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Summary. Generalized stochastic gradient systems for infinite lattice models 
are investigated. The allowed strength of the interaction depends on the 
dimension of the lattice. The semigroup of transition probabilities is con- 
structed and its regularity properties are also discussed. Some results of 
Doss and Royer [-2] are improved. 

O. Introduction 

In the last few years several classes of interacting diffusion processes have been 
proposed as models for the temporal evolution of certain infinite systems of 
statistical physics, see [2-4, 11, 13, 15, 18] with some further references. 
Nevertheless, even construction of such processes is as yet poorly understood. 
Some extra difficulties arise in case of the physically most interesting point 
systems, because interaction of particles in higher dimensions is so strong that 
standard methods cease to work. Bearing in mind this problem, the main 
purpose of this paper is to develop methods for some strongly interacting 
lattice models; extensions to point systems will be discussed in [6]. 

We are going to investigate diffusions in an infinite product space IR s, 
where IR is the real line and S is such a countable subset of IR d that ~j- kl > 1 if 
j and k are distinct points of S; I.I denotes the usual Euclidean norm. Regular 
lattices are typical examples for S. Elements of IR s are represented as infinite 
sequences X=(Xk)k~S; i.e. if keS and x~IR s then x k denotes the k-th component 
of x. Let IR s be given the product topology and let Nv, V=S, be the smallest 
a-algebra in IR s such that each projection X~Xk,  k e V  is NV-measurable, then 
Ns is just the associated Borel field of IR s. Let ~(IR v) denote the space of ~v_ 
measurable and continuous real functions and set II~l(IRV)={~o~(lRV): 
Dkq)~ll2(lRV), k~S}, C2(IRV)={~oECl(IRV): Dkq)~IEI(IRV), k~S}, where D k de- 
notes the operator of partial differentiation with respect to the k-th component 
of the argument. Finally, if V~S  then [V[ denotes cardinality of IvI, diam V 
=sup{[ j -kl :  j~V, k e g }  and Sk(r ) = {j~S: [l'-kL <r}. 
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Suppose now that for each k~S we are given some coefficients ck~C(lR s) 
and o-keG(lRS), further {Wk: k~S} is a family of independent standard Wiener 
processes on a probability space (gV, s~r P). We may and do assume that 
(gV, ~4) is the space of continuous mappings of [0, oo) into IR s with the 
associated Borel field, thus Wk=Wk(" ) is the k-th component of wegV. Let aC t 
c d  denote the o--algebra generated by the family {Wk(S): keS, O<s<t} of 
random variables. We are going to study infinite systems of stochastic differen- 
tial equations of type 

t t 

(0.1) Xk(t)=xk+~ ck(X(s))ds+ S o-k(X(s))dwk(s), k~S; 
0 0 

realizations of a solution X = X ( . )  are supposed to be continuous trajectories 
inIR s, i.e. they belong to gV. 

We are not able to discuss the existence problem of (0.1) in full generality. 
The first restriction we need is locality of the interaction, we assume that it has 
a finite radius r >  1; i.e. Ck(X ) and ak(X ) depend on xj only ifj~Sk(r ). If we have 
smooth and bounded coefficients then global solutions can be constructed for 
each initial configuration, see [9, 18], the situation, however, is much more 
complicated otherwise. Pathological behaviour of solutions including explosion 
and breakdown of uniqueness can be demonstrated in case of very simple 
linear systems. Indeed, let S =  {0, 1, ..., n, ...}, Ck(X)=Xk+ 1 and O-k(X)=O for each 
kES, then X,(t) is just the n-th derivative of Xo(t), thus we have a one to one 
correspondence between solutions and functions ~0: [0, c~)-+lR possessing de- 
rivatives of all orders. Since such a function, Xo(t), is not determined by the 
sequence of its derivatives at t = 0, uniqueness of solutions may hold only in a 
restricted sense. It is quite natural to remove nonuniqueness in the above 
example by allowing analytic solutions only, then the phase space of the system 
will be a p roper  subset of IR s characterized by Cauchy's growth criterion. Of 
course, linear and quasi-linear systems can be treated in a suitably chosen 
Banach space of sequences indexed by S, in such cases only strongly con- 
tinuous solutions are considered. Moreover, if the interaction is weak in the 
sense that Djck and Dja k are uniformly bounded ifj,l=k then a natural stability 
condition implies similar results, see [2, 17]. If we are given more singular 
coefficients then a method of Liapunov functions is needed, and concepts of 
existence and uniqueness of solutions become more sophisticated, cf. [3]. 

Time dependent models motivated by problems from statistical physics are 
usually constructed in such a way that Gibbs random fields with a given 
interaction potential are stationary measures of the process and satisfy the 
principle of microscopic balance, cf.[2, 8, 10, 11, 18]. In our context an 
interaction potential is a family U={Uv: VcS} of real functions such that 
UveC2(IR v) and Uv=O if diam V>r;  thus it is quite natural to assume that 
Uv>O for all VcS. Interaction energy of site k~S is defined as 

(0.2) Hk(x)= y, Uv(x ), 
V : k E V  

and a probability measure # on ~s  is called a Gibbs random field with 
interaction potential U if given ~s\(k~, the conditional distribution of p is 
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absolutely continuous with respect to Lebesque measure and its density is 
proportional to exp(--Hk(x)), see [1, 12, 16]. Let G denote the formal genera- 
tor associated to (0.1), i.e. 

(0.3) G = ~ (ck(x) Dk+�89 ) D~); 
k~S 

if/~ is a Gibbs random field with interaction potential U then the principle of 
microscopic balance means that 

(0.4) jcp l(x) G cp2(x ) #(dx) = ~ cp2(x ) G (p l(x) #(dx) 

holds for a dense set of smooth functions in IL2(/i). An easy integration by 
parts argument shows that (0.4) is formally equivalent to 

(0.5) ck(x ) =�89 exp(H~(x)) Dk(G2(x) exp(--Hk(x))), 

which makes sense even if there is not any Gibbs random field for U. In some 
cases (0.4) implies reversibility, i.e. the transition semigroup defined by (0.1) will 
be self-adjoint in IL2(#). Some useful consequences of this property are dis- 
cussed in I-8]. 

