Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1983

Convergence of Closed Convex Sets and σ -Fields

Makoto Tsukada

Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan

Summary. Let $\{C_n\}$ be a sequence of closed convex subsets in a Hilbert space H. We prove that the prediction sequence $\{p(x|C_n)\}$ converges for every $x \in H$ if and only if s-lim C_n exists and is not empty. We further show the relation between the limit of closed convex sets and the one of σ -subfields in probability measure spaces.

0. Introduction

Let (Ω, Σ, μ) be a probability measure space, and $\{\Sigma_n\}$ be a sequence of σ -subfields of Σ . Now we consider the following proposition:

(E) There exists a σ -subfield Σ_{∞} such that every sequence $\{E(f|\Sigma_n)\}$ of conditional expectations of $f \in L^p(\Omega, \Sigma, \mu)$ converges to $E(f|\Sigma_{\infty})$ in L^p -norm $(1 \leq p < \infty);$

Doob's martingale convergence theorem says that if $\{\Sigma_n\}$ is monotone increasing (resp. decreasing) with respect to set inclusion, Proposition (E) is true for $\Sigma_{\infty} = \bigvee \Sigma_n$ (resp. $\bigcap_n \Sigma_n$). Let $\liminf \Sigma_n$ be the lower limit and $\limsup \Sigma_n$ be the upper limit of $\{\Sigma_n\}$ with respect to set inclusion. Then the proposition is also true, if $\liminf \Sigma_n = \limsup \Sigma_n = \Sigma_{\infty}$ (see Dang-Ngoc [4]). On the other hand, Neveu [8, IV.3.2] introduced the notion of strong convergence of σ -subfields. We say Σ_{∞} to be the strong limit of $\{\Sigma_n\}$ if every sequence $\{P(A|\Sigma_n)\}$ of conditional probabilities of $A \in \Sigma$ converges to $P(A|\Sigma_{\infty})$ in measure. Proposition (E) is satisfied if and only if Σ_{∞} is the strong limit of $\{\Sigma_n\}$. Becker [2] pointed out that the proposition is the consequence of σ -subfields more precisely and applied it to the asymptotic theory of statistics. He defined another lower limit μ -liminf Σ_n and upper limit μ -limsup $\Sigma_n = \Sigma_{\infty}$.

In this paper we investigate analogues theorems in Hilbert spaces. The conditional expectation $E(f|\Sigma')$ of $f \in L^2(\Omega, \Sigma, \mu)$ relative to Σ' is the best ap-

proximation of f by elements of $L^2(\Omega, \Sigma', \mu)$. Hence Proposition (E) in the case of p=2 is generalized as follows. Let H be a Hilbert space, and $\{C_n\}$ be a sequence of, non-empty, closed convex subsets of H. Then we consider the following proposition:

(P) There exists a closed convex subset C_{∞} of H such that every sequence $\{p(x|C_n)\}$ of best approximations of $x \in H$ converges to $p(x|C_{\infty})$;

Brunk [3] showed that if $\{C_n\}$ is monotone increasing (resp. decreasing and if $\bigcap_n C_n \neq \emptyset$) with respect to set inclusion, Proposition (P) is true for $C_{\infty} = \bigcup_n \overline{C_n}$ (resp. $\bigcap_n C_n$), and applied it to the problem of maximum likelihood estimation. We generalize it for neither increasing nor decreasing case. Mosco [7] defined the strong lower limit s-liminf C_n and the weak upper limit w-limsup C_n . In Chap. 1 we prove that if s-liminf $C_n =$ w-limsup $C_n = C_{\infty} \neq \emptyset$, Proposition (P) is satisfied, and that it is also the consequence of weak convergence. In Chap. 2 we study the strong lower limit and the weak upper limit of a sequence of subspaces of H, and in Chap. 3 we see the relation between the limit of closed convex sets and the limit of σ -fields. The lower limit and the upper limit of a sequence of σ -subfields are corresponding to the strong lower limit and the weak upper limit of z-subfields in $L^2(\Omega, \Sigma, \mu)$ respectively.

1. The Limit of a Sequence of Closed Convex Sets

Let *H* be a Hilbert space with inner product $\langle \cdot | \cdot \rangle$ and norm $|| \cdot ||$, and \mathfrak{C} be the set of all, non-empty, closed convex subsets of *H*. For any $x \in H$ and $C \in \mathfrak{C}$ there exists a unique closest point p(x|C) of *C* to *x*. The following lemma is well known (see, for example, Brunk [3]).

