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Convergence of Closed Convex Sets and o-Fields

Makoto Tsukada
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Summary. Let {C,} be a sequence of closed convex subsets in a Hilbert
space H. We prove that the prediction sequence {p(x|C,)} converges for
every xeH if and only if s-lim C, exists and is not empty. We further show
the relation between the limit of closed convex sets and the one of o-
subfields in probability measure spaces.

0. Introduction

Let (2,Z, ) be a probability measure space, and {Z,} be a sequence of o-
subfields of 2. Now we consider the following proposition:

(E) There exists a og-subfield X such that every sequence {E(f|X)} of con-
ditional expectations of feIP(Q,X,n) converges to E(f|X_) in IP-norm
(1=p<oo);

Doob’s martingale convergence theorem says that if {2} is monotone increas-
ing (resp. decreasing) with respect to set inclusion, Proposition (E) is true for
2,=VZ, (resp. (1Z,). Let liminfX, be the lower limit and limsup X, be the

upper limit of {X,} with respect to set inclusion. Then the proposition is also
true, if liminf X, =limsup 2, =X (see Dang-Ngoc [4]). On the other hand,
Neveu [8, IV.3.2] introduced the notion of strong convergence of g-subfields.
We say 2 to be the strong limit of {X )} if every sequence {P(4|Z,)} of
conditional probabilities of AeX converges to P(A|2_ ) in measure. Proposi-
tion (E) is satisfied if and only if Z_ is the strong limit of {X }. Becker [2]
pointed out that the proposition is the consequence of weak convergence.
Kudo [6] studied the notion of strong convergence of g-subfields more pre-
cisely and applied it to the asymptotic theory of statistics. He defined another
lower limit g-liminfX, and upper limit p-limsup X, of {Z,}. Z_ is the strong
limit of {Z,} if and only if g-liminf X, = p-limsup X, =2 _ .

In this paper we investigate analogues theorems in Hilbert spaces. The
conditional expectation E(f|Z') of fel*(Q, X, u) relative to X' is the best ap-
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proximation of f by elements of I*(Q, 2", u). Hence Proposition (E) in the case
of p=2 is generalized as follows. Let H be a Hilbert space, and {C,} be a
sequence of, non-empty, closed convex subsets of H. Then we consider the
following proposition:

(P) There exists a closed convex subset C_ of H such that every sequence
{p(x| C,)} of best approximations of xeH converges to p(x|C_);

Brunk [3] showed that if {C,} is monotone increasing (resp. decreasing and if
() C,=+0) with respect to set inclusion, Proposition (P) is true for C, =] C,

(resp. () C,), and applied it to the problem of maximum likelihood estimation.

We generalize it for neither increasing nor decreasing case. Mosco [7] defined
the strong lower limit s-liminf C, and the weak upper limit w-limsup C,. In
Chap.1 we prove that if s-liminf C,=w-limsup C,=C_ +0, Proposition (P) is
satisfied, and that it is also the consequence of weak convergence. In Chap.2
we study the strong lower limit and the weak upper limit of a sequence of
subspaces of H, and in Chap.3 we see the relation between the limit of closed
convex sets and the limit of o-fields. The lower limit and the upper limit of a
sequence of g-subfields are corresponding to the strong lower limit and the
weak upper limit of the sequence of subspaces defined by the ¢-subfields in
I2(Q, %, w) respectively.

1. The Limit of a Sequence of Closed Convex Sets

Let H be a Hilbert space with inner product {-|-)> and norm ||, and € be
the set of all, non-empty, closed convex subsets of H. For any xeH and CeC€
there exists a unique closest point p(x|C) of C to x. The following lemma is
well known (see, for example, Brunk [3]).

Lemma 1.1. Let CeC and x, yeH. Then
(i) x'=p(x|C) if and only if X' C and Re{x—x'|x'—z) =0 for any zeC,
(i) 1p(x| ) =PI O = lx—yli; That is, p(+|C) is non-expansive.