There are two extreme cases of (0.5). If a k = l  , i.e. ck(x)=- �89 DkHk(x), then 
we obtain the familiar class of stochastic gradient systems, see [11-13, 15, 19]. 
On the other hand, putting a t =exp(1Hk) we have ck=0. This second case is 
very strange from a physical point of view, because in typical situations all 
solutions explode in a finite time. That is the reason why we can discuss only 
certain generalizations of stochastic gradient systems; total energy plays the 
role of Liapunov function in these cases. 

1. Generalized Stochastic Gradient Systems 

Suppose that we are given an interaction potential U={Uv: V~S} such that 
Uv~C2(IRv), Uv>=O and Uv=O if diam V>r. Then energy per site k is defined 
as 

1 
(1.1) Qk(x) = v:~v W[ Uv(x); 

(1.2) Hk(x, p)= ~ (1 + Uv(x)) 
V:  V c Sk(p)  

is a version of total energy in Sk(p). We say that (0.1) is a generalized stochastic 
gradient system with respect to U if we have such constants ~>0  and a__>0 
that 

(1.3) ck(x) DkHk(x) ~ - ~a2(x) (DkHk(x)) 2 + aHk(x , r) 

holds for each k and x. We are also assuming that 

(1.4) Ick(x)l < aa2(x) l DkH~(x)l + alak(x)l IHk(x, r)l i/2, 

(1.5) a2(x) (D k Uv(x)) 2 < a(1 + Uv(X)) (Hk(x, r)) ~ if I r l  > 2, 
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2 
where O_<z_<~, but 2 < 2  if d =  1, further 

(1.6) cry(x) D~ Uv(x ) < aHk(X , r) 

for each VcS,  k6S, x~lR s. Let us remark that (1.4) and (1.5) are needed to 
control boundary effects, they are easily verified in case of stochastic gradient 
systems; (1.6) is a natural regularity condition. For  applicability of the method 
of successive approximation we need that 

2 2 a Ck(X)+ak(x)<au whenever Hk(X,r)<=u, (1.7) 

and 

(1.8) max {Hk(X, r), Hk(y , r)} < u implies that 

(Ck(X)-- ck(y)) 2 + (ak(X) -- Crk(y)) z <= au a ~ Ix j-- Yjl 2. 
j~Sk(r) 

Let us remember that c k and t7 k are measurable with respect to ~sk(r). In the 
first part of the paper the potential U is used as a family of auxiliary functions, 
later we are going to consider reversible process in particular. Of course, the 
interaction potential of the underlying Gibbs random field need not be the 
same as in (1.3)-(1.8). 

We shall construct solutions to (0.1) in the following subset, ~o, of IR s. Let 
g(u)=(1 +1og(1 +u)) lid for u_>0, then 

(1.9) / t (x )=sup  sup p-aHk(X , p) 
k~S p-> g([k]) 

is the so called logarithmic energy fluctuation, and the set of allowed con- 
figurations is defined as ~2o={xElRS: / 4 ( x ) < ~ } .  Since /4 is lower semi-con- 
tinuous, ~2 o is an F~ subset of IR s. It is easy to check that ~2 o is of full measure 
with respect to a large class of random fields. For example, if # is a probability 
measure on ~ s  and we have such constants a 1 >0, a2 >0  that 

(1.10) ~exp(alHk(X,p))#(dx)<=exp(a2p d) if p>=g(lk[), 

then the Borel-Cantelli lemma implies/~(~20) = 1 directly. This condition can be 
verified easily for Gibbs random fields with various interaction potentials 
including U. The very same argument suggests that ~2 o is essentially the 
smallest set carrying a sufficiently large class of measures. 

(1.11) Definition. An ~?o-valued continuous stochastic process X=X( t ) ,  t>O, 
i.e. a measurable mapping of (gV, sJ, P) into (W, d )  is called a tempered 
solution of (0.1) with initial confgurat ion x~f20 if X(t) is s~cmeasurable, 
P [ X ( 0 ) = x ] - - 1 ,  almost every realization of X satisfies (0.1) for all t > 0  and 
P [sup I4(X(s)) < oo] = 1 for all t > 0. 

s< t  

We show that the above conditions are sufficient for existence of a unique 
tempered solution for each initial configuration x~f2 o. Our principal result is 
the following a priori bound, further results are more or less standard con- 
sequences of this estimate. 
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(1.12) Proposition. Suppose (1.3)-(1.6), then for each tempered solution X of 
(0.1) there exists an d-measurable random variable N >O such that 
P[N>u]<=e -~u and I4(X(t))<exp(exp(qh2e ~t) log(e+N)) holds for all t>O if 
IQ(X(0)) =<h; q=q(d, r, 6, 3~, a) is a universal constant. 

Ideas of the proof of this a priori bound go back to [3], where further 
references are given. However, techniques of [3] work only if 2 < l / d  in (1.5); 
let us remark that methods of [2, 17] correspond to the case of 2=0. 

Existence of tempered solutions can be easily proven if Ck=ak=0 for k~S' 
and ]S'] < o9. Since (1.12) implies relative compactness of the set of such partial 
solutions in the weak sense, existence of global solutions to (0.1) follows from 
(1.6) and (1.7) by an iteration procedure. Consequently, we can construct the 
semigroup Pt of transition probabilities in (~2o, ~sc~f2o). Some regularity 
properties of Pt are also discussed. We can prove Feller continuity of Pt only 
in a restricted sense. In some cases existence of a stationary measure follows by 
similar methods. If # is a Gibbs random field with interaction potential U, and 
each c k is given by (0.5), i.e. (0.1) is formally reversible with respect to #, then 
#Pt=/~ and P, is really self-adjoint in IL2(/~). In [5] we are going to discuss 
conditions under which stationary measures of certain stochastic gradient 
systems are Gibbs random fields for the associated interaction potential. 