Lemma 1.1. Let $C \in \mathfrak{C}$ and $x, y \in H$. Then

(i) x' = p(x|C) if and only if $x' \in C$ and $\operatorname{Re} \langle x - x'|x' - z \rangle \ge 0$ for any $z \in C$;

(ii) $||p(x|C) - p(y|C)|| \le ||x - y||$; That is, $p(\cdot |C)$ is non-expansive.

Let $\{C_n\}$ be a sequence in \mathfrak{C} . We can define a *lower limit* liminf C_n and an *upper limit* limsup C_n of $\{C_n\}$ with respect to set inclusion as

$$\operatorname{liminf} C_n = \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} C_n, \quad \operatorname{limsup} C_n = \bigcap_{m=1}^{\infty} \overline{co} \bigcup_{n=m}^{\infty} C_n,$$

where \overline{co} means the closed convex hull. On the other hand, Mosco [7] defined a strong lower limit and a weak upper limit of a sequence of subsets of Banach spaces. Following it, we define a *strong lower limit* s-liminf C_n and a *weak upper limit* w-limsup C_n of $\{C_n\}$ as

s-liminf
$$C_n = \{x \in H : x_n \to x \text{ as } n \to \infty, x_n \in C_n \text{ for every } n\},\$$

w-limsup $C_n = \overline{co}\{x \in H : x_{n'} \to x \text{ (weakly) as } n' \to \infty, x_{n'} \in C_{n'}\$ for every n' , $\{C_{n'}\}$ is a subsequence of $\{C_n\}\}.$

Closed Convex Sets and σ -Fields

If s-liminf C_n = w-limsup C_n , then the common value is denoted by s-lim C_n . Some elementary properties and examples are seen in [7].

Proposition 1.2. Let $\{C_n\}$ be a sequence in \mathfrak{C} .

- (i) s-liminf $C_n = \{x \in H : p(x | C_n) \to x \text{ as } n \to \infty\};$
- (ii) s-liminf C_n and w-limsup C_n are in $\mathfrak{C} \cup \{\emptyset\}$;
- (iii) $\liminf C_n \subset \text{s-liminf } C_n \subset \text{w-limsup } C_n \subset \limsup C_n$.

Proof. (i): If $x \in \text{s-liminf } C_n$, then

$$||x - p(x | C_n)|| \le ||x - x_n|| \to 0,$$

as $n \to \infty$. The converse is trivial.

(ii): Let $x \in s$ -limitif C_n . Then for any $\varepsilon > 0$ there exists $x_0 \in s$ -limitif C_n with $||x - x_0|| < \varepsilon/3$. On the other hand, by (i) we have an n_0 such that $||x_0 - p(x_0||C_n)|| < \varepsilon/3$ for any $n \ge n_0$. Hence for $n \ge n_0$

$$\begin{aligned} \|x - p(x | C_n)\| &\leq \|x - x_0\| + \|x_0 - p(x_0 | C_n)\| \\ &+ \|p(x_0 | C_n) - p(x | C_n)\| \\ &\leq 2 \cdot \|x - x_0\| + \|x_0 - p(x_0 | C_n)\| \leq \varepsilon \end{aligned}$$

Thus $||x - p(x|C_n)|| \to 0$ as $n \to \infty$, and we have $x \in \text{s-liminf } C_n$. Therefore sliminf C_n is closed. It is clear from the definition that s-liminf C_n is convex and w-limsup C_n is closed convex. If $C_n = \{x_n\}$ and $||x_n|| \to \infty$ as $n \to \infty$, then sliminf $C_n = \text{w-limsup } C_n = \emptyset$.

(iii): The first and second inclusions are clear from the definition. The last one follows from the fact that closed convex sets are weakly closed. \Box

Lemma 1.3. Let $\{C_n\}$ be a sequence in \mathfrak{C} such that s-limiting $C_n \neq \emptyset$. Then for every $x \in H$

- (i) $\sup \|p(x|C_n)\| < \infty;$
- (ii) If $\{p(x|C_n)\}$ weakly converges to x, then $||x-p(x|C_n)|| \to 0$ as $n \to \infty$.

