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Summary. Let {C~} be a sequence of closed convex subsets in a Hilbert 
space H. We prove that the prediction sequence {p(xlC,,)} converges for 
every x~H if and only if s-lim C n exists and is not empty. We further show 
the relation between the limit of closed convex sets and the one of a- 
subfields in probability measure spaces. 

0. Introduction 

Let (#2, I;, #) be a probability measure space, and {22,} be a sequence of a- 
subfields of I2. Now we consider the following proposition: 

(E) There exists a a-subfield Zoo such that every sequence {E(fIZ,)} of con- 
ditional expectations of f~LP(~2, X,#) converges to E(ffZoo) in LP-norm 
(l__<p< oo); 

Doob's martingale convergence theorem says that if {2;,} is monotone increas- 
ing (resp. decreasing) with respect to set inclusion, Proposition (E) is true for 
Zoo= V Zn (resp. (~ s Let liminfZ, be the lower limit and l imsup2; be the 

n n 

upper limit of {X,} with respect to set inclusion. Then the proposition is also 
true, if liminf12 =limsup12 =Zoo (see Dang-Ngoc [4]). On the other hand, 
Neveu [8, IV.3.2] introduced the notion of strong convergence of a-subfields. 
We say Zoo to be the strong limit of {2;,} if every sequence {P(AIZ,)} of 
conditional probabilities of A~X converges to P(AIZoo) in measure. Proposi- 
tion (E) is satisfied if and only if 12oo is the strong limit of {Z,}. Becker [2] 
pointed out that the proposition is the consequence of weak convergence. 
Kud6 [6] studied the notion of strong convergence of a-subfields more pre- 
cisely and applied it to the asymptotic theory of statistics. He defined another 
lower limit # - l iminfZ and upper limit #-limsupX, of {Z,}. Xoo is the strong 
limit of {2;,} if and only if #-liminf12, = #-limsup Z, = Xoo. 

In this paper we investigate analogues theorems in Hilbert spaces. The 
conditional expectation E(f[Z') of feL2(f2,X,#) relative to s is the best ap- 
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proximation o f f  by elements of L2(~2, S',/0. Hence Proposition (E) in the case 
of p = 2  is generalized as follows. Let H be a Hilbert space, and {C,} be a 
sequence of, non-empty, closed convex subsets of H. Then we consider the 
following proposition: 

(P) There exists a closed convex subset Coo of H such that every sequence 
{p(xl C,)} of best approximations of x ~ H  converges to p(xl Coo); 

Brunk [-3] showed that if {C,} is monotone increasing (resp. decreasing and if 

(~ C , +  0) with respect to set inclusion, Proposition (P) is true for Coo = U C, 
n n 

(resp. ('] C,), and applied it to the problem of maximum likelihood estimation. 
n 

We generalize it for neither increasing nor decreasing case. Mosco [-7] defined 
the strong lower limit s-liminf C, and the weak upper limit w-limsup C,. In 
Chap. 1 we prove that if s-liminf C,=w-l imsup C,,= Cooq=O, Proposition (P) is 
satisfied, and that it is also the consequence of weak convergence. In Chap. 2 
we study the strong lower limit and the weak upper limit of a sequence of 
subspaces of H, and in Chap. 3 we see the relation between the limit of closed 
convex sets and the limit of a-fields. The lower limit and the upper limit of a 
sequence of a-subfields are corresponding to the strong lower limit and the 
weak upper limit of the sequence of subspaces defined by the a-subfields in 
L2(f2, S,/z) respectively. 

1. The Limit of a Sequence of Closed Convex Sets 

Let H be a Hilbert space with inner product ( .  I")  and norm I1 " II, and ~ be 
the set of all, non-empty, closed convex subsets of H. For any xEH and C ~  
there exists a unique closest point p(xlC) of C to x. The following lemma is 
well known (see, for example, Brunk [-3]). 

Lemma 1.1. Let C ~  and x, ye l l .  Then 
(i) x' = p(x l C) if and only if x' ~ C and Re ( x - x' l x' - z ) > O for any z ~ C ; 
(ii) qhP(Xl C ) -p ( y l  C)l] < I[x-yll ;  That is, p(.  I C) is non-expansive. 

