On a Problem of Necessary and Sufficient Conditions in the Functional Central Limit Theorem for Local Martingales

R.Sh. Liptser¹ and A.N. Shiryaev²

¹ Institute of Control Science, Profsoyuznaya 65, Moscow, USSR

² Steclov Mathematical Institute, Vavilova 42, Moscow, USSR

1. It was shown in [8] that under the condition $(\sup B)$ (see Lemma 1 in Sect. 3.) the weak convergence of a sequence of semimartingales, in particular – local martingales, to a continuous Gaussian martingale holds if and only if the conditions (A) and (C) hold (Lemma 1).

The aim of the present paper is to show by using the result of [8] under the assumption of uniform integrability of jumps of local martingales (condition (ρ) in Theorem 1), that the same convergence for local martingales holds if and only if a convergence in probability of corresponding quadratic variations (condition (γ) in Theorem 1) takes place.

It should be noted that some particular cases of this result may be found in [1, 3, 11, 12]. For example, Theorem 1 is the direct generalization of a result in [3] (see Corollary 2 in Sect. 6).

The condition (ρ) is not used in Theorem 2 (Sect. 9.), but we give an example (Sect. 8.) which shows that the condition (ρ) cannot be essentially weakened.

2. Let $(\Omega, \mathscr{F}, \mathbf{P})$ be a complete probability space, $F^n = (\mathscr{F}_t^n)_{t \ge 0}$, $n \ge 1$ and $F = (\mathscr{F}_t)_{t \ge 0}$ be non-decreasing right continuous family of σ -algebras $\mathscr{F}_t^n \subseteq \mathscr{F}, \mathscr{F}_t \subseteq \mathscr{F}, n \ge 1, t \ge 0$ such that the σ -algebras \mathscr{F}_0^n and \mathscr{F}_0 contain the P zero sets from \mathscr{F} .

Let $M^n = (M_t^n, \mathscr{F}_t^n)_{t \ge 0}$, $n \ge 1$ be local martingales with $M_0^n = 0$, $n \ge 1$ and trajectories in the measurable space (D, \mathscr{D}) with Skorokhod topology [2, 13], and $M = (M_t, \mathscr{F}_t)_{t \ge 0}$ be continuous Gaussian martingale with $M_0 = 0$.

Every local martingale M^n admits a unique decomposition: $M^n = M^{nc} + M^{nd}$, where $M^{nc} = (M_t^{nc}, \mathscr{F}_t^n)_{t \ge 0}$ is a continuous local martingale and $M^{nd} = (M_t^{nd}, \mathscr{F}_t^n)_{t \ge 0}$ is a purely discontinuous local martingale. It is well known that M^{nd} admits the representation in the form of the stochastic integral

$$M_t^{nd} = \int_0^t \int_{R_0} x d(\mu^n - \nu^n)$$
(1)

by "martingale" measure $(\mu^n - \nu^n)$, where μ^n is the integer-valued random measure of jumps M^n , ν^n is its dual predictable projection (or compensator) with respect to F^n , [4, 6], and $R_0 = R \setminus \{0\}$.

The local martingal M^n has the canonical semimartingale representation:

$$M_t^n = B_t^n + M_t^{nc} + \int_0^t \int_{|x| > 1} x d\mu^n + \int_0^t \int_{|x| \le 1} x d(\mu^n - v^n)$$
(2)

Since (see [6]) for each t > 0

$$\int_{0}^{t} \int_{R_0} x^2 (1+|x|)^{-1} dv^n < \infty \qquad (P-a.s.)$$

then it follows from (1) and (2) that the predictable process $B^n = (B_t^n, \mathscr{F}_t^n)_{t \ge 0}$ is defined by the formula:

$$B_t^n = -\int_0^t \int_{|x| > 1} x dv^n.$$
(3)

