, either Yk=Yk+l or Sk+l>Yk+l. ( l lb)  

Thus for any k, 
Yk+ 1 

Sk+l (m(Yk+ 1) -- m(Yk)) ~- Yk+ l(m(Yk+ 1) --m(Yk)) ~ ~ U dm(u), 
Yk 

(12) 
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so that (10) yields 

Y n  n -- 1 

S. m (Y.) > S u dm (u) + ~ ((S k +~ - Sk) m (Yk)). (13) 
0 k = l  

Next we note that 

E((S k +1 - Sk) m (Yk)) ----> 0 (14) 

by the definition of demimartingale (resp., demisubmartingale) since m(t~) is a 
nondecreasing (resp., non-negative and nondecreasing) function of S1,...,Sk; 
taking the expectation of (13) and using (14) yields (8) since Y, =S,, j .  To obtain 
(9) from (8), take m(u) to be the indicator function 1{~=~}. 

Inequality (t5) of the following corollary extends a result of Pitman [12] 
from the maximum (or minimum) to general rank orders. 

Corollary4. I f  S~, $2, . . .  is an L 2 demimartingale, then 

E((S~, j -  S.)a) < E(S~); (15) 

if  S1, $2, . . .  is an L 2 demisubmartingale, then 

E((S+j--  S~)2) <__ E(S2,). (16) 

Proof. In the demimartingale case, take m(u)=u  in (8) to obtain 
E(S~,j/2)<E(S~S~,j) which is equivalent to (15); in the demisubmartingale case, 
take m ( u ) = u  1~> o}. 

The next corollary shows how the maximal inequalities derived in [11] to 
obtain weak convergence for d = l  are related to the Doob inequality (8). 
Inequality (19) of the corollary is esentiatly identical to the one usually derived 
for sums of independent variables (see e.g. [2, Eq. 10.7]). 

Corollary 5. Suppose $1, S 2 . . . .  are as in Proposition 2; then 

2 < 2 __  2 E(S~,~) = E(S. )  = G ,  (t7) 

and .for 2~ < 2  2, 

(1 - s,2/(22 - 2~ )2) P(S* >_ 2~) < P(S,  = 2 ~), (18) 

so that ~br ~1 <~2 with a 2 - c q  > 1, 

" ~  (~2-~1)2 P(IS, t>=~IG). (19) P(Max (IS~ I,--., IS, I) > ea sd ~= (c~2 _--~z 1)2~_ 1 

Proof. With S k = X  ~ + ... + X  k, we define 7"1 =0, and 

Tk= ~ Xi, for k = 2 , 3  . . . . .  n + l .  
i = n - - k + 2  

T~, T 2 ....  is a demimartingale by Proposi t ion2 and so by (8) with m(u)=u,  we 
have (assuming without loss of generality that j < n) 

E(Td._j+ ~/2)< E(T,, T.,. _j+ , )<E(7;+  ~ 7;,,. _j+ ~) (20) 
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where the second inequality follows from the definition of a demimartingale. 
Now (20) implies that 

E((T.+ I - Tn,n-j+ 1) 2) < E(T2+ 1), 

and this is the same as (17) since T.+I=S  n and 

Tn+ 1 - Tn,n-j+l = j th  largest of (Tn+ 1 - Tn, T~+ 1 - T~-I . . . . .  T.+ 1 - T1) =S.,j .  

To obtain (18), we first note that 

�9 > - �9 S >_21)+p(s*>22,S ,<21)  P(S.  = 2 2 ) - P ( S  . >22 , _ 
(21) 

< P(S. > 21)+P(S* >22, S* -S~>22  -21). 

- -  * --  Tn n are We next claim that it follows from the fact that S* and Sn S . -  , 
associated, since they are both increasing functions of the Xi's, that 

�9 > < * >  * P(S f f~22 ,S  n - S n = , ~ 2 - 2 1 ) = P ( S "  =22)P(S n - - S n ~ 2 2 - - 2 1 )  ; (22 )  

to see that (22) is valid, note that for X, Y associated, 

- P ( X  >=x, Y <= y) + P( X >=x) P( Y <= y ) = C o v (  l (x>=x~, - l{r=<y}) > 0. 

Now by combining (21), (22), Cebygev's inequality, and (15), we have 

P(S* >= 22) < P(S. >= 21) + P(S* >= 22) E((S* - S.)2)/(22 - 21) 2 

< P(S. > 21) + P(S* >= 22) E($2.)/(22 - 21) 2, 

which immediately yields (18). Finally, we may obtain (19) by taking 2i=e~s . 
and adding to (18) the analogous inequality obtained after replacing all Xi's by 
their negatives (which are also necessarily associated). 