Let { C,} be a sequence in ~. We can define a lower limit liminf C, and an 
upper limit limsup C, of {Cn} with respect to set inclusion as 

liminfCo= l msupCn= On, 
m = l  n = m  m = l  n = m  

where U0-means the closed convex hull. On the other hand, Mosco [7] defined 
a strong lower limit and a weak upper limit of a sequence of subsets of Banach 
spaces. Following it, we define a strong lower limit s-liminf C, and a weak upper 
limit w-limsup C n of {C,} as 

s-liminf C , = { x ~ H :  x , - - ,x  as n--.oo, xn~C, for every n}, 

w-limsup C =Ud-{x~H: x,,--+ x (weakly) as n'--+ o% x,,~C,, 

for every n', {C,,} is a subsequence of {C,}}. 
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If  s-l iminf C . = w - l i m s u p  C., then the c o m m o n  value is denoted  by s-lim C.. 
Some e lementary  propert ies  and examples  are seen in [-7]. 

Proposit ion 1.2. Let { C.} be a sequence in ~. 
(i) s - l imin fC .={xcH:  p(xl C . ) ~ x  as n ~ } ;  

(ii) s-l iminf C. and w-limsup C. are in ~ w {~}; 
(iii) l iminf C. ~ s-l iminf C,, = w-l imsup C,, = l imsup C n. 

Proof (i): I f  xEs- l iminf  C., then 

[Ix-p(xl C.)l[ < ]lx-x~ 

as n ~ oo. The converse is trivial. 

(ii): Let x Es-liminf C,. Then for any 5 > 0  there exists XoeS-liminf C,  with 
IIx-xolE<~/3. On the other  hand, by (i) we have an n o such that  [Ix o 
-P(Xo[ Q)II <e/3  for any n>n o. Hence  for n> n  o 

IIx-p(xl C.)ll < Ilx-xoll + Ilxo -p(Xo I C.)ll 

+ II p(Xo[ c ~ ) -  p(xl c.)II 

< 2 .  IIx-xoll + rlxo-p(xol C.)ll <5. 

Thus IIx-p(xlC~)ll~O as n ~ ,  and we have x~s - l im in fC , .  Therefore  s- 
l iminf  C,, is closed. It is clear f rom the definition that  s-l iminf C, is convex and 
w-l imsupC, ,  is closed convex. I f  C , = { x , }  and IIx.ll--,oo as n - - ,~ ,  then s- 
l iminf C, = w-l imsnp C n = 0. 

(iii): The first and second inclusions are clear f rom the definition. The  last 
one follows f rom the fact that  closed convex sets are weakly closed. [ ]  

Lemma 1.3. Let { C,} be a sequence in ~ such that s-liminf C, ~= O. Then for every 
xEH 

(i) sup Ilp(xl C,)I[ < ~ ;  
n 

(ii) I f  {p(xl C~)} weakly converges to x, then IIx-p(xl C.)lr--,0 as n--, oo. 

Proof Let x o be an element  of  s-l iminf C,. Since {p(x o] C,)} is a no rm converg-  
ing sequence by Propos i t ion  1.20) , sup I[p(Xol C.)ll < oo. On the other  hand  

tl 

IlNxl C.)ll < Ilp(xl c~)-xl l  + Ilxll 

_-< IIp(xol c . ) - x l l  + Ilxll 

< Ilp(xol C.)ll +2 .  Ilxll, 

for every n. Hence  we have (i). If  {p(xl C~)} weakly converges to x, 

]Lx-p(x[ C,)ll 2 < I I x - p ( x l  c.)l[z+ R e ( x - p ( x l  C,)Ip(x I C , ) -  p(xo I C,))  

= Re ( x - p ( x ]  C,)[X-Xo)  + Re ( x  -p (x]  C,)lx o - p ( x  o ]C,))  

< Re ( x - p ( x ]  C , ) l x - x o )  

+(llxll + Ilp(xl C.)ll) i lxo-p(xol C,)ll--,0, 

as n ~  ~ .  Thus we have (ii). [ ]  
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Theorem1.4. Let {Cn} be a sequence in ~. Then the following assertions are 
equivalent: 

(i) s-lim C~ exists and is not empty; 
(ii) s-liminfC, is not empty and there exists C ~  such that {p(x]C,)} 

weakly converges to p(x] C~) for every x e H ;  
(iii) {p(x[ C,)} is a norm convergence sequence for every xeH.  
Moreover, if these assertions are satisfied, {p(x]C,)} converges to p(x[s- 

lim C,) for every x~H. 