In addition, the process B^n admits the decomposition: $B^n = B^{nc} + B^{nd}$ with $B_t^{nd} = -\sum_{\substack{0 < s \le t \ |x| > 1}} \int x v^n(\{s\}, dx)$. It follows from (3) that the variation $V_T(B^{nd})$ of the function $(B_t^{nd})_{t \ge 0}$ on the interval [0, T] is defined by the formula:

$$V_T(B^{nd}) = \sum_{0 < t \le T} |\int_{|x| > 1} x v^n(\{t\}, dx)|$$
(4)

and the variation of the function $B^n = (B_t^n)_{t \ge 0}$ has the property

$$V_t(B^n) \leq \int_0^t \int_{|x|>1} |x| \, dv^n.$$

Let $[M^n, M^n] = ([M^n, M^n]_t, \mathscr{F}_t^n)$ be the quadratic variation of the local martingale M^n :

$$[M^n, M^n]_t = \langle M^{nc} \rangle_t + \sum_{0 < s \leq t} (\Delta M^n_s)^2,$$

where $\langle M^{nc} \rangle = (\langle M^{nc} \rangle_t, \mathscr{F}^n_t)_{t \ge 0}$ is the quadratic characteristic of M^{nc} , i.e. $\langle M^{nc} \rangle$ is a non-decreasing predictable process such that the process $(M^{nc})^2 - \langle M^{nc} \rangle$ is a local martingale, and $\Delta M^n_s = M^n_s - M^n_{s-}$, s > 0. For a continuous Gaussian martingale M, we have

$$[M, M]_t = \langle M \rangle_t = \mathbf{E} M_t^2.$$

We shall denote $A(t) = \mathbb{E}M_t^2$. We shall denote by the symbol: $M^n \xrightarrow{\mathscr{D}} M$ the fact that the distributions of local martingales M^n , $n \ge 1$ converge weakly to the distribution of M. The symbol \xrightarrow{p} denotes the convergence in probability.

3. The following result is a particular case of corresponding statements in [8] and [7].

Central Limit Theorem for Local Martingales

Lemma 1. a) Let M^n , $n \ge 1$ be local martingales with $M_0^n = 0$, $n \ge 1$ and trajectories in (D, \mathcal{D}) , M be a continuous Gaussian martingale with $M_0 = 0$ and $A(t) = \mathbf{E}M_t^2$.

Under the condition

$$(\mathbf{sup B}): \sup_{0 \le s \le t} \left| \int_{0}^{s} \int_{|x| > 1} x \, dv^n \right| \xrightarrow{p} 0, \quad t > 0,$$

the convergence $M^n \xrightarrow{\mathscr{L}} M$ holds if and only if the following conditions take place: for t > 0 and $\varepsilon \in (0, 1]$

(A):
$$\int_{0}^{t} \int_{|x| > \varepsilon} dv^{n} \xrightarrow{p} 0,$$

(C): $\langle M^{nc} \rangle_{t} + \int_{0}^{t} \int_{|x| \le \varepsilon} x^{2} dv^{n} - \sum_{0 < s \le t} (\int_{|x| \le \varepsilon} xv^{n} (\{s\}, dx))^{2} \xrightarrow{p} A(t)$

b) Condition (A) is equivalent to the condition

(A*): $\sup_{0 < s \leq t} |\Delta M_s^n| \xrightarrow{p} 0, \quad t > 0.$

c) Under condition (A), condition (C) is equivalent to the condition

$$(\mathbb{C}^*): \langle M^{nc} \rangle_t + \sum_{0 < s \leq t} (\Delta M^n_s - \int_{|x| \leq 1} x v^n (\{s\}, dx))^2 \xrightarrow{p} A(t), \quad t > 0.$$

4. The main result of the present paper is the following

Theorem 1. Let M^n , $n \ge 1$ be local martingales with $M_0^n = 0$, $n \ge 1$ and trajectories in (D, \mathcal{D}) , M be a continuous Gaussian martingale with $M_0 = 0$ and $A(t) = \mathbb{E}M_t^2$.

Let the following condition be satisfied:

(ρ): for each t > 0 the family of random variables $(\sup_{0 < s \leq t} |\Delta M_s^n|)$, $n \geq 1$ is uniformly integrable.