Proof. Let x_0 be an element of s-liminf C_n . Since $\{p(x_0 | C_n)\}$ is a norm converging sequence by Proposition 1.2(i), $\sup ||p(x_0 | C_n)|| < \infty$. On the other hand

$$\|p(x|C_n)\| \le \|p(x|C_n) - x\| + \|x\|$$

$$\le \|p(x_0|C_n) - x\| + \|x\|$$

$$\le \|p(x_0|C_n) + 2 \cdot \|x\|,$$

for every *n*. Hence we have (i). If $\{p(x|C_n)\}$ weakly converges to x,

$$\begin{aligned} \|x - p(x \| C_n)\|^2 &\leq \|x - p(x \| C_n)\|^2 + \operatorname{Re}\langle x - p(x \| C_n) | p(x \| C_n) - p(x_0 \| C_n) \rangle \\ &= \operatorname{Re}\langle x - p(x \| C_n) | x - x_0 \rangle + \operatorname{Re}\langle x - p(x \| C_n) | x_0 - p(x_0 \| C_n) \rangle \\ &\leq \operatorname{Re}\langle x - p(x \| C_n) | x - x_0 \rangle \\ &+ (\|x\| + \|p(x \| C_n)\|) \cdot \|x_0 - p(x_0 \| C_n)\| \to 0, \end{aligned}$$

as $n \to \infty$. Thus we have (ii).

Theorem 1.4. Let $\{C_n\}$ be a sequence in \mathfrak{C} . Then the following assertions are equivalent:

(i) s-lim C_n exists and is not empty;

(ii) s-liminf C_n is not empty and there exists $C_{\infty} \in \mathfrak{C}$ such that $\{p(x|C_n)\}$ weakly converges to $p(x|C_{\infty})$ for every $x \in H$;

(iii) $\{p(x|C_n)\}$ is a norm convergence sequence for every $x \in H$.

Moreover, if these assertions are satisfied, $\{p(x|C_n)\}$ converges to $p(x|s-\lim C_n)$ for every $x \in H$.

Proof. (i) \Rightarrow (ii): Let $C_{\infty} =$ s-lim C_n . For any $x \in H$, by Lemma 1.3 (i), $\{p(x|C_n)\}$ is norm bounded. Hence for any subsequence $\{p(x|C_n)\}$ of $\{p(x|C_n)\}$ there exists a subsequence $\{p(x|C_{n''})\}$ which weakly converges to some $x' \in H$. Then $x' \in$ w-limsup $C_n = C_{\infty}$. On the other hand, for any $y \in C_{\infty}$, since y = s-lim $p(y|C_n)$, we have

$$||x - x'|| \le \lim ||x - p(x|C_{n'})|| \le \lim ||x - p(y|C_{n'})|| = ||x - y||,$$

where the first inequality follows from weak lower semicontinuity of norm $\|\cdot\|$. Thus $x' = p(x|C_{\infty})$ and we have (ii).

(ii) \Rightarrow (iii): Any $x \in H$ is fixed. Since $\{p(p(x|C_{\infty})|C_n)\}$ weakly converges to $p(x|C_{\infty})$, by Lemma 1.3 (ii), we have $p(x|C_{\infty}) = \text{s-lim } p(p(x|C_{\infty})|C_n)$. Hence by Lemma 1.1 (i)

$$\begin{split} \limsup \|p(x|C_n)\|^2 &\leq \limsup \|p(x|C_n)\|^2 \\ &+ \liminf \langle x - p(x|C_n)|p(x|C_n) - p(p(x|C_\infty)|C_n) \rangle \\ &= \|p(x|C_\infty)\|^2. \end{split}$$

On the other hand, because of weak lower semicontinuity of norm $\|\cdot\|$, we have $\liminf \|p(x|C_n)\| \ge \|p(x|C_\infty)\|$. Thus $\lim \|p(x|C_n)\| = \|p(x|C_\infty)\|$, and by one of the convex properties of Hilbert space norm (see, for example, Day [5]) we have $p(x|C_\infty) = s-\lim p(x|C_n)$.