Proof (i) ~ (ii): Let Coo=s-lira C,. For any x~H, by Lemma 1.3(i), {p(x] C,)} is 
norm bounded. Hence for any subsequence {p(x] C,,)} of {p(x[ C,)} there exists 
a subsequence {p(x] C,,,)} which weakly converges to some x'~H. Then x'ew- 
limsup C,=Coo. On the other hand, for any yeCoo, since y=s-l imp(ylC,) ,  we 
have 

]]x-x'l[ <l im IIx-p(x[ q.,)L/<lim 1Ix -p(y]  C...)[I = IIx-yll, 

where the first inequality follows from weak lower semicontinuity of norm 11 " I]- 
Thus x '=p(x l  C a) and we have (ii). 

(ii) ~ (iii): Any x e H  is fixed. Since {p(p(xl Co~)l C,,)} weakly converges to 
p(x[ Coo), by Lemma 1.3(ii), we have p(xl C~)=s- l imp(p(xl  C~)[C,). Hence by 
Lemma 1.1 (i) 

limsup l ip(x ] C,)ll 2 < limsup I I p (x I C,)ll 2 

+ liminf ( x  - p(x ] C.)]p(x] C,,) - p(p (x ] Coo)] C~)) 

= IIp(xl c~)ll 2. 

On the other hand, because of weak lower semicontinuity of norm hi" I[, we 
have liminf Ilp(xl C,)ll > LIp(xl Co~)ll. Thus lim IIp(xl C,)II = [lp(xl Coo)ll, and by one 
of the convex properties of Hilbert space norm (see, for example, Day [5]) we 
have p(xl Coo) = s-lim p(xl Q). 

( i i i )~( i ) :  We put Coo={s-limp(xlC,): xeH} .  It is clear that Coocs- 
liminf C n. Now assume that x is an element such that there exist a subsequence 
{C,,} of {C,} and x, ,eC,,  for every n' with x,,---,x (weakly) as n'--. oo. Let y=s -  
limp(x[ C,). From Lemma 1.1 we have 

Re ( x - p ( x [  C,,)lp(x] C, , ) -x , , )  ~0  

for every n'. Tending n' to o% R e ( x - y l y - x ) > O .  Therefore x = y ~ C ~ .  Thus 
Coo = s-liminf C, = w-limsup C,. [] 

If {C,} is increasing (resp. decreasing and if ~ C,+0),  then by 
n 

Proposition 1.2(iii) and the above theorem it follows that {p(xl C,)} converges 

t o p  (x ,01 Cn)(reap.  p (x n@l C , ) ) f o r  every xeH.  See Brunk [3]. 
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2. The Limit of a Sequence of Subspaees 

Let {H,} be a sequence of subspaces (i.e., closed linear manifolds) of H. Then 
we can easily see that  both s- l iminfH n and w-limsup H,  are subspaces of H. 

Proposition 2.1. Let {H,} be a sequence of subspaces of H. Then 

(i) s-liminfH~ = (w-limsup H,) • 
(ii) w-limsup H~ =(s-l iminfH,)  • 

Proof For the simplicity we denote p ( ' lH , )  by P,, which is the orthogonal  
projection onto H, ,  for every n. Suppose that x~s-l iminfH~. Then {P,x} 
converges to 0. Let y be any element such that there exists a subsequence {H,,} 
and y,, ~H,, for every n' with y,, -~ y (weakly) as n' --+ oo. Then 

I(xlY)l = l i m  I(x ly,,)l = l i m  [(P., xIy,,)l 

< l i m  lIP,, xll. Hy,,l[ =0.  

Therefore x~(s-liminfH,) • Conversely suppose that  xe(w-l imsupH,)  • It suf- 
fices to prove that {P, x} converges to 0. Since {P~ x} is norm bounded, for any 
subsequence {P~, x} of {P~ x} there exists a subsubsequence {P,,, x} which weakly 
converges to some yell.  Then yew-l imsup H n. Hence we have 

HPn,, xllN=(Pn,, XIX) ---~(ylx) =0, 

as n"~  oo. Therefore {P,,, x} converges to 0, and {P, x} does. Thus (i) is proved. 
(ii) follows from (i). [] 

Theorem 2.2. Let {H,} be a sequence of subspaces of H. Then 
(i) s- l iminfH, is the maximum subspace among subspaces H' of H with 

liminf Ilp(xlH,)l[ >-_ ][p(xlH')l], (1) 

for all x~H; 
(ii) w-limsup H, is the minimum subspace among subspaces H' of H with 

limsup lip (x I H,) ]l < I I p (x I H') l I, (2) 
for all xeH. 