Remark. There seems to be no reason why (22) should be valid for a general 
demimartingale (or martingale) and thus (18)-(19) are presumably not valid in 
that generality. The next corollary however gives a similar type maximal 
inequality (with the tail of S. appearing on the right hand side) which is valid 
for demimartingales; it will be used to obtain weak convergence for d = 2  in 
Sect. 3 below. We again define s,2 =E(S,).2 

Corollary6. I f  $1,$2, ... is an I )  demisubrnartingale; then for 0<21 < 2 2 ,  

P(S*n ~ "~2) ~ (Sn/(22 --  21) ) (P(Sn  ~ ")'1)) 1/2" (23) 

I f  $1, S 2 . . . .  is an I~ demimartingale, then for 0<= cq < c~2, 

P(Max(ISl l , . . . , lS . l )>c~2s . )<l /2(c~2-~O-l(P(IS .]>~l  s.)) 1/2. (24) 

Proof Starting from (9) with 2=22 and j =  1, we have 

22P(S*~22)~ S S . d P ~  ~ S . d P +  ~ S . d P  
{Sn* ~ -~2} {Sn ~ ,~,1} (Sn* ~ 22, Sn < -~,1} 

<= s.aP + 21P(S*. 
(S~>2~} 
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which immediately yields the basic inequality, 

P(S* > 22) < (22 - 21)-1 E(S, its ~ >= ~1;)" (25) 

The Cauchy-Schwarz inequality applied to the right hand side of (25) then 
yields (23). To obtain (24), we take 2i=ais  , and add to (23) the analogous 
inequality with all Si's replaced by their negatives (which also form a de- 
mimartingale). 

The next theorem extends Doob's upcrossing inequality to demisubmar- 
tingales; our proof is a modified version of the standard stopping time argu- 
ment used for submartingales (see, e.g., [4, Chap. 9]). Given $1,$2, . . . ,S, ,  and 
a < b  we define a sequence of stopping times Jo =0, ,/1, J2,--. as follows (for k 
= 1,2,...): 

~ n + l ,  if {j: J2k_2<j<--_n and Sj<=a} is empty 
J 2 k - l = ( m i n { j :  J2k_2<j<=n and Sj<a},  otherwise, 

(26a) 

J f n + l ,  if {j: Jzk_l<j<=n and Sj>b} is empty (26b) 
2k=[min{j :  J 2 k _ l < j < n  and Sj>b},  otherwise. 

The number of complete upcrossings of the interval [a, bJ by S 1, . . . ,S.  is 
denoted Ua,b and is defined by 

Ua,b=max{k: Jzk <n-I- 1}. (27) 

Theorem7. I f  S I ,S : ,  . . . ,S ,  is a demisubmartingale; then for any a<b, 

E(U,, b) < E((S, -- a) +) -- E((S ~ - a) +) (28) 
= b - a  

Proof. We define for j = 1, ..., n -  1, 

1, i f f o r s o m e  k = l , 2 , . . . ,  J2k_2<j<J2k_l  
8j = 

0, if for some k = l , 2 , . . . ,  J2k l<----J<J2k" 

SO that 1 - e j  is the indicator function of the event that the "time interval" [j,j 
+ 1) is part of an upcrossing (possibly incomplete); an equivalent definition is 

1, if either Si>a for i=1  ....  ,j or else 

e~= for some i = l  ... .  ,j, S i>=b and S k>a for k = i +  1,. . . , j  (29) 

0, otherwise. 

We also define A as 

A = { J ~  J2cra, b+ 1 < n } ;  

A is the event that the sequence ends with an incomplete upcrossing. Now 

n - - 1  

( S - a )  + - ( S  1 - a ) + =  ~ [(Sj+ ~ -a )  + - ( S j - a ) + J = H , + H d ,  (30) 
j = l  



Associated Random Variables and Martingale Inequalities 367 

with H a given by 

n - 1  n--1 

H a = ~ ~j[(Sj+ ~ - a )  + - ( S ~ - a )  +] _-> ~ F,j(Sj+ 1 --Sj), (31) 
j = l  j = l  

where the last inequality is a consequence of the facts that (S j+l-a)  + >(Sj+I 
- a )  while e~(Sj-a) + =ej(S j -a)  since e j = l  implies Sj>a (see (29)), and with 
H u given by 

n--1 

/~~ ~ (1-~j)[(sj+ ~-a) + -(Sj-a) +] 
j = l  

Ua, b JEk--1  n--1 

= ~ ~, [ ( S j + ~ - a ) + - ( S j - a ) + ] +  ~ _ [ ( S j + l - a ) + - ( S 2 - a )  +] 
k= 1 J=~2k-1 J=J (32) 
Ua, b 