(iii) \Rightarrow (i): We put $C_{\infty} = \{s \text{-lim } p(x | C_n): x \in H\}$. It is clear that $C_{\infty} \subset s \text{-liminf } C_n$. Now assume that x is an element such that there exist a subsequence $\{C_{n'}\}$ of $\{C_n\}$ and $x_{n'} \in C_{n'}$ for every n' with $x_{n'} \to x$ (weakly) as $n' \to \infty$. Let $y = s \text{-lim } p(x | C_n)$. From Lemma 1.1 we have

$$\operatorname{Re}\langle x - p(x|C_{n'})|p(x|C_{n'}) - x_{n'}\rangle \geq 0$$

for every *n'*. Tending *n'* to ∞ , Re $\langle x-y|y-x\rangle \ge 0$. Therefore $x=y\in C_{\infty}$. Thus $C_{\infty}=$ s-liminf $C_{n}=$ w-limsup C_{n} . \Box

If $\{C_n\}$ is increasing (resp. decreasing and if $\bigcap_n C_n \neq \emptyset$), then by Proposition 1.2 (iii) and the above theorem it follows that $\{p(x|C_n)\}$ converges to $p\left(x \left| \bigcup_{n=1}^{\infty} C_n \right) \right)$ (resp. $p\left(x \left| \bigcap_{n=1}^{\infty} C_n \right) \right)$ for every $x \in H$. See Brunk [3]. Closed Convex Sets and σ -Fields

2. The Limit of a Sequence of Subspaces

Let $\{H_n\}$ be a sequence of subspaces (i.e., closed linear manifolds) of H. Then we can easily see that both s-liminf H_n and w-limsup H_n are subspaces of H.

Proposition 2.1. Let $\{H_n\}$ be a sequence of subspaces of H. Then

- (i) s-liminf $H_n^{\perp} = ($ w-limsup H_n^{\perp} ; (ii) w-limsup $H_n^{\perp} = ($ s-liminf H_n^{\perp} .

Proof. For the simplicity we denote $p(\cdot|H_n)$ by P_n , which is the orthogonal projection onto H_n , for every *n*. Suppose that $x \in \text{s-liminf } H_n^{\perp}$. Then $\{P_n x\}$ converges to 0. Let y be any element such that there exists a subsequence $\{H_{n'}\}$ and $y_{n'} \in H_{n'}$ for every n' with $y_{n'} \to y$ (weakly) as $n' \to \infty$. Then

$$\begin{aligned} |\langle x|y\rangle| = \lim |\langle x|y_{n'}\rangle| = \lim |\langle P_{n'}x|y_{n'}\rangle| \\ \leq \lim ||P_{n'}x|| \cdot ||y_{n'}|| = 0. \end{aligned}$$

Therefore $x \in (\text{s-liminf } H_n)^{\perp}$. Conversely suppose that $x \in (\text{w-limsup } H_n)^{\perp}$. It suffices to prove that $\{P_n x\}$ converges to 0. Since $\{P_n x\}$ is norm bounded, for any subsequence $\{P_n, x\}$ of $\{P_n, x\}$ there exists a subsubsequence $\{P_n, x\}$ which weakly converges to some $y \in H$. Then $y \in w$ -limsup H_n . Hence we have

$$\|P_{n''}x\|^2 = \langle P_{n''}x|x\rangle \rightarrow \langle y|x\rangle = 0,$$

as $n'' \to \infty$. Therefore $\{P_{n''}x\}$ converges to 0, and $\{P_nx\}$ does. Thus (i) is proved. (ii) follows from (i). \Box

Theorem 2.2. Let $\{H_n\}$ be a sequence of subspaces of H. Then

(i) s-liminf H_n is the maximum subspace among subspaces H' of H with

$$\liminf \|p(x|H_n)\| \ge \|p(x|H')\|, \tag{1}$$

for all $x \in H$;

(ii) w-limsup H_n is the minimum subspace among subspaces H' of H with

$$\limsup \|p(x|H_{n})\| \le \|p(x|H')\|,$$
(2)

for all $x \in H$.

Proof. We denote $p(\cdot | H')$ (resp. $p(\cdot | H_n)$) by P' (resp. P_n).

(i) We first show that H' = s-liminf H_n satisfies (1). Since $P_n x \to x$ as $n \to \infty$ for every $x \in H'$,

$$\begin{split} \|P_n x\|^2 &= \|P_n P' x + P_n (1 - P') x\|^2 \\ &= \langle P_n P' x|P' x \rangle + \langle P_n P' x|(1 - P') x \rangle \\ &+ \langle (1 - P') x|P_n P' x \rangle + \|P_n (1 - P') x\|^2 \\ &\geq \langle P_n P' x|P' x \rangle + \langle P_n P' x|(1 - P') x \rangle \\ &+ \langle (1 - P') x|P_n P' x \rangle \rightarrow \|P' x\|^2, \end{split}$$

as $n \to \infty$ for any $x \in H$. Conversely we shall show that any subspace H' of H satisfying (1) is contained in s-liminf H_n . It suffices to prove that $\{P_n P' x\}$ converges to P'x for any $x \in H$. From (1) it follows that