2. Proof of (1.12) 

As a family of Liapunov functions, the following modification of total energy 
in balls of rapidly decreasing radius is used, cf. [3]. Consider a positive and 
non-increasing, twice continuously differentiable function f such that f (u )=  1 
if u < l ,  f"(u)<O if u<__2+r, f"(u)>__O if u__>2 and f ( u )=e  -b" with some b > 0  if 
u > 3 + r. We may and do assume that 

(2.1) - f ' (u )<f (u) ,  f (u)<2f(v)  if l u - v l < r ,  

(2.2) If(u)-f(v)] <= - ( f ' (u)+f ' (v ) )[u-v[  if [u-  v] __<r. 

Let k~S be fixed, and introduce 

(2.3) Q(x, k, p) = ~ f (lJ- kl p -  1) (1 ~- Qj(X)), 
j eS  

t 
(2.4) Z(t) = ~ I4~(X(s)) ds 

0 

and 

(2.5) p.(t ,  k) = g(tkl) In 2 - K g ~ ( n )  Z( t ) ]  1/2, 

where p >  1, n is a positive integer, K is a large constant to be specified later, 
and X =X(t) is the tempered solution we are interested in. We consider p, only 
in the maximal interval [0, Tn) such that p,(t, k)> 1 if t=< T,. Then T, is a 
stopping time and p,(t, k) is s~Ccmeasurable, thus Q e-~t=-e-KtQ(X(t), k, p,(t, k)) 
admits a stochastic differential 
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(2.6) 

in [0, T,), where 

dQe-Kt= - Ke-KtQdt +dla + I2d t -  I3dt 

(2.7) 

where 

dI1 =e-Kt ~ f J  Z DiQj (cidt+aidwi), 
j~S ieS 

12=21- e-K' Ef~  E ~ D2Qj, 
j eS  ieS 

13 -=e -~t ~ f j  [j-k[ p~- 2p;(1 + Q  j) 
j eS  

K 
= - 5 -  e = ~* ~q~gZ(Ikl) gX~(n) P 2  ~ F,  f j U -  kl(1 + Q J); 

j eS  

and abbreviations as f j=f([ j -k lp2t) ,  f j=f ' (~-k lp21) ,  Qj--Qj(X(O ), H i 
d 

=Hi(X(t)) , p'~=dtP, , Uv=Uv(X(t)) , H=H(X(t)), ci=ci(X(t)), ai=Gi(X(t)) are 

used and will be used also in what follows. Since X is a tempered solution and 
f has an exponential tail, infinite sums in the above expressions make sense. 
First we show that K can be chosen to be so large that the deterministic part 
of (2.6) turns to be negative. Indeed, as 

Z f j D i Q j = g f ~  Z ]VI-~DiUv=f'D~Hi+J~, 
j eS  j eS  V : j e V  

J,= ~ ~ (fa-f) lVl-iD~Uv; 
V:iEV j e V  

(1.3), (1.4) and the elementary inequality uv <pu2/2 + v2/2p if p > 0  imply that 

(2.8) ~ fj(D~Qj) ci__< -(sfGZ(DiHi)2+af~Hi(X,r) 
jES 

(5 2 2 + aa{ IJil IDiHil + alosI IJ~I(H,(X, r)) */2 <-_ -~ fGi  (DIHi) 

+ [~+~)f~/a a\ _la~j~ +3afiHi(X,r)" 

Observe that in view of (2.1) we have 

(2.9) ~ f~Hi(X , r) < 2(2ryQ(X, k, p,), 
ieS 

while (1.6) and a similar argument results in 

(2.10) 12 < a(2r) a e-K' Q(X, k, p,), 

thus f~-lazJ~z is the critical term here; it is enough to show that 

/a a (5\ 
(2.11) ~ + ~ + ~ )  e -~ '  ~sfi-la{Ji2<=I3 

if K = K(d, r, (5, 2, a) is large enough. 
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(2.12) Lemma.  I f  l i - j l < r  and max{[ i -k] ,  [j-k[} ~Pn then we have a universal 
constant K 1 such that 

max {gXd(lil) , gZa([/I) } 

K1 p~-I gZQk[) gZa(n ) (1 + min {li - kl, [ j -  kl}). 

Proof Suppose e.g. that [ j -  kt > p,. Since gZa(u + v) < gXd(u) + gae(v) if u, v > 1, we 
have gXe([i[)<g*a([/I)+gaa(r), while gXa([jl)<gaa(Ikl)+gXa(~-k[). On the other 
hand, u-lgae(u) is a decreasing function of u > 0  as g(u)>2dug'(u) reduces to 1 

2u 
+ log(1 + u) > 1 + u' consequently gaa(~ _ k[) < p~- 1 IJ - kl gae(p,). Finally, 

p,<ng(Ik]) and g(ug(v))<g(u)g(v) for u , v > l ,  i.e. gZa(p,)<gZ([k[)gZa(n), which 
completes the proof; K 1 depends only on r. QED 

To conclude (2.11) observe that (1.5), (2.2) and (2.1) imply 

(2.13) f -  ~ a~(f~ _fj)2 (D, Uv): 
< a/4 x max {r ~a, gXe(]il)} f / - l ( f  i _fj)2 (1 + Uv) 

<= --2ar2+~aI~Zp72 g*a([il)(f[ +2f j )  (1 + Uv) 

whenever Li-jl <r, and max{l i -k l ,  [ j-kl} > p ,  may also be assumed because f 
= f j =  1 otherwise. Since the number of summands in the expression of Ji is 
bounded by a constant  depending only on r and d, estimating Ji  2 by means of 
the Cauchy inequality, (2.13) and (2.12) imply (2.11). 

Stochastic integrals in dI~ can be estimated by means of the following 
maximal inequality for martingales. If each Pi is progressively measurable with 
respect to ~r and 

~ i pZ(sl ds < + ~ a.s., 
iES 0 

then for u > 0, z > 0 we have 

(2.14) 

see [-14] for the case of finite sums, whence (2.14) follows by an easy limiting 
procedure. Now we are in a position to summarize results of the above 
calculations. 