= ~, [(Sj2k-a) + - ( S s  . . . .  - a )  +] + [ ( S , - a )  + - ( S / - a )  +] 1a 
k = l  

Ua, b 

= ~ (Sj2k--a) + + ( S , - a )  + 1a>(b--a) U,,b. 
k = l  

Combining (30), (31), and (32) and taking expectations, we obtain 

n--1 

E ( ( S - a ) + - ( S ~ - a ) + ) > ( b - a ) E ( U , , b ) +  ~ E((Sj+~-Sj)ej). (33) 
j = l  

The upcrossing inequality (28) is an immediate consequence of 

E((Sj + 1 - S j) e j) > 0 for j = 1, ..., n - 1, (34) 

which in turn follows from the definition of demisubmartingale and the fact 
that ej is a non-negative nondecreasing function of $1, . . . ,S j; the nondecreas- 
ing nature of ej follows easily from (29). The proof is now complete. 

The following convergence theorem is an immediate consequence of Theo- 
rem 7 as in the martingale case (see e.g. [4, Chap. 9]). 

Corollary8. I f  S 1 , S  2 . . . .  is a demisubmartingale and supE([S . [ )<~ ,  then S. 
converges a.e. to a finite limit. 

3. Inequalities and Weak Convergence for 2-Parameter Arrays 

Throughout  this section we deal with a 2-parameter array {Xj: f=( j l , j 2 )6Z  g} 
of 1heart zero, finite variance, associated random variables, and the related 
partial sums 

J l  J2 

Sj=S~jl,j2)= ~ Y~ xc~,k~. 
i=1 k = l  

We also define for m, n-_ 1, 

S~m,n)=Max{ST: 1 --<Jl <=m, 1 <=j2<=n}. 
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In  order  to s t rengthen T h e o r e m  1 to obta in  weak convergence for d = 2 ,  we 
* in terms of the tail need a max ima l  inequali ty which controls  the tail of  S(m,, ) 

of  S(m,,) as was done  for d = l  by (18) or  (23). Our  d = 2  result will in fact be 
based on (23) and  the key step is the following l emma;  our app roach  is 
model led  after previous work  on mu l t i pa rame te r  mar t inga le  inequalities [3]. 

L e m m a  9. For f ixed m, let 

Sj=Max{S(k,S): 1 <k<m};  (35) 

then $1, $2,... is a demisubmartingale. 

Proof Suppose  Y = f ( S  1 .... ,Ss) where f is non-negat ive  and nondecreasing,  
then by the definit ion (35) 

Y=f({x(i,s)}), 

we mus t  show that  

Let  us define K s by 

then 

f non-negat ive  and  nondecreas ing;  

E((Ss+ i - - S  j) Y) > O. 

K s = rain {k: S(k,j ) = Max(S(1,j ) . . . .  , S(m,s))} ; 

S j  + 1 - S j  = S j  + 1 - -  S(Kj ,  j) ~ S(Kj ,  j + 1) - -  S(Kj ,  j) 

Kj 

= 2 X(k,j+l) = ~ X(k,j+i)l{Kj>k} ' 
k = l  k = l  

(36) 

(37) 

and  so since Y _  0 we have 

E((Sj+ 1 - S j )  Y)> ~ E(X(k,j+ a ) l{~j>=k } Y) 
k= 1 (38) 

m 

- ~ C~ l(Kj_>k} Y) 
k = l  

where we have  used the fact that  the X(k,j)'S have zero mean.  It is a s imple fact 
that  for any sequence s a . . . .  , s,,, and  any  k = 1 . . . .  , m, the function, 

1 {ra in  {k':  sk,  = s'm} => k} 

is a nondecreas ing funct ion of {s i, s 2 - s  1, .. . ,  Sin--Sin_l}; thus l{rcj~k } and  con- 
sequently l{Kj_>k} Y are nondecreas ing functions of  the X(i,s)'s and  so the right 

hand  side of  (38) is non-negat ive  by the associat ion of the X(i,s)'s which yields 
(37) and  completes  the proof.  

The  following theorem generalizes (23)-(24) to d = 2. We  define 

2 - -  2 Sm, n =E(S(m,n)). 

Theorem l0. The following inequalities apply to the partial sums of a two- 
parameter array of mean zero associated random variables: For 2 2 >)c a >--_ O, 

P(S~,,,,)>=22)<33/22-1(s~,J(22-2a)2)3/4(P(S(,,,,)>=20)l/4; (39) 
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f o r  0 ~ _ ~ 1 < ~ 2 ,  

P(Max{]S(k,2)[" 1 < k < m ,  1 < j < n }  >c~ 2 sin,,) 
(40) 

<=33/2. 2-1/4(C~2 - - ~ l ) -  3/2(p(ls(m,,)l > cq Sin, n)) 1/4. 