$$||P'x||^2 \leq \liminf ||P_nP'x||^2 \leq \limsup ||P_nP'x||^2 \leq ||P'x||^2$$

and that $\lim \|P_n P' x\| = \|P' x\|$. Hence

$$\begin{split} \|P' x - P_n P' x\|^2 &= \|P' x\|^2 - \langle P' x|P_n P' x \rangle - \langle P_n P' x|P' x \rangle + \langle P_n P' x|P' x \rangle \\ &= \|P' x\|^2 - \|P_n P' x\|^2 \to 0, \end{split}$$

as $n \to \infty$.

(ii): Now suppose that H' = w-limsup H_n . Then $H'^{\perp} =$ s-liminf H_n^{\perp} and from (1) we have

$$\liminf \|(1-P_n)x\|^2 \ge \|(1-P')x\|^2,$$

for any $x \in H$. Hence

$$|x||^{2} - \text{limsup} ||P_{n}x||^{2} \ge ||x||^{2} - ||P'x||^{2},$$

and we have $\limsup \|P_n x\| \le \|P' x\|$ for any $x \in H$. Conversely let H' be a subspace of H with (2). Then by the converse calculation above we have $H' \supset$ w-limsup H_n . \Box

3. The Limit of a Sequence of σ -fields

Let (Ω, Σ, μ) be a probability measure space. For the simplicity we assume that Σ and every σ -subfield of Σ considered in this section are μ -complete (i.e., all μ -null sets are contained). Given a σ -subfield Σ' , we denote by $L^p(\Sigma')$ the Banach space of *p*-th integrable Σ' -measurable functions, and by $E(\cdot|\Sigma')$ the conditional expectation with respect to Σ' . The norm on $L^p(\Sigma)$ is denoted by $\|\cdot\|_p$.

Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Kudō [6] defined a lower limit μ liminf Σ_n and an upper limit μ -limsup Σ_n as follows:

(i) μ -liminf Σ_n is the σ -subfield Σ_0 such that if $\Sigma' = \Sigma_0$, then for every bounded measurable function f

$$\liminf \|E(f|\Sigma_n)\|_1 \ge \|E(f|\Sigma')\|_1, \tag{1}$$

and that any σ -subfield Σ' satisfying (1) is contained in Σ_0 ;

(ii) μ -limsup Σ_n is the σ -subfield Σ_0 such that if $\Sigma' = \Sigma_0$, then for every bounded measurable function f

$$\limsup \|E(f|\Sigma_n)\|_1 \le \|E(f|\Sigma')\|_1, \tag{2}$$

and that any σ -subfield Σ' satisfying (2) contains Σ_{α} .

Theorem 3.1 (Kudō [6]). Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then

$$\mu\text{-liminf}\,\Sigma_n = \{A \in \Sigma: \text{ there exist } A_n \in \Sigma_n \text{ for every } n \text{ with} \\ \mu(A_n \bigtriangleup A) \to 0 \text{ as } n \to \infty\}.$$

Closed Convex Sets and σ -Fields

On the other hand, since $\{L^2(\Sigma_n)\}$ is a sequence of subspace of Hilbert space $L^2(\Sigma)$, we can define s-liminf $L^2(\Sigma_n)$ and w-limsup $L^2(\Sigma_n)$ as is defined in the previous section.

Theorem 3.2. Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then s-liminf $L^2(\Sigma_n) = L^2(\mu - \lim \Sigma_n)$.

Proof. We first show that there exists a σ -subfield Σ' such that $L^2(\Sigma') = s$ -liminf $L^2(\Sigma_n)$. It suffices to prove that s-liminf $L^2(\Sigma_n)$ is a lattice and has constant functions (see Schaefer [10, Proposition 11.2]). Let f and g belong to s-liminf $L^2(\Sigma_n)$. Then there exist f_n , $g_n \in L^2(\Sigma_n)$ for every n such that $f_n \to f$ and $g_n \to g$ as $n \to \infty$ in the square mean. Since $(a \lor b - c \lor d)^2 \leq (a - c)^2 + (b - d)^2$ for any $a, b, c, d \in \mathbb{R}$, where $a \lor b$ (resp. $c \lor d$) is the maximum of $\{a, b\}$ (resp. $\{c, d\}$), we have that $||f_n \lor g_n - f \lor g||_2^2 \leq ||f_n - f||_2^2 + ||g_n - g||_2^2 \to 0$ as $n \to \infty$. Hence we have $f \lor g \in s$ -liminf $L^2(\Sigma_n)$, because $f_n \lor g_n \in L^2(\Sigma_n)$ for every n. It is clear that s-liminf $L^2(\Sigma_n)$ has constant functions. Hence we define Σ' as the σ -subfield such as $L^2(\Sigma') = s$ -liminf $L^2(\Sigma_n)$. If $\Sigma' = \mu$ -liminf Σ_n is shown, the theorem is proved.