(2.15) Lemma.  I f  K is large enough then for each n and k there exists an d _  
measurable random variable N,, k such that 

sup e-  Kt Q(X (t), k, p.(t, k)) <= Q(X (O), k, ng(Ikl)) +N.,  k 
t <= Tn 

and P[N~,k>2v ] =<2e -a~. 
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Proof Let 

N,,k= sup ~ ie-Ks(~iJidwi-~Ji2ds) 
t ~ T n  i e S  0 

-- K s  +sup y fe  ,(DiH,)dwi-   (OiHi)2 . 
t <= T n  i e S  0 

Since e -Kt<l  and f < l ,  (2.14) implies P[N,,k>2v]<=2e -~, thus comparing 
(2.6)-(2,11) we obtain (2.15). QED 

The next step is to transform (2.15) into an integral inequality for I~(X(t)). 
It is easy to verify that 

(2.16) /~(x) < sup sup 2a(mg(Ikl))-aQ(x, k, mg(Ikl) ), 
m>- I k e S  

where m varies in the set of positive integers. On the other hand, there exists a 
constant K 2 depending only on d and r such that 

(2.!7) Q(x, k, p) <= K 2 I~(x) pd if p => g(Ikl). 

Indeed, f(u)=e -b~ if u>=3+r with some b>0  depending only on r, thus we 
have 

Q(x,k,p)<2 ~ f 1+ (H(x,k,p+n+l)-H(x,k,p+n)) 
n ~ O  

n = 0  

__<K a 1 -exp  - ~ exp -b H(x,k,p+n) 
n = 0  

<K3/~(x) ( l_exp  ( _ b ) )  ,=o ~ (P+n)e exp ( - b p )  

<K3(2dbP)di~(x)(l_ ( _ b ) ) ~  (1 bn \e exp ,=o + 2 ~ p ) e x p  ( - b p )  

--<K4Pe/~(x)(1-exp(-pb-)),=o ~ exp ( -b -~ )  

<=K4PdH(x) (1-exp ( - ; ) )  (l-exp (-~--~))-l<--2K4peI~(x) . 

Now we can rewrite (2.15) in terms of/~. Let K 5 be so large that 

(2.18) ~, ~ exp(-e~Ksnege(Ikl))<�89 
n =  1 k e S  

and introduce 

(2.19) N = max {0, sup �89 k - 2K 5 ndgd( l k [ ) ) } ,  
n , k  



Interacting Diffusion Processes 299 

then P [ N > u ]  < e  -au and 

(2.20) sup e- Kt Q(X(t), k, p,(t, k)) 
t<=Tn 

< Q(X(O), k, ng(Ikl)) + 2 N  + K s ndgd([k[) 

< K 2 nege(lk])/4(X(0)) + 2N + K s #gd(Ikl) 

follows by (2.17). N o w  let n=n(t,m,k) denote  the smallest  integer n > 0  for 
which pn(t,k)>=mg(Ik[). Since lira T = o o  and lira pn(t,k)=o% n(t,m,k) is well 

n ~ c ~  t l ~ o o  

defined for all t > 0 ,  keS and positive integer m. Further ,  t<T,  and p,(t,k)< 
m + 1) g(lk[) if n = n(t, m, k). Let us r emark  that  the  except ional  set, where n(t, m, k) 
is not  defined is independent  of  t > 0. Choosing  n = n(t, m, k) in (2.20) we get 

e-Kt Q(X (t), k, mg([k[))-< K 2 rid(t, m, k) ge(lkl)/t(X(0)) 

+ 2N + Ksnd(t, m, k) gd(tkl) 

for all t, m, k, whence 

(2.21) H(X (t)) < K 6 eKt(N + h sup sup m-dna(t, m, k)) 
k~S m> l 

follows by (2.16) with some K6=K6(d,r,  6,),a) and h>=~q(X(O)). On the other  
hand,  if n = n(t, m, k) in the definit ion (2.5) of Pn then 

(2.22) n 2 N (m + 1) 2 + KgXd(n) Z(O < 4m 2 + 2 K  nZ(t) 

as )~d<2 and g ( u ) N 2 ] / u  if u>_ 1. Since n>=m we obta in  n<4m+2KZ( t ) ,  i.e. 

(2.23) n2(t, m, k)< KTm2(1 + Z(t) gZa(Z(t))) 

with a new constant  KT, thus (2.21) turns into 

(2.24) ffI(X(t)) < MeMt(N + h(1 + Z(t) gXd(z(t)))d/2),~, 

where M > K is a universal  constant,  

t 

Z(t) = ~ I~z(X(s)) ds. 
o 

If  2 = 0 then (2.24) reduces to 

(2.25) I4(X(t)) <MeM'(N + h(1 + t)d/2), 

while a differential inequality, 

(2.26) Z'<=MaeXMt(N +h(1 + ZgZd(Z))a/2) ~, Z(0) = 0 ,  

follows for Z if 2 > 0 .  Since 2 d < 2  and 2 < 2  if d = l ,  

oo 

(2.27) S (N + h(1 + zgZd(z))e/z)-adz = + oo 
0 
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for N=>0, h > 0 ;  consequently (2.26) has a maximal solution which is bounded 
in finite intervals of time. Indeed, if 2 d < 2  then gZe(Z) can be estimated by a 
constant multiple of (1 + Z) 1 -ae/2, while 2 < 1 if d > 1, thus (2.26) implies in both 
cases that 

whence 

Z' = (Z + e + N~) ' < K s e;'Mt(N;~ + h~'(1 + (1 + log(1 + Z)) Z)) 

< 2K s e zMt ha(Z + e + N ~) log(Z + e + NZ), 

log(Z(t) + e + N ~) < log(e + N ~) exp(2 h ;~ K s S eZMs ds), 
o 

thus (2.24) implies (1.12) even if 2>0.  QED 

d 
(2.28) Corollary. I f  2 d < 2  and 0 < e < l - 2 ~  then we have tl(X(t)) 
<= p ePt(N + h 1/~) with some universal p. 