Then the convergence $M^n \xrightarrow{\mathscr{D}} M$ holds if and only if the following condition takes place:

 $(\gamma): \ [M^n, M^n]_t \xrightarrow{p} A(t), \quad t > 0.$

5. For the proof of this theorem, we need the following result.

Lemma 2. Let $X^n = (X_t^n, \mathscr{F}_t^n)_{t \ge 0}$, $Y^n = (Y_t^n, \mathscr{F}_t^n)_{t \ge 0}$ be random processes with $X_0^n = 0$, $Y_0^n = 0$, $n \ge 1$ and trajectories in (D, \mathcal{D}) .

Assume X^n , $n \ge 1$ are non-negative processes and Y^n , $n \ge 1$ are non-decreasing processes such that

$$EX^n_{\tau} \leq EY^n_{\tau} \tag{5}$$

for any finite stopping time τ with respect to F^n .

For any finite stopping time T with respect to $\bigcap_{n \ge 1} F^n$, let the family of random variables $(\sup_{0 < s \leq T} \Delta Y_s^n), n \geq 1$ be uniformly integrable.

Then by $n \to \infty$

$$Y_T^n \xrightarrow{p} 0 \implies \sup_{0 < t \le T} X_t^n \xrightarrow{p} 0.$$
(6)

Proof. Under the assumption (5), we have the Lenglart-Rebolledo inequality (see [10, 11]) stating that for arbitrary a, b > 0:

$$\mathbf{P}(\sup_{t \leq T} X_t^n \geq a) \leq 1/a \mathbf{E}(Y_T^n \land (b + \sup_{t \leq T} \Delta Y_t^n)) + \mathbf{P}(Y_T^n \geq b)$$

If $Y_T^n \xrightarrow{p} 0$, then

$$\lim_{n} \mathbf{P}(\sup_{t \leq T} X_{t}^{n} \geq a) \leq b/a + \lim_{n} E \sup_{t \leq T} \Delta Y_{t}^{n}.$$

Since $\sup_{\substack{t \leq T \\ 0 < t \leq T}} \Delta Y_t^n \leq Y_T^n$, we have $\sup_{\substack{t \leq T \\ 0 < t \leq T}} \Delta Y_t^n \xrightarrow{p} 0$. By virtue of uniform integrability of the family $(\sup_{\substack{0 < t \leq T \\ 0 < t \leq T}} \Delta Y_t^n), n \geq 1$

$$\lim_{n} \mathbb{E} \sup_{0 < t \leq T} \Delta Y_{t}^{n} = 0.$$

Therefore, $\overline{\lim_{n}} \mathbf{P}(\sup_{t \leq T} X_{t}^{n} \geq a) \leq b/a$. The required assertion (6) follows from this inequality by virtue of the arbitrariness of the constant b > 0.

6. Proof of Theorem 1. The sufficiency of the conditions (ρ) and (γ) considered above will follow from Lemma 1 and following implications:

$$(\rho, \gamma) \stackrel{(1)}{\Rightarrow} (\rho, \gamma, \mathbf{A}) \stackrel{(2)}{\Rightarrow} (\rho, \gamma, \mathbf{A}, \sup \mathbf{B})$$

$$\stackrel{(3)}{\Rightarrow} (\rho, \gamma, \mathbf{A}, \sup \mathbf{B}, \mathbf{C}) \stackrel{(4)}{\Rightarrow} (\rho, M^n \stackrel{\mathscr{S}}{\longrightarrow} M) \quad (\text{where Lemma 1 enters in } \{4\})$$

$$(7)$$

and the necessity of the condition (γ) will follow from the implications:

$$(\rho, M^{n} \xrightarrow{\mathscr{L}} M) \stackrel{\{5\}}{\Rightarrow} (\rho, M^{n} \xrightarrow{\mathscr{L}} M, \mathbf{A}) \stackrel{\{6\}}{\Rightarrow} (\rho, M^{n} \xrightarrow{\mathscr{L}} M, \mathbf{A}, \sup \mathbf{B})$$