Let A belong to Σ' . Then there exist $f_n \in L^2(\Sigma_n)$ for every n such that $f_n \to 1_A$ as $n \to \infty$ in the square mean and hence in measure. For each n we define A_n $= \{\omega \in \Omega: f_n(\omega) \ge 1/2\}$. Then $\mu(A_n \triangle A) \to 0$ as $n \to \infty$, because $A_n \triangle A = \{\omega \in \Omega: (1_A(\omega) = 0 \text{ and } f_n(\omega) \ge 1/2) \text{ or } (1_A(\omega) = 1 \text{ and } f_n(\omega) < 1/2)\} \subset \{\omega \in \Omega: |1_A(\omega) - f_n(\omega)| \ge 1/2\}$ for every n. Since $A_n \in \Sigma_n$ for every n, by Theorem 3.1 we have $A \in \mu$ -liminf Σ_n .

Conversely let $A \in \mu$ -liminf Σ_n . Then by Theorem 3.1 there exist $A_n \in \Sigma_n$ for every *n* such that $\mu(A_n \triangle A) \to 0$ as $n \to \infty$. Hence

$$\|\mathbf{1}_{A_n} - \mathbf{1}_A\|_2^2 = \int |\mathbf{1}_{A_n} - \mathbf{1}_A|^2 \, d\mu = \int \mathbf{1}_{A_n \triangle A} \, d\mu = \mu(A_n \triangle A) \to 0,$$

as $n \to \infty$. Thus $1_A \in \text{s-liminf } L^2(\Sigma_n)$ and $A \in \Sigma'$. \Box

Theorem 3.3. Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then μ -liminf Σ_n is the maximum σ -subfield among σ -subfields Σ' of Σ with

$$\liminf \|E(f|\Sigma_n)\|_2 \ge \|E(f|\Sigma')\|_2, \tag{3}$$

for every $f \in L^2(\Sigma)$.

Proof. Since $E(\cdot|\Sigma_n)$ is the orthogonal projection onto $L^2(\Sigma_n)$ for every *n* and from Theorem 3.2 $E(\cdot|\mu\text{-liminf }\Sigma_n)$ is the one onto s-liminf $L^2(\Sigma_n)$, it follows from Theorem 2.2 (i) that $\Sigma' = \mu\text{-liminf }\Sigma_n$ satisfies (3).

Conversely let Σ' be a σ -subfield satisfying (3). Then by Theorem 2.2(i) and Theorem 3.2 we have $L^2(\mu\operatorname{-liminf}\Sigma_n) \supset L^2(\Sigma')$. Hence $\mu\operatorname{-liminf}\Sigma_n \supset \Sigma'$. \Box

Theorem 3.4. Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then for any $f \in L^1(\Sigma)$ the following assertions are equivalent:

(i) f is μ -liminf Σ_n -measurable;

(ii) $||E(f|\Sigma_n) - f||_1 \to 0 \text{ as } n \to \infty.$

Proof. (i) \Rightarrow (ii): Since $f \in L^1(\mu-\liminf \Sigma_n)$, for any $\varepsilon > 0$ there exists $f_0 \in L^2(\mu-\liminf \Sigma_n)$ with $||f - f_0||_1 \le \varepsilon/3$. By Theorem 3.2 and Proposition 1.2(i) we have that $||E(f_0|\Sigma_n) - f_0||_2 \to 0$ as $n \to \infty$. Therefore there exists n_0 such that for any $n \ge n_0$

M. Tsukada

$$\begin{split} \|E(f|\Sigma_{n}) - f\|_{1} &\leq \|E(f|\Sigma_{n}) - E(f_{0}|\Sigma_{n})\|_{1} \\ &+ \|E(f_{0}|\Sigma_{n}) - f_{0}\|_{1} + \|f_{0} - f\|_{1} \\ &\leq 2 \cdot \|f - f_{0}\|_{1} + \|E(f_{0}|\Sigma_{n}) - f_{0}\|_{2} < \varepsilon. \end{split}$$

Thus $||E(f|\Sigma_n) - f||_1 \to 0$ as $n \to \infty$.