Proof Since 2d/2 < 1 -e ,  an elementary calculation shows that (1 +Zg~(Z)) ~e/e 
is bounded by a multiple of (1 +Z)  a -*, thus (2.26) yields 

d--(l+(N)Z/1-~+Z)<-Kgh~e) 'Mt(l+(h)X/1-"+Z) 

whence we obtain 

( l + Z(O)~ <= ( l + (N ) Z/1-~) ~+ gK9h;" i eaMS ds, 

which implies (2.28) by (2.24). QED 

(2.29) Remark. An important consequence of (1.12) is finiteness of all mo- 
ments o f /~  along a tempered solution with a deterministic initial configuration. 
If the initial configuration is random, and 2 = 0  in (1.5), then (2.25) yields a 
time dependent bound for each moment of/ l (X(t)) ;  if 2 > 0  then we can not 
prove such a conservation law of existence of moments of /~. However, if 
2 d < 2  and /I  has finite moments of all orders at t = 0  then (2.28) implies 
conservation of this property for all t > 0. 

(2.30) Remark. We suspect that just as in case of linear systems, there exist 
many non-tempered solutions for each initial configuration xcf2 o. Apart from 
some pathological cases we are not able to prove that solutions remaining in 
I2 o for all t > 0 are necessarily tempered solutions. 

(2.31) Remark. Our d-measurable  random variable N can be replaced by an 
sgcadapted increasing process N,  and estimating Q more carefully, it is possi- 
ble to show tha t /~  is a continuous function of time along tempered solutions. 

(2.34) Remark. Essential conditions we needed on the shape of our auxiliary 
function g were (2.27),)odug'(u)<g(u) and g(ug(v))<g(u)g(v) for u, v> 1. There- 
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f l 2 - 1 t ,  then g c a n  be replaced by ( l+u)  ~ fore, if 2 d < 2  and 0<e__<min ' 2d 
k - -  

3 

and the allowed set of initial configurations gets larger than f20. 
(2.35) Remark. Results of [-2, 17] can be reproduced by choosing Uv(x)=x 2 if 
V={k}, Uv=O if IV[>1; if x 2 can be replaced by a bigger power then some 
more singular interactions get tractable, too. Our stability conditions are 
optimal in the absence of external field, i.e. when Uv=O for IVI= 1; cf. the case 
of point systems. We are not going to discuss stabilizing effects of external 
fields. 

3. Construction of the Transition Semigroup 

Here we show that (1.7), (1.12) and our Lipschitz condition (1.8) imply con- 
vergence of solutions of finite subsystems of (0.1) to a tempered solution. 
Conditions (1.3)-(1.8) are assumed without any reference. 

(3.1) Lemma. I f  S ~ S  is finite, and ak=0 for kr then (0.1) has a unique 
tempered solution for each initial configuration xe(2 o. 

Proof Since (1.4) implies Ck=ak=0 if kr coefficients of (0.1) are bounded and 
satisfy a uniform Lipschitz condition in such domains where 

Hs~x)= ~ (1+ U~(~)) 
V:Sc~V:FO 

remains bounded. Therefore we certainly have a unique local solution X 
defined in a random interval [0, T) such that T is a stopping time and 
lira Hs-(X(min{t, T})) = + oo if T< + oo. Observe that DkHg= DkHk, thus using 

t ~ o o  

(1.3) and (1.6), an easy calculation shows that 

d(H~e- Kt) < _ 6 e- Kt ~ 2 2 = ak(DkHk) dt 

+e-Kt  E akDkHk dWk, 
keg 

where K is a large constant. In view of (2.14) this is possible only if 
Hs-(X(t))e -Kt remains bounded in finite intervals of time, i.e. P [T=c~]  
= 1. QED 

To prove convergence of these partial solutions as S-*S, the following 
contraction property of (0.1) is needed. 

(3.2) Lemma. Let i~S, n>O, x,y~f2o, and consider such g2o-VaIued continuous 
stochastic processes X =X(t) and Y= Y(t) that X(t), Y(t) are ~r and 
satisfy (0.1) for kES~(nr) with X(0)=x and Y(0)=y, respectively. Set ~o(t, u)= 1 if 
sup max{/](X(s)),/~(Y(s))} <u, r u)=0 otherwise, and introduce 
s<t 

di(t , m, X, Y,, u) = max dk(t , X, Y,, u), 
kESi(mr) 
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where dk(t , X,  Y, u)=arctg(E[sup (p(s, u)lXk(S ) -  Yk(S)12]). I f  O<--m<n then for all 
t > 0  and u>_l we have s<t 

di(t , m, X,  Y, u) < 3di(O, m, X, Y, u) 
t 

+ M(1 + t) (ugd(]i[ + mr))" S di(s, m + 1, X,  Y, u) ds 
0 

with some M > 0 depending only on d, r, a. 

Proof  Observe that (p(t ,u)<(p(s,u)=cp2(s,u) if s<t ,  thus by the Cauchy in- 
equali ty we obtain 

(p(t, u ) [ X k ( t  ) -- Yk(t)]2 _-- < 3 ~O(t, U)[Xk(O ) -- Yk(O)l 2 
t 

+ 3tq)(t, u) ~ (Ck(X(s))- ck(Y(s)))  2 ds 
0 

t 2 

t 

=< 3 q)(0, u) [Xk(0 ) -- Yk(0)[ 2 + 3 t ~ (Ck(X (s)) -- Ck(Y(s))) 2 (p(s, U) ds 
0 

+ 3 (Crk(X(s))-- ~k(Y(s))) ~O(S, u) dWk(S ) . 