$$\stackrel{\{7\}}{\Rightarrow} (\rho, \mathbf{A}, \sup \mathbf{B}, \mathbf{C}) \stackrel{\{8\}}{\Rightarrow} (\rho, \mathbf{A}, \sup \mathbf{B}, \gamma) \stackrel{\{9\}}{\Rightarrow} (\rho, \gamma).$$

$$(8)$$

To prove (7) and (8), we shall show that

$$(\gamma) \Rightarrow (\mathbf{A}), \tag{9}$$

$$(\mathbf{A}, \boldsymbol{\rho}) \Rightarrow (\mathbf{sup B}) \tag{10}$$

and under the conditions (A) and (ρ)

$$(\mathbf{y}) \Leftrightarrow (\mathbf{C}).$$
 (11)

Central Limit Theorem for Local Martingales

The validity of (9) follows from the following fact. Since the functions $[M^n, M^n]_t$ and A(t) are non-decreasing and the function A(t) is continuous, then (see Lemma 1 in [9])

$$(\gamma) \Rightarrow \sup_{s \leq t} |[M^n, M^n]_s - A(s)| \xrightarrow{p} 0, \quad t > 0.$$

Hence, $(\gamma) \Rightarrow \sup_{s \leq t} (\Delta M_s^n)^2 \xrightarrow{p} 0$, i.e. $(\gamma) \Rightarrow (\mathbf{A}^*)$: Now, the implication (9) follows from the equivalence of the conditions (A) and (A*) (see Lemma 1, b)).

In order to prove (10) we shall introduce the following notations:

$$X_t^n = \int_0^t \int_{|x| > 1} d\mu^n, \qquad \tilde{X}_t^n = \int_0^t \int_{|x| > 1} d\nu^n, \qquad Z_t^n = \int_0^t \int_{|x| > 1} |x| \, d\mu^n.$$

Under condition (A) $\tilde{X}_t^n \xrightarrow{p} 0$, t > 0. Therefore, by Lemma 2 $X_t^n \xrightarrow{p} 0$, t > 0. Since for any $\delta > 0(Z_t^n > \delta) \subseteq (X_t^n \ge 1)$,

$$(\mathbf{A}) \Rightarrow Z_t^n \xrightarrow{p} 0, \quad t > 0.$$
(12)

The processes $Z^n = (Z_t^n, \mathscr{F}_t^n)_{t \ge 0}$ and $V(B^n) = (V_t(B^n), \mathscr{F}_t^n)_{t \ge 0}$ satisfy the conditions of Lemma 2:

$$\mathbf{E}V_{\tau}(B^n) \leq \mathbf{E}\int_0^{\tau} \int_{|x|>1} |x| \, dv^n = \mathbf{E}Z_{\tau}^n$$

for any finite stopping time τ with respect to F^n and the family $(\sup_{0 < s \leq t} \Delta Z_s^n)$, $n \geq 1$ is uniformly integrable for each t > 0 because $\Delta Z_s^n \leq |\Delta M_s^n|$ and the condition (ρ) takes place. Therefore from (12) and Lemma 2, it follows that

$$(\mathbf{A}, \boldsymbol{\rho}) \Rightarrow V_t(B^n) \xrightarrow{p} 0, \quad t > 0.$$

Now, the inequality $\sup_{0 \le s \le t} |B_s^n| \le V_t(B^n)$ implies the validity of implication (10).