(ii) \Rightarrow (i): We define $M = \{f \in L^1(\Sigma) : \|E(f|\Sigma_n) - f\|_1 \to 0 \text{ as } n \to \infty\}$. Let $f, g \in M$. Then in the same way of the proof of Theorem 3.2 we have $\|E(f|\Sigma_n) \vee E(g|\Sigma_n) - f \vee g\|_1 \to 0 \text{ as } n \to \infty$. Therefore

$$\begin{split} \|E(f \lor g | \Sigma_n) - f \lor g\|_1 &\leq \|E(f \lor g | \Sigma_n) - E(f | \Sigma_n) \lor E(g | \Sigma_n)\|_1 \\ &+ \|E(f | \Sigma_n) \lor E(g | \Sigma_n) - f \lor g\|_1 \\ &= \|E(f \lor g - E(f | \Sigma_n) \lor E(g | \Sigma_n) | \Sigma_n)\|_1 \\ &+ \|E(f | \Sigma_n) \lor E(g | \Sigma_n) - f \lor g\|_1 \\ &\leq 2 \cdot \|f \lor g - E(f | \Sigma_n) \lor E(g | \Sigma_n)\|_1 \to 0, \end{split}$$

as $n \to \infty$. Thus $f \lor g \in M$. It can be easily seen that M is closed linear and has constant functions. Hence there exists a σ -subfield Σ' such that $M = L^1(\Sigma')$. For any $f \in L^{\infty}(\Sigma')$

$$\begin{aligned} \|E(f|\Sigma_n) - f\|_2^2 &\leq \|E(f|\Sigma_n) - f\|_{\infty} \cdot \|E(f|\Sigma_n) - f\|_1 \\ &\leq 2 \cdot \|f\|_{\infty} \cdot \|E(f|\Sigma_n) - f\|_1 \to 0, \end{aligned}$$

as $n \to \infty$. Therefore $f \in L^2(\mu \operatorname{-liminf} \Sigma_n)$. Thus $L^{\infty}(\Sigma') \subset L^2(\mu \operatorname{-liminf} \Sigma_n)$. Taking here the closure in L^1 -norm for both sides, we have $M \subset L^1(\mu \operatorname{-liminf} \Sigma_n)$.

Let $\{\Sigma_n\}$ be a sequence of σ -subfields of Σ . We define $(\Sigma)_p$ as the family of σ -subfields Σ' of Σ with

 $\operatorname{limsup} \|E(f|\Sigma_n)\|_p \leq \|E(f|\Sigma')\|_p,$

for every bounded measurable function f (p = 1, 2).

Lemma 3.5. If $\Sigma' \in (\Sigma)_1 \cup (\Sigma)_2$, then

$$\limsup \|E(E(f|\Sigma')|\Sigma_n)\|_p = \limsup \|E(f|\Sigma_n)\|_p,$$

for every bounded measurable function f and p = 1, 2.

Proof. Let $\Sigma' \in (\Sigma)_1$. Then for every bounded measurable function f we have

$$\limsup \|E(E(f|\Sigma') - f|\Sigma_n)\|_1 \leq \|E(E(f|\Sigma') - f|\Sigma')\|_1 = 0.$$

Hence

$$\begin{aligned} \|\limsup \|E(E(f|\Sigma')|\Sigma_n)\|_1 - \limsup \|E(f|\Sigma_n)\|_1 \\ \leq \limsup \|E(E(f|\Sigma')|\Sigma_n) - E(f|\Sigma_n)\|_1 = 0. \end{aligned}$$

On the other hand, for every bounded measurable function f

$$\begin{split} \limsup \|E(E(f|\Sigma') - f|\Sigma_n)\|_2^2 \\ \leq \limsup \|E(E(f|\Sigma') - f|\Sigma_n)\|_{\infty} \cdot \|E(E(f|\Sigma') - f|\Sigma_n)\|_1 \\ \leq \|E(f|\Sigma') - f\|_{\infty} \cdot \limsup \|E(E(f|\Sigma') - f|\Sigma_n)\|_1 = 0. \end{split}$$

Hence

$$\begin{aligned} \|\limsup \|E(E(f|\Sigma')|\Sigma_n)\|_2 - \limsup \|E(f|\Sigma_n)\|_2 \\ &\leq \limsup \|E(E(f|\Sigma')|\Sigma_n) - E(f|\Sigma_n)\|_2 = 0. \end{aligned}$$

The lemma is proved for $\Sigma' \in (\Sigma)_2$ similarly. \Box

Lemma 3.6. If $\Sigma' \in (\Sigma)_1$ and $\Sigma'' \in (\Sigma)_2$, then $\Sigma' \cap \Sigma'' \in (\Sigma)_1 \cap (\Sigma)_2$.