On the other  hand, (p(s, u) is S~'s-measurable, thus the maximal  inequali ty 

implies 

(3.3) 

s 

E [ s u p ( !  <4 E(p~)ds 

Integrals above 
and by (1.7) if t g d k ( s , l , X , Y , u ) > l .  Indeed, as v ~ 2  arctgv if 0 < v _ < l  
]Sk(r)] < (2 r) ~, while 2 arctg v > 1 if v > 1, we obtain that 

E [q~(s, u) ((ck(X(s)) - Ck(Y(s))) 2 + (r -- trk(Y(s)))2)] 

< 2a(2r) d (u max {r e, gd(lk[)})~ dk(s, 1, X,  Y,, u), 

thus (3.3) turns into 

(3.4) tg dk(t, X, Y, u) < 3 tg dk(O, X,  Y,, u) 
t 

m ( !  + t) (ugd([k])) a y dk(S , 1, X ,  Y,, u) ds. 
0 

E [-sup ~o(s, u)IXk(s)- ~(s)l~] _-< 3 ~(0, u)IX~(O)- ~(O)l ~ 
s<=t 

t 

+ 3 t j" EE~o(s, u) (ck(X(s)) - ek(Y(s)))23 ds 
0 

+ 12 i E[(o(s, u)(ek(X(s)) -  ak(Y(s))) 2] ds. 
0 

can be est imated by means of (1.8) if 1 >= tg dk(s, l , X ,  Y,,u), 
and 
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On the other hand, arctg(z + v) < arctg z + arctg v if z, v > 0, and arctg v < v for 
all v > 0, consequently 

(3.5) dk(t, X, ~ u)_<_ 3dk(0, X, Y, u) 

+M(1 + t) (ugd(lk[))" i dk(s, 1, X, Y, u) ds, 
0 

which implies (3.2) directly. QED 

(3.6) Corollary. I f  n is a positive integer then 

2t,+ 1 
d~(t, X,  Y, u) <(n + 1) ! (M(1 + t) (uga(lil + nr))a) "+1 

+ d~(0, m, X, Y, u) (M(1 + t) (ugd(]il + mr))a) m. 
m = O  

Proof Notice that di(t, X, Y,, u)=di(t, 0, X, Y,, u) and arctg v<2, thus iterating 
(3.2) n times we obtain (3.6). QED 

(3.7) Proposition. I f  X and Y are tempered solutions of  (0.1) then 

3 t" 
dk(t , X,  Y,, u) <= ~ dk(O , m, X, Y,, u) ~ . .  (m(1 + t) (uga(]k] + mr))a) m 

m = 0  

holds for all t>=O, u>=l and k~S. 

Proof Letting n go to infinity in (3.6) we get (3.7). QED 
Now we are in a position to summarize some basic properties of solutions 

of (0.1). 

(3.8) Theorem. For each initial configuration xef2 o there exists a unique tem- 
pered solution X = X ( t , x )  of (0.1). Moreover, if Xt")=X(")(t,x) denotes the 
partial solution defined in (3A) with X(")(O,x)=x and S=Si(nr); i~S is fixed, 
then 

P [ lira sup IXG")(s, x ) -  Xk(S, x)l : O] : 1 
n ~ c ~  s < t  

holds for all t >O and keS. 

Proof Suppose that Y is another tempered solution with Y(0)=x, then letting 
u go to infinity in (3.7), (1.12) implies P[sup [Xk(s, X)--Yk(s)t =0]  = 1 for all t >0 

s < t  

and k~S, which means uniqueness of tempered solutions. 
To prove existence of X(t, x), let us apply (3.2) for X (") and X ("+ ~) with u 

=gP(n), the associated indicator variable will be denoted as q0 (")=qr gV(n)). 
An easy calculation shows that (3.6) implies 

~ [dk(t ' X(,), X(,+ 1)gP(n))]l/2 < oO 
n = l  

for all t>0 ,  p > 0  and ksS,  whence 
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(3.9) E sup ~O(n)(S, gP(n))IX~")(S, x ) -  X~ "+ 1)(s, x)13 < 
n - - 1  s < t  

J. Fritz 

follows by the Cauchy inequality as arctg v > 2  if 0_< v_< 1. On the other hand, 

the explicit bound of (1.12) allows us to choose p=p(t) to be so large that 

(3.10) ~ PE~o(')(t, gP(')(n))=0] < oo 
n = t  

for each t>0,  thus (3.9) and the Borel-Cantelli lemma imply for all t > 0  and 
k~S that 

(3.11) ~ sup [X~')(s, x)--X(k "+ 1)(S, X)[ • O0 
n =  1 s<=t 

with probability one. This means that our sequence of partial solutions con- 
verges in the natural topology of ~V to a necessarily continuous and .J~- 
adapted process X = X ( t , x ) .  Since /~ is lower semi-continuous, Iq(X(t,x)) re- 
mains bounded in finite intervals of time, thus it is easily verified that X is a 
termpered solution of (0.1) with X(O,x)=x.  QED 

(3.12) Corollary. [at(x , A) = PEX(t, x)6A] is a semigroup of transition probabili- 
ties in the measurable space ((2o, ~2 o c~ ~s). 

Proof This follows directly from X = l i m  X ("). QED 
The transition semigroup acts in spaces of ~2 0 c~ ~S-measurable functions as 

(3.13) P, ~o = (P, p) (x) = j" Pt(x, dy) (p(y), 

regularity properties of P, are more sophisticated than in the finite dimensional 
h--{x~f~o: H(x)_<h}, I/~Ollh=SUp{ko(x)l: x~f~h}, case. Let ~2 o -  

d(x, y) = y, 2-Ikl (arctg Ix k - yk[2) t/2, 
k e S  

and notice that d(x, y) is a distance inducing the relative topology of Qo c A s. 
Introduce now C(~2o) as the space of such ~2o c~ NS-measurable (p: #o ~ 1R that 
Ikollh< oo and the restriction of qo to ~?h o is uniformly continuous for each h>  1. 
Further, let IEp(f2o) be the set of such (peC(f2o) that I[q01[h is bounded by a 
polynomial of h depending on (p, and let Cb(~?o) denote the set of bounded 
~oeC;(Qo). 