Proof We denote p(.  IH') (resp. p(-lHn) ) by P'  (resp. P,). 
(i) We first show that H ' = s - l i m i n f H ,  satisfies (1). Since P , x ~ x  as n--, oo 

for every xeH', 
lIP, x II 2= IIP~ P' x + P,(1 - P') xll 2 

=(P.P' xlP' x}+(PnP' x l (1 -P ' )x}  

+ ((1 - P') x [P~ P' x)  + II P.(1 - p') x II 2 

> (PnP' x[P' x)  + ( P ~ P ' x l ( 1 - P ' ) x )  

+((1--P ' )x lP~P'x)- - - ,  liP' xl[ 2, 

as n - ~  for any x~H. Conversely we shall show that  any subspace H' of H 
satisfying (1) is contained in s-l iminfH..  It suffices to prove that {P~P'x} 
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converges to P'x for any x~H. From (1) it follows that 

IlP' xll2 <liminf HP~e' xHe <limsup HP~P'xll2 < IlP'x[I 2, 

and that lim ILP~P'xl] = ]lP'x]]. Hence 

I[P'x-P~P' xll2= I[e' x l l2-(e 'x lP~P'  x ) - ( ~  P' xlP' x )  + (P~P' xlP' x)  

= IIP'xll 2 -  [IP~ P' xll 2 ~ 0 ,  
a s  n --* oo. 

(ii): Now suppose that H '=w-l imsupH~.  Then H'•  and from 
(1) we have 

l iminf  I1(1- P~)x IIe _-> I1(1- P') xll 2, 
for any xeH. Hence 

I[xll 2 - 1 i m s u p  rlP~ xll 2 > Ilxrl 2 -  riP' x[I 2, 

and we have limsup IIP~xrl < IIP'xll for any x~H. Conversely let H'  be a sub- 
space of H with (2). Then by the converse calculation above we have H ' 2 w -  
limsup H..  [] 

3. The Limit of  a Sequence of a-fields 

Let (f2, S, #) be a probability measure space. For  the simplicity we assume that 
S and every a-subfield of S considered in this section are #-complete (i.e., all 
#-null sets are contained). Given a a-subfield 22', we denote by LP(22 ') the 
Banach space of p-th integrable S'-measurable functions, and by E( . IS ' )  the 
conditional expectation with respect to Z'. The norm on LP(X) is denoted by 

I['llp. 
Let {22n} be a sequence of a-subfields. Kud~ 1-6] defined a lower limit #- 

l iminfS n and an upper limit #-limsup 22, as follows: 
(i) #-liminfS, is the a-subfield S o such that if S '=So,  then for every 

bounded measurable function f 

liminf IIE(flSo)[I 1 ~ ]lE(f IS')II 1, (1) 

and that any a-subfield S' satisfying (1) is contained in So; 
(ii) #-l imsupS, is the a-subfield Z o such that if Z'=So,  then for every 

bounded measurable function f 

l imsup IIE(f IS.)II 1 ~ IlE(flS')]l 1 ,  

and that any a-subfield 22' satisfying (2) contains S o. 

Theorem 3.1 (Kud~ I-6]). Let {Sn} be a sequence of a-subfields. Then 

#-liminf22n= {A ~22 : there exist An ~S . for every n with 

# (A~AA)~O as n ~ } .  

(2) 
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On the other hand, since {L2(X,,)} is a sequence of subspace of Hilbert 
space L2(S), we can define s-liminfL2(Sn) and w-limsupL2(N,) as is defined in 
the previous section. 

Theorem3.2. Let {S,} be a sequence of a-subfields. Then s-liminfL2(X,)=L2(#- 
liminfSn). 