Proof. We denote $E(\cdot | \Sigma')$ and $E(\cdot | \Sigma'')$ by E' and E'' respectively. Let f be a bounded measurable function. We show that $\limsup \|E(f | \Sigma_n)\|_1 \le \|(E' E'')^m f\|_1$ for every $m \in \mathbb{N}$. This is true for m = 1. We assume that it is true for m = k. Then using Lemma 3.5 twice, we have that

$$\|(E'E'')^{k+1}f\|_{1} = \|(E'E'')^{k}E'E''f\|_{1} \ge \limsup \|E(E'E''f|\Sigma_{n})\|_{1}$$

= limsup $\|E(f|\Sigma_{n})\|_{1}$.

Hence it is true for m = k + 1. Tending here $m \to \infty$, we have

$$\operatorname{limsup} \|E(|\Sigma_n)\|_1 \leq \|E(f|\Sigma' \cap \Sigma'')\|_1$$

(see [6, Lemma 3.2]). We can prove this inequality for norm $\|\cdot\|_2$ in the same way. Thus we have the lemma. \Box

Theorem 3.7. Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then μ -limsup Σ_n is the minimum σ -subfield among σ -subfields Σ' of Σ with

$$\limsup \|E(f|\Sigma_n)\|_2 \le \|E(f|\Sigma')\|_2, \tag{4}$$

for every $f \in L^2(\Sigma)$.

Proof. We can easily see that (4) is satisfied for every $f \in L^2(\Sigma)$ if and only if it is so for every bounded measurable function f. On the other hand, by Lemma 3.6 we have $(\Sigma)_1 = (\Sigma)_2$. Hence the theorem is proved. \Box

Theorem 3.8. Let $\{\Sigma_n\}$ be a sequence of σ -subfields. Then the closed linear lattice generated by w-limsup $L^2(\Sigma_n)$ is equal to $L^2(\mu-\text{limsup }\Sigma_n)$.

Proof. It is the direct consequence of Theorem 2.2(ii) and Theorem 3.7. \Box

We discuss in [13] the relations between the results of Sect. 1 and 2 and the geometrical properties of Banach space norms. On the other hand, a referee pointed out in the light of his unpublished works that the theorems in Sect. 3 hold on general B' spaces ($1 \le p < \infty$). The author would like to express his gratitude to this referee for his very useful comments and also to Professor H. Umegaki for his valuable advice and constant encouragement.

References

- Ando, T., Amemiya, I.: Almost everywhere convergence of prediction sequences in *I^p*. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 113-120 (1965)
- 2. Becker, R.: Ensembles compacts de tribus. Z. Wahrscheinlichkeitstheorie verw. Gebiete 29, 229-234 (1974)

- 3. Brunk, H.D.: Conditional expectation given a σ -lattice and applications. Ann. Math. Statist. **36**, 1339–1350 (1965)
- 4. Dang-Ngoc, N.: Convergence forte des espérances conditionnelles et des projecteurs dún espace de Hilbert. Ann. Inst. H. Poincaré, Sect. B, VI, 9-13 (1970)
- 5. Day, M.M.: Normed Linear Spaces, 3rd ed. Berlin-Heidelberg-New York: Springer 1973
- 6. Kudō, H.: A note of the strong convergence of σ -algebras. Ann. Probab. 2, 76–83 (1974)
- 7. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510-585 (1969)
- 8. Neveu, J.: Bases Mathématiques du Calcul des Probabilités. Paris: Masson 1964
- 9. Rao, M.M.: Prediction sequences in smooth Banach spaces. Ann. Inst. H. Poincaré, Sect. B, VIII, 319-322 (1972)
- 10. Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974
- Shintani, T., Ando, T.: Best approximants in L¹ space. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33, 33-39 (1975)
- 12. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Berlin-Heidelberg-New York: Springer 1973
- 13. Tsukada, M.: Convergence of best approximations in a smooth Banach space. preprint (1982)

Received September 30, 1981