To prove (11) we shall use the fact that under the condition (A) the conditions (C) and (C^{*}) are equivalent. Since

$$\langle M^{nc} \rangle_t + \sum_{0 < s \leq t} (\Delta M^n_s - \int_{|x| \leq 1} x v^n (\{s\}, dx))^2 = [M^n, M^n]_t + J^n_t,$$

where

$$J_t^n = \sum_{0 < s \le t} (\int_{|x| \le 1} x v^n(\{s\}, dx))^2 - 2 \sum_{0 < s \le t} \Delta M_s^n \int_{|x| \le 1} x v^n(\{s\}, dx)$$

to proove (11) it is sufficient to show that

$$(\mathbf{A}, \boldsymbol{\rho}) \Rightarrow J_t^n \xrightarrow{p} 0, \quad t > 0.$$
 (13)

The processes M^n , $n \ge 1$ are local martingales. Because of that

$$\int_{R_0} x v^n(\{s\}, dx) = 0 \ (P-a.s.), \quad s > 0$$

(see [4, 6]). By virtue of this equality and (4) we have

$$|J_t^n| \leq \sum_{\substack{0 < s \leq t \\ l}} (\Delta V_s(B^{nd}))^2 + 2 \sup_{\substack{0 < s \leq t \\ l}} |\Delta M_s^n| V_t(B^{nd})$$

$$\leq V_t^2(B^{nd}) + 2 \sup_{\substack{0 < s \leq t \\ l}} |\Delta M_s^n| V_t(B^{nd}).$$
(14)

By the implication proved above $(\mathbf{A}, \boldsymbol{\rho}) \Rightarrow V_t(B^{nd}) \xrightarrow{p} 0, t > 0$ and by virtue of the inequality $V_t(B^{nd}) \leq V_t(B^n)$ and the equivalence of conditions (A) and (A*), it follows from (14) that $|J_t^n| \xrightarrow{p} 0, t > 0$.

Thus, the implication (11) holds.

Now, we can prove the implications (7) and (8).

The implications $\{1\}$, $\{2\}$ and $\{3\}$ follow from (9), (10) and (11) respectively. The implication $\{4\}$ follows from Lemma 1. In [8], it was shown (Lemma 1) that

$$M^n \xrightarrow{\mathscr{L}} M \Rightarrow (\mathbf{A}).$$

This fact implies the implication $\{5\}$. The implication $\{6\}$ follows from (10), and the implication $\{7\}$ follows from Lemma 1. The implication $\{8\}$ follows from (11), and implication $\{9\}$ is obvious.

7. Corollary 1 ([7, 10]). Let M^n , $n \ge 1$ be continuous local martingales, $M_0^n = 0$, $n \ge 1$ and M is a continuous Gaussian martingale, $M_0 = 0$.

Then

$$M^n \xrightarrow{\mathscr{L}} M \Leftrightarrow \langle M^n \rangle_t \xrightarrow{p} \langle M \rangle_t, \quad t > 0.$$

Corollary 2 ([3, 12]). Let for every $n \ge 1$ the sequence $\xi^n = (\xi_{kn}, \mathscr{F}_k^n), 1 \le k \le n$ form a martingale-difference, i.e. $\mathbf{E}|\xi_{kn}| < \infty, \ \mathbf{E}(\xi_{kn}|\mathscr{F}_{k-1}^n) = 0, \ \mathscr{F}_1^n \subseteq \mathscr{F}_2^n \subseteq \ldots \subseteq \mathscr{F}_n^n$ and $\mathscr{F}_0^n = (\phi, \Omega)$.

Put $\xi_{0n} = 0$ and $M_t^n = \sum_{k=0}^{[nt]} \xi_{kn}$, $0 \le t \le 1$. If the family of the random variables $(\max_{k \le n} |\xi_{kn}|)$, $n \ge 1$ is uniformly integrable then (W be a Wiener process)

$$M^n \xrightarrow{\mathscr{Q}} W \Leftrightarrow \sum_{k=0}^{[nt]} \xi_{kn}^2 \xrightarrow{p} t, \quad 0 \leq t \leq 1.$$

8. It is well known that the uniform integrability condition (ρ) is equivalent to the simultaneous realization of the two following conditions:

 (ρ_1) : for every t > 0 the family of the random variables $(\sup_{0 < s \le t} |\Delta M_s^n|), n \ge 1$ is uniformly bounded, i.e.

$$\sup_{n} \mathbf{E} \sup_{0 < s \le t} |\Delta M_{s}^{n}| < \infty;$$
⁽¹⁵⁾

 (ρ_2) : for every t > 0 the family of the random variables $(\sup_{0 < s \le t} |\Delta M_s^n|), n \ge 1$ is uniformly continuous, i.e.

$$\sup_{n} \mathbf{E} \sup_{0 < s \leq t} |\Delta M_{s}^{n}| I(A) \to 0, \quad A \in \mathscr{F}$$

by $\mathbf{P}(A) \rightarrow 0$.