(3.14) Theorem. Suppose that (pelEp(f2o), then Ptcp exists and belongs to ~((2o), 
and lira IIP~o-~ollh=0 for each h > l ,  while PtqoOEb(f2o) whenever cpOEb((2o). I f  

2<2/d  in (1.5) then (pe(Ep(g?o) implies Prq)elf2p(QO). 
Proof It is immediate, bounds for IIP~oll~ follow from (1.12) and (2.28), re- 
spectively, conservation of continuity properties is a consequence of (3.7) and 
(1.12), while norm-continuity of P~ follows from (1.12) and (1.7) for each 
h > l .  QED 
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Finally we discuss relation of Pt to its formal generator G given by (0.3). 
The first problem is to give a reasonable definition for G. Let ID s denote the 
set of such q)~tI;p(~O) that DkCP, D2~o exist and belong to Gp(f2o) for each k~S, 
further 

~(lic~ D~ol I . -F  I1~ 2 D~ qOllh)<=mh~ 
ksS 

holds for h > l  with some m > 0  depending on ~o. Since ck~Cp(~o) and 
G2~Cp(~O), cf. (1.7), (1.8); Gq~ is a well defined element of Ce(s whenever 

(pelD s. 

(3.15) Theorem. I f  ~oeID~ then PtG~o is a II'llh-Continuous function of t >O for 
each h > 1, and 

P, ~o= q)+ i P~G(pds. 
0 

Proof Continuity of PtG(p follows from (3.14). Let P~(") and G (') denote the 
semigroup and the formal generator associated to the partial solution X ("), 
considered in (3.8). Notice that cp~ID s is a twice continuously differentiable 
function of any finite collection of its variables, thus the Ito lemma yields 

Pt(")~o=(p+ } Ps (") G~")(pds, 
0 

whence (3.15) follows directly by (1.12) and (3.8). QED 

(3.16) Remark. If ~p~ID G then (3.15) implies G(p=lim 1 t~0t(Ptqo-~o) with respect 

to each II" [lb. We do not know such dense IDclD o that P~IDcID. 

4. Reversible Evolution Laws 

In this section we are assuming that c k are given by (0.5), then the formal 
generator of our semigroup P~ has a self-adjoint form 

(4.1) G q0(x)=1 ~ exp(Hk(X)) Dk(O-k2(X) exp(-- Hk(x)) D k qo(x)). 
k e S  

In addition to (1.3)-(1.8) we are also assuming that each U v has continuous 
third derivatives. Conditions concerning e k can easily be reformulated in terms 
of cr k. 

(4.2) Theorem. I f  # is a Gibbs random field with interaction potential U and 
#((2o) = 1 then Pt is a semigroup of bounded self-adjoint operators in the Hilbert 
space IL 2 (#). 

Proof Let C2(IR s) denote the space of such bounded qoeG2(lR s) that first and 
second partial derivatives of (r are also bounded. Suppose first that 
Ck, grkeC~(IRs) and Ck~rk=O if [kl > n r, the associated semigroup and formal 
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generator are denoted by ~(n) and ~("), respectively. Observe that d # =  
exp(--Hk(X))dxkd# k, where #k is a finite measure on NS\{k}, thus integrating 
by parts we obtain that 

@1 exp(Hk) Dk(~k: exp(--Hk) D k @2) d# = - ~ ~2 Dk @~ Dk @2 d#, 

provided that @1, @2~(1~2(Rs) vanish at infinity, whence 

(4.3) ~ @1 g(") @2 d# = ~ @2 g(")@1 d# 

follows for all @1, @:EC2(lRs) from (4.1) by a simple extension procedure. 
d 

On the other hand, ~(")@~C2(IR s) and dt ~(")@= ~(") ~")@ if @~lI;2(lRS), see 

e.g. Theorem 1 of Sect. 16 in [-7]. Let @1,@20122(IR s) and introduce 

u(t,s)= ~ ~(n)@l [Ss(n)@2 d#, 

then u is differentiable and we obtain from (4.3) that 

8 

d 
i.e. dvv u(t - v, s + v) = 0. This means that u(0, t) = u(t, 0), thus 

(4.4) ~@~ ~(")@2 d# = ~@2 ~(")@l d# 

if (Pl, @2eCZ(IRS) �9 Now we are in a position to conclude (4.2). Let Pff) denote 
the transition probability kernel in the general case. Keeping n fixed we can 
approximate a k by o'kell2z(IR s) for Ikl<nr in such a way that ~(")(x,-) con- 
verges weakly to Pt(")(x, .) for each x, see [7], whence 

(4.5) ~ @1 ~t (n) @2d# = ff @2 Pt(n)@I d# 

follows by the dominated convergence theorem. Now letting n g,o to infinity, 
(3.8) yields 

(4.6) ~ @l ~t @2 d# = ~ @2 Pt @1 d# 

for @t, @20~;2(lRs) in the same way, which proves (4.2) because C2(IR s) is dense 
in IL:(#). QED 

(4.7) Corollary. I f  # is a Gibbs random field with interaction potential U and 
#(~o)=1  then #P~=# for t>0.  

Proof. If @1 = 1 then (4.6) reduces to (4.7). QED 

(4.8) Remark. If # is a probability measure satisfying (0.4) then (0.5) implies 
that # is a Gibbs random field with interaction potential U, cf. [2, 8, 11, 18]. 
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5. Weakly Interacting Systems 

In this section such situations are considered where Uv=O for ]Vl> 1 may be 
supposed, i.e. U~k~(X)=Uk(Xk)=Hk(X) if V={k} for some kES, Uv=O otherwise. 
Auxiliary functions of this kind are very suitable for the study of weakly 
interacting systems; in such cases (1.4) is not needed in the proof of (1.12), 
while (1.5) turns to be trivial. 

(5.1) Proposition. Suppose (1.3), (1.6) and Uv=O if IV[>I. Then there exists a 
universal constant K, and for each tempered solution X=X( t )  of (0.1) we have 
such d-measurable random variables, Nk,o, /C~S, p >0 ,  that P[Nk,p>u] <=e -~" 
and 

(i) Q (X (t), k, p) <= K e Kt (Q (X(0), k, p) + Nk, o) 

hold for all k~S, p> 1, where Q is the same as in (2.3); further 

(ii) I4(X(t)) < K eKt (/t(X(0)) + N), 

where N is ~4-measurable and P [ N > u ]  < e  -~". 