Proof We first show that there exists a a-subfield S' such that L2(N')=s - 
liminfLZ(Sn). It suffices to prove that s-liminfL2(Sn) is a lattice and has 
constant functions (see Schaefer [10, Proposition 11.2]). Let f and g belong to 
s-liminfL2(X~). Then there exist fn, gn~L2(Z,) for every n such that f , ~ f  and 
g , ~ g  as n--+ oo in the square mean. Since (avb-cvd)2<=(a-c)2+(b-d)2  for 
any a, b, c, deN,  where a v b (resp. c v d) is the maximum of {a, b} (resp. {c, d}), 
we have that [If, v g , , - f v g l ] 2 < l l L  2 - f l l 2+ l lg , -g l ]2 - -+0  as n--*c~. Hence we 
have f v ges-liminfL2(S,), because f ,  v g, eL2(X,) for every n. It is clear that s- 
liminfL2(N,) has constant functions. Hence we define X' as the a-subfield such 
as L2(U)=s-liminfL2(N,). If 2 '  =#-liminfN, is shown, the theorem is proved. 

Let A belong to X'. Then there exist f ,  eL2(N,) for every n such that f,, -~ 1A 
as n-+ oo in the square mean and hence in measure. For each n we define A, 
={co~f2: s  Then #(A, AA)~O as n ~ o o ,  because A, AA={co~f2: 
(1A(CO)=0 and s or (1A(C0)=I and f ,(co)<l/2)}c{co~f2: I1A(CO ) 
--s for every n. Since A , e s  for every n, by Theorem3.1 we have 
Ae#-l iminfS, .  

Conversely let Ae#-l iminfs  Then by Theorem3.1 there exist A , e s  for 
every n such that #(A,,AA)--,O as n--* oo. Hence 

l[ 1A.-  1All 2 =~ [1A.- 1A[ 2 d#=  ~ 1A~AA d#=#(A, A A ) ~  O, 

as n--* oo. Thus 1A~s-liminfL2(S,) and A~U. [] 

Theorem3.3. Let {Z,} be a sequence of a-subfields. Then #-liminfZ, is the 
maximum a-subfield among a-subfields Z' of Z with 

liminf I1E(f 12,)1[ 2 ~ IIE(fl U) 112, (3) 
for every feL2(S). 

Proof Since E( . ]S, )  is the orthogonal projection onto L2(S,) for every n and 
from Theorem3.2 E(.]#-l iminfS,)  is the One onto s-liminfL2(S,), it follows 
from Theorem 2.2 (i) that S ' =  #-liminfS, satisfies (3). 

Conversely let S' be a a-subfield satisfying (3). Then by Theorem 2.2(i) and 
Theorem 3.2 we have L2(#-liminfS,)= L2(U). Hence #-liminfS, ~ U. [] 

Theorem3.4. Let {X,} be a sequence of a-subfields. Then for any f~Ll(S) the 
following assertions are equivalent: 

(i) f is #-liminfX,-measurable; 
(ii) l lE(f lX,)-  f l l l  --*0 as n--, oo. 

Proof ( i ) ~  (ii): Since feL~(#-liminfS,), for any e > 0  there exists focL2(#- 
liminfS,) with II f-)Co[[ 1 < 8/3. By Theorem 3.2 and Proposition 1.2 (i) we have 
that IIg(folS.)-fo[12--,O as n--, oo. Therefore there exists n o such that for any 
n ~ n  o 
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HE(f I Z n ) - f i l l  ~ qlE(f 122~)-E(fo [Z~)[I 1 

+ ILE(folSn)- foil 1 + lifo - f i l l  

< 2 - I I f - f o L ]  ~ + [IE(folS,)-foll2<~. 

Thus HE(f lX , ) - fH1 --,0 as n ~  oo. 
(ii) ~ (i): We define M = { f e D ( S ) :  IlE(f122n)-fl[1--*O as n ~ o o } .  Let  f, 

g eM.  Then  in the same way of the p roof  of Theorem3.2  we have 
NE(flZ,,) v E ( g l Z n ) - f  v g][1 --* 0 as n ~ oo. Therefore  

[IE(f v g l Z n ) - f  v gill --< IlE(f v g{X,) - E( f lN,)  v E(g IS~)ll 1 

+ l iE(fiX.) v g ( g l Z n ) - f  v gl], 

= ItE(f v g -  E ( f l S , )  v E(glgn) lS,)ll x 

+ I[E(flS,)  v E ( g l X , ) - f  v gllx 

<2.  [If v g - E ( f l S ~ )  v E(g[Sn)[[ 1 -+0, 

as n ~  oe. Thus f v g ~ M .  It can be easily seen that  M is closed linear and has 
constant  functions. Hence there exists a o-subfield 27' such that M = L  1(22'). For  
any f eL~(22 ') 

l i e ( f  IS,) - f l l  ~ < I lE( f lS~)- f l l  ~" IlE(f IZ,) - f l l ~  

< 2 .  [ I f l l ~  IIE(NIS,)-TII,--,0, 

as n + o o .  Therefore  feLa(#-liminfS~). Thus L~(X')cL2(#-liminfX,). Taking 
here the closure in D - n o r m  for bo th  sides, we have M c D ( # - l i m i n f N , ) .  [ ]  