316

Central Limit Theorem for Local Martingales

It was shown in [5] that under the condition (ρ_1) the implication

$$M^n \xrightarrow{\mathscr{G}} M \Rightarrow (\gamma)$$

takes place.

Now, we shall give an example showing that under the condition (ρ_1) the inverse implication $(\gamma) \Rightarrow M^n \xrightarrow{\mathscr{L}} M$, generally speaking, is not true. Thus in Theorem 1 the condition (ρ) cannot be weakened to the condition (ρ_1) .

Example. Let (ξ_{kn}) , $1 \leq k \leq n$, $n \geq 2$ be an array of independent random variables with $\mathbf{P}(\xi_{kn}=n)=1/n^2$, $\mathbf{P}(\xi_{kn}=-1/n(1-n^{-2}))=1-n^{-2}$. Put $\mathscr{F}_k^n = \sigma(\xi_{jn}, j \leq k)$ and $\mathscr{F}_0^n = (\phi, \Omega)$ and $\mathscr{F}_t^n = \mathscr{F}_{[nt]}^n$, $0 \leq t \leq 1$. Let M_t^n

Put $\mathscr{P}_k^n = \sigma(\zeta_{jn}, j \leq k)$ and $\mathscr{P}_0^n = (\phi, \Omega)$ and $\mathscr{P}_t^n = \mathscr{P}_{[nt]}^n$, $0 \leq t \leq 1$. Let $M_t^n = \sum_{k=0}^{[mt]} \xi_{kn}$ with $\xi_{0n} = 0$. It is clear that $M^n = (M_t^n, \mathscr{F}_t^n)$, $0 \leq t \leq 1$ is a martingale for every $n \geq 2$.

Since $\sup_{s \leq 1} |\Delta M_s^n| \leq \sum_{k=1}^n |\xi_{kn}|$ and $\sum_{k=1}^n \mathbf{E} |\xi_{kn}| = 2$, then in the case under consideration the condition $(\boldsymbol{\rho}_1)$ holds. A simple calculation shows that $[M^n, M^n]_1 = \sum_{k=1}^n \xi_{kn}^2 \xrightarrow{p} 0$. Thus, if Theorem 1 holds then $M_t^n \xrightarrow{p} 0$ for every $t \in [0, 1]$. However, it is not difficult to show that $M_t^n \xrightarrow{p} - t$.

It should be noted that in this example

$$B_t^n = -\sum_{k=1}^{[nt]} \mathbf{E}\,\xi_{kn}I(|\xi_{kn}| > 1) = -[nt]/n \to -t$$

and consequently the condition $(\sup B)$ does not hold. On the contrary, the conditions (A) and (C) take place. Thus this example shows that the condition $(\sup B)$ in Lemma 1 is essential.

9. In the proof of Theorem 1 it was shown that $(\rho, \gamma) \Rightarrow V_t(B^n) \xrightarrow{p} 0, t > 0$. Consequently, we have the following implication:

$$(\rho, \gamma) \Rightarrow \sup_{0 \le s \le t} |B_s^{nc}| + V_t(B^{nd}) \xrightarrow{p} 0, \quad t > 0.$$

Let us consider the condition

(V):
$$\sup_{0 \leq s \leq t} |B_s^{nc}| + V_t(B^{nd}) \xrightarrow{p} 0, \quad t > 0.$$

It is clear that $(\mathbf{V}) \Rightarrow (\mathbf{sup B})$ and under conditions (\mathbf{A}) and (\mathbf{V}) the equivalence (11) holds.