Proof Since f(u)<2f(v) if l u -  vl <r,  an easy. calculation shows that 

t 

(5.2) Q (X(t), k, p) <= Q (X(0), k, p) + K ~ Q (X(s), k, p) ds 
0 

t 

+ Z L -- 6 a  k (D k Hk) 2 d t ) ,  
k ~ S  0 

which proves (i) if Nk, p denotes supremum over t > 0  of the sum on the right 
hand side of (5.2). (ii) is a direct consequence of (i) and (2.16), (2.17). QED 

(5.3) Remark. (1.4) was used only in the proof of (1.12), thus all results of the 
previous two sections hold in this case, too. 

(5.4) Remark. Results by Doss-Royer [2] can be reproduced by choosing 
Hk(X)=X 2. Theorem 4.1. by Shiga-Shimizu [17] also follows in the same way. 
In [2] and [171 solutions are constructed in f2={x~lRS: lira [Xkle-~lkl=o for 

all e > 0}, but in many cases (i) is sufficient for such a result, too. 

Finally we outline a method for proving existence of stationary measures. 
For  convenience we assume that the situation is translation invariant, i.e. S is a 
d-dimensional additive subgroup of IR d and Ck(X )=co(Tkx), ak(X)=ao(Tkx) for 
each k~S, where 0 denotes the neutral dement  of S, T k is defined by (Tkx)j 
=xj_  k. Suppose that we are given such nonnegative p: 1R-~IR and q: ]R--+]R 
that p is twice continuously differentiable, q is continuous and lira q(u) = ~,  

[uj~ o~ 

(5.5) p'(xk) Ck(X)<--q(Xk)+a+ ~ bk_jq(xj)+ ~ Jk, v(X), 
j t k  V : k E V  

where a and b k are constants, bk=O if I/c[ >r,  

(5.6) ~ bk=b<l  , 
k ~ S  



308 J. Fritz 

further Jk, v : lRS ~ IR is NV-measurable, Jk, v = 0 if kq~ V or diam V > r, and 

(5.7) ~ Jk, v(X)<=a, 
k~V 

p'(xk), q(xk) and Jk, v(X) are all bounded  by a polynomial  of Hk(X, r), finally 

(5.8) aZ(x) p" (Xk) < a. 

These condit ions are natural  e.g. if q(u)=p'(u)h'(u), and 

Cg(X)=-h'(u)- ~ Uk_j(Xk--Xj) , 
jeSk(r) 

where Uk_j(V ) = Uj_k(V ) = Uk_j(- V), see [-2]. 

(5.9) Proposition. Under the above conditions there exists a translation invariant 
probability measure # on Ns such that ~ q(xk)#(dx)< ~,  ~ G (p #(dx)=0 /f (peID G 
and G (o is bounded, and the restriction of # to 62 o c~ ~s is stationary. 

Proof Let X be the solut ion (0.1) with Xk(0)=0  for all keS, and consider the 
following stochastic differential. 

d Z P(Xk)= Z (P'(Xk) Ckdt+�89 Z akP'(Xk) dWk 
k eSo (n) keSo (n) keSo (n) 

__<- ( I -b )  ~ q(Xk)dt+ ~ ~, bk_jq(Xj)dt 
keSo(n) keSo(n) j(~So(n) 

+ Z E Jk, v dt+Knddt+ Z akP'(Xk)dWk" 
keSo(n) V ~-So(n) keSo(n) 

Observe now that  the distr ibution of X is also translat ion invariant,  con- 
sequently 

(5.10) ~ E[P(Xk(t))]<Kand(l+t)+Ktn d-1 - ( l - b )  ~ iE[q(Xk(s))]ds, 
kESo(n) keSo(n) 0 

where K t and K t do not  depend on n. Therefore,  dividing by n d and letting n 
go to infinity we obtain that  

(5.11) _1 i ~ Ps( 0, dy) q(Yk)dS<M, 
t o  

where M is a universal constant ,  and 0 denotes the identically zero con- 
figuration. This means that we have a probabi l i ty  measure #t on ~ s  such that  

(5.12) ~ (p(x)#t(dx)=1 t i ~ Ps( 0, dy) q~(y)ds 
0 

if (peC;(lR s) is bounded,  further 

(5.13) ~ q (Xk) #t (dx) < M 

for each keS. Since {uelR: q(u)<v} is compact  for each v, there exists a 
probabi l i ty  measure # on Ns such that  
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(5.14) ~ (p(x) #(dx)= l im ~ q0(x) gt,,(dx) 
n ~ o ~  

holds  for each b o u n d e d  ~0~(IRS) ,  where  t n is a n  inc reas ing  sequence  t e n d i n g  
to inf ini ty .  T h u s  ~ q(Xk)#(dx)< M follows f rom (5.13), s t a t i o n a r i t y  of  the  restr ic-  
t i on  of  p to f 2 0 ~ N  s is a d i rect  c o n s e q u e n c e  of  (5.12), whi le  ~ G gdg=O follows 

f rom (5.12) by  (3.15). Q E D  

(5.15) Remark. W e  c a n n o t  p rove  g ( f 2 0 ) = l  in  general ,  b u t  f in i teness  of 
q(xk) #(dx) impl ies  #(~2)= 1 by  the  Bore l -Can te l l i  l e m m a  if q(u)>e lul~-a with  

some  ~ > 0. 

(5.16) Remark. I n  a f o r t h c o m i n g  pape r  [5] we inves t iga te  c o n d i t i o n s  i m p l y i n g  
tha t  a s t a t i o n a r y  m e a s u r e  is necessar i ly  a G i b b s  r a n d o m  field wi th  a g iven  
in t e rac t ion ,  w h e n c e  (5.9) impl ies  exis tence of G i b b s  r a n d o m  fields also in  such 
cases w h e n  genera l  resul ts  do n o t  apply,  cf. [1, 12, 16]. W e  do n o t  c la im,  of 
course ,  tha t  this is the  s imples t  way  towards  p r o v i n g  exis tence t h e o r e m s  for 
G i b b s  r a n d o m  fields. 
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