Let  {22,} be a sequence of o-subfields of 22. We define (s as the family of 
a-subfields X' of Z with 

l imsup IIg(flS.)llp< IIE(f122')l[p, 

for every bounded  measurable function f (p = 1, 2). 

L e m m a  3.5. I f  X ' e ( X ) l  k_3(22)2 , then 

l imsup IIE(E(flS')lS.)ll~=limsup IlE(flSOIIp, 
for every bounded measurable function f and p = 1, 2. 

Proof. Let S ' e (E) l .  Then  for every bounded  measurable function f we have 

limsup I lE(E(f lZ ' ) -  f122,)11 1 < I[E(E(f122')- flS') l l  1 =0 .  
Hence  

Ilimsup IIE(E(flS')122,)lll-limsup IlE(f122~)ll 11 

< l imsup IlE(E(f 1 I:') IS . ) -  E(flSn) lll = O. 

On the other  hand, for every bounded  measurable  function f 

limsup I[E(E(flS')-flS011 
< limsup ][E(E(f122')-flS,)l[~. I lE(E(f lZ ' ) -  f122o)11 1 

_-< I/E(f IX ' ) - f l ]  oo l imsup HE(E(flS') - f122,)ll ~ = 0. 
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Hence  

Ilimsup IIE(E(f IS')IS ,)I[ 2 - l i m s u p  I[g(f lS,)[12l 

< l imsup l i E ( E ( f l S ' ) l S . ) - E ( f l X . ) l l  2 =0.  

The l e m m a  is proved  for S '~(Z)2 similarly. [ ]  

Lemma 3.6. I f  S' ~(X)l and Z"E(Z)2 , then Z' c~S" e(S)l c~(S)z. 

Proof We denote  E ( . ]S ' )  and  E ( - IS" )  by E'  and E" respectively. Let  f be a 
bounded  measurable  function. We show that  l imsup IIE(flS,)lll < ]l(E'E')mfl[1 
for every m e N .  This is true for m = l .  We assume that  it is true for m=k.  Then 
using L e m m a  3.5 twice, we have that  

II(E' E") k+ 1 f i l l  = II(E' E')kE'E' f l]~ = l imsup IlE(E' E"flZ,) l l l  

=limsup IIE(flS.)lll. 

Hence  it is true for m = k + 1. Tending here m ---, o% we have 

limsup II E( 1s --< II E(flX' ~ S")II1 

(see [6, L e m m a  3.2]). We can prove  this inequali ty for n o r m  II" II 2 in the same 
way. Thus we have the lemma.  [ ]  

Theorem3.7.  Let {X,} be a sequence of a-subfields. Then #- l imsupX,  is the 
minimum a-subfield among a-subfields 22' of  22 with 

l imsup II E ( f  1 22,)II 2 _-< II E ( f  122')II 2, (4) 
for every feL2(X). 

Proof We can easily see that  (4) is satisfied for every fcL2(S)  if and only if it is 
so for every bounded  measurab le  function fl On the other  hand,  by L e m m a  3.6 
we have (22)1=(S)2. Hence  the theorem is proved.  [ ]  

Theorem 3.8. Let {22,} be a sequence of a-subfields. Then the closed linear lattice 
generated by w-limsup L2(S,) is equal to L2(#-limsup S,). 

Proof It  is the direct consequence of Theo rem 2.2(ii) and T h e o r e m  3.7. [ ]  
We discuss in [13] the relat ions between the results of  Sect. 1 and 2 and 

the geometr ical  propert ies  of  Banach  space norms.  On the other  hand,  a 
referee poin ted  out in the light of  his unpubl ished works  that  the theorems in 
Sect. 3 hold on general L p spaces (1 < p <  oo). The au thor  would like to express 
his grat i tude to this referee for his very useful comment s  and also to Professor  
H. Umegak i  for his valuable  advice and constant  encouragement .  
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