Hence,

$$(\mathbf{V}, \boldsymbol{\gamma}) \Rightarrow (\mathbf{A}, \sup \mathbf{B}, \mathbf{C}) \Rightarrow M^n \xrightarrow{\mathscr{L}} M.$$

On the other hand,

$$(\mathbf{V}, M^n \xrightarrow{\mathscr{L}} M) \Rightarrow (\mathbf{V}, \mathbf{A}, \mathbf{C}) \Rightarrow (\gamma).$$

Thus, we obtain the following

Theorem 2. Let M^n , $n \ge 1$ be local martingales with $M_0^n = 0$, $n \ge 1$ and trajectories in (D, \mathcal{D}) and M is a continuous Gaussian martingale with $M_0 = 0$ and $A(t) = \mathbf{E}M_t^2$.

Under the condition (V)

$$M^n \xrightarrow{\mathscr{L}} M \Leftrightarrow (\gamma).$$

Corollary 3. If the local martingales M^n , $n \ge 1$ are quasi-left continuous processes then under condition (sup B)

$$M^n \xrightarrow{\mathscr{L}} M \Leftrightarrow (\gamma).$$

Remark [5]. The implication $M^n \xrightarrow{\mathscr{D}} M \Rightarrow (\gamma)$ takes place under the condition: for every t > 0

$$\lim_{b\to\infty}\sup_{n}P(V_t(B^n)\geq b)=0.$$

10. Remark. Let M^n , $n \ge 1$, be local martingales and let the condition (ρ) be satisfied. Then for each t > 0

$$\sup_{s \leq t} |M_s^n| \xrightarrow{p} 0 \Leftrightarrow [M^n, M^n]_t \xrightarrow{p} 0.$$

References

- Aalen, O.: A model for nonparametric regression analysis of counting processes. Lecture Notes in Math. Math. Statist. and Probab. Theory, Proc Sixth. Intern. Conf. Wisła (Poland), 1–25 (1978)
- 2. Billingsly, P.: Convergence of probability measures. New York: Wiley 1968
- Gänssler, P., Häusler, E.: Remarks on the functional central limit theorem for martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 237-243 (1979)
- 4. Jacod, J.: Calcul stochastique et problémes de martingales. Lecture Notes in Math. 714. Berlin-Heidelberg-New York: Springer 1979
- Jacod, J.: Convergence en loi de semimartingales et variation quadratique. Seminaire de Probabilities XV; Lecture Notes in Math. 850, 547-560. Berlin-Heidelberg-New York: Springer (1979/1980)
- Kabanov, Ju.M., Lipster, R.Sh., Shiryaev, A.N.: Absolute continuity and singularity of locally absolutely continuous probability distributions I. Math. USSR Sb. 35, 631-680 (1979)
- 7. Lipster, R.Sh., Shiryaev, A.N.: The functional central limit theorem for semimartingales. Theory Probab. Appl. XXV, 681-703 (1980)
- Lipster, R.Sh., Shiryaev, A.N.: On necessary and sufficient conditions in functional central limit theorem for semimartingales. Theory Probab. Appl. XXVI, 132-137 (1981)
- 9. McLeish, D.L.: An extended martingale principle. Ann Probab. 6, 144-150 (1978)
- 10. Rebolledo, R.: Sur le théoréme de a limite central pour les martingales. C.R. Acad. Sci. Paris Sér., A 288, 879-882 (1979)
- 11. Rebolledo, R.: The central limit theorem for semimartingales: necessary and sufficient conditions. Z. Wahrscheinlichkeitstheorie verw. Gebiete (1981); preprint
- Rootzen, H.: On the functional central limit theorem for martingales, I, II. Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 199-210 (1977); 51, 77-93 (1980)
- Stone, C.: Weak convergence of stochastic processes defined on semi-finite time intervals. Proc. Amer. Math. Soc. 694-696 (1963)

Received March 1, 1981