Proof. It follows immediately from Lemmag, inequality (23) of Corollary 6, 
and the fact that with Sj as defined in (35), * - * S(m,,)--Sn, that for 0_-<2<22, 

P(S~m,n) >=/~2) ~ (E(S2n)/('~2 --  2)2) 1/2 P(Sn >=/~) 1/2. (41) 

If we let Tk=S(k,n), then T k = X  1 + ... + X  k where Xi=X(~  ' 1)+ ... +X(~,n) so that 
the X~'s are mean zero associated. Since S,-- T,,* and S(m ,.) = Tin, it follows from 
(17) of Corollary 5 that 

E(S 2) = E( T,* 2) <= E(S~m,,)) (42) 

and from (23) of Corollary 6 that for 0<=21 <2  

P(S n >= 2) < (E(S~.,,n))/(Z -21)2)  ~/2 (P(S(,,,, .)>= ,~1)) 1/2. (43) 

Combining (41), (42), and (43), we obtain 

FE~S2 ~q 3/4 
P ( g ~ n , n ) ~ ) c 2 ) < = ~  I- ~? in ) ld~  ,1,2 ( r ( S ( m , n , ~ l ) ) l / 4 ;  (44) 

t 2 --  Yk - -  11 

choosing 2=(22~+22)/3 to minimize the righthand side of (44) leads to (39). 
To obtain (40), we choose 2~=~is . . . .  add to (39) the analogous inequality 
obtained when all the X(~,j)'s are replaced by their negatives, and use the fact 
that for u, v ~ 0 

Ul/4 _}_ Vl/,* ~ 23/4(U _]_/))1/4. 

The next theorem gives two-parameter weak convergence as an immediate 
consequence of Theorems 1 and 10. We choose to consider weak convergence 
in the sense of [14] for the sake of convenience; Theorem 10 is sufficiently 
strong to yield other types of weak convergence as well (see e.g. [13]). 

Theoremll. Let W,( t l , t2)  , W(tl,t2) be as in Theoreml  with d = 2  and with 
(t 1, t2) restricted to lie in the unit cube, [0, 1] a, and let P,,P be the corresponding 
probability distributions (on the space (D2,A) with /5(C2)= 1 as defined in [14]); 
then P, converges weakly in the U-topology (see [143) to P. 

Proof. By Theorem 1 and [14, Theorem 2], it suffices to show that 

V e > 0, lim lim sup P(M~ > e) = 0, (45) 
~ 0  n ~  

where 

M~ = sup {I Wn({) - -  wn(~)l: ~, {~g0, 1-1 ~, I~-{I <~} (46) 

and [~ -{ ]=max( l s l - t l l  , Is2--t2[). NOW simple estimates show that to obtain 
(45) it suffices to have 

V~>0, lira lira sup c5-2 P(3~r,~ > e) = 0 (47) 
~ 0  n~oo 
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where  

2~r~:  s u p  {IW.(i)l:  { ~ [ 0 ,  c53z} 
=n -1 Max{lS(k,j)[" 1 <_k<_n6, 1 <=j<-_n (5}. 

(48) 

N o w  by T h e o r e m  10, the fact tha t  E(S~[n,~l,[no]))/n2-+o-2(~ 2 (see [103), and  Theo-  
rem 1 we have  tha t  

l im sup p(~r~ > e) < C o -3/2 (~3/2 ~ - 3 / 2  l im [P(S(t,~1, t, ~)/n > e/2)] 1/4 
n ~ o o  n ~ o o  

= C(o-  2 1~2/e2) 3/4 [- lira P(W,(6, 3) > e/2)] 1/4 (49) 

=C(a2 c~2/e2)3/4 (2~o-2 c52)-1/2 exp(_uZ/2~r2 62)du \1/4 
g 

where  C is a universa l  constant .  Thus  for fixed a and  e, we have for some 
cons tan t s  B and b 

(j ) l im l imsup6-2 P(H~>e)<limB6 -1/2 (2g)-l/2exp(-u2/2)duV/4=O 
~ o  . ~  ~ o  b 1 (50) 

which yields (47) and  comple tes  the proof.  
As to the ques t ion  of  weak  convergence  for d > 2 ,  we conjec ture  tha t  

vers ions  of D o o b ' s  inequa l i ty  for m u l t i p a r a m e t e r  mar t inga les  (related to the 
inequal i t ies  of [3, Thin.  1]) a n d / o r  of W i c h u r a ' s  inequal i ty  [14, Eq. (2a)] for 
sums of  i n d e p e n d e n t  var iables  app ly  to sums of mean  zero assoc ia ted  vari-  
ables;  ei ther  of  these inequal i t ies  coup led  with  T he o re m 10 would  imply  weak  
convergence.  
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