Let {C,} be a sequence in €. We can define a lower limit liminf C, and an
upper limit limsup C, of {C,} with respect to set inclusion as

C,,

s

liminf C,= (] () C,, limsupC,= () 2
m=1 n

m=1 n=m m

I

where €0 means the closed convex hull. On the other hand, Mosco [7] defined
a strong lower limit and a weak upper limit of a sequence of subsets of Banach
spaces. Following it, we define a strong lower limit s-liminf C, and a weak upper
limit w-limsup C, of {C,} as

s-liminf C,={xeH: x,—x as n— o, x,eC, for every n},

w-limsup C,=co{xeH: x,—x (weakly) as n'—» 0, x,€C,

for every n', {C,} is a subsequence of {C,}}.
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If s-liminf C,=w-limsup C,, then the common value is denoted by s-lim C,.
Some elementary properties and examples are seen in [7].
Proposition 1.2. Let {C,} be a sequence in G,
(1) s-liminf C,={xeH: p(x|C,)—=>x as n—>0};
(i) s-liminf C, and w-limsup C, are in € U {#};
(i) liminf C, = s-liminf C, < w-limsup C, climsup C,.

Proof. (i): If xes-liminf C,, then
Ix—p(x|C)I £llx—x,[| =0,

as n— o0. The converse is trivial.

(ii): Let xes-liminf C,. Then for any ¢>0 there exists x,es-liminf C, with
|x—xq] <e/3. On the other hand, by (i) we have an n, such that |x,
—p(x,] C))| <e&/3 for any n=n,. Hence for n=n,

Ix =px| CHI = x =X [l + X0 —p(xo [ C,)|
+p(xol C) —p(x[C,)|
S2-fx =X+ llxg— (x| Gl =e.

Thus [[x—p(x|C)||—0 as n— oo, and we have xes-liminf C,. Therefore s-
liminf C,, is closed. It is clear from the definition that s-liminf C, is convex and
w-limsup C, is closed convex. If C,={x,} and |x,|—» o as n— oo, then s-
liminf C, =w-limsup C,=0.

(iii): The first and second inclusions are clear from the definition. The last
one follows from the fact that closed convex sets are weakly closed. [J
Lemma 1.3. Let {C,} be a sequence in € such that s-liminf C,+ 0. Then for every
xeH

(i) sup [Ip(x]C,)[| < oo;

(i) If {p(x|C,)} weakly converges to x, then |x—p(x|C)| —0 as n— co.

Proof. Let x, be an element of s-liminf C,. Since {p(x,|C,)} is a norm converg-
ing sequence by Proposition 1.2(i), sup || p(x,| C,)|| < co. On the other hand

IpGelC)I = [ (x] €)= x|+ 1]
p(xol C)—x| + x|
p

(ol CII+2- %],

=|
<|
<|
for every n. Hence we have (i). If {p(x|C,)} weakly converges to x,
x=pCel CHI? S [1x = p(x] C)lI* + Rex — p(x| C,) [ p(x| C,) — p(x0 C,)>
=Re{x—p(x|Clx—xq) +Re{x—p(x| C,)lx, —p(x,] C,)>
SRe{x—p(x|C)lx—xo>
+(llxl + [ pICHN - 11xo = Pxol CHI =0,

as n— oo0. Thus we have (ii). [J
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Theorem 1.4. Let {C,} be a sequence in €. Then the following assertions are
equivalent :

(i) s-lim C, exists and is not empty;

(i) s-liminf C, is not empty and there exists C_eC such that {p(x|C,)}
weakly converges to p(x|C ) for every xeH;

(i) {p(x|C,)} is a norm convergence sequence for every xeH.

Moreover, if these assertions are satisfied, {p{x|C,)} converges to p(x|s-
lim C,) for.every xeH.

Proof. (1) = (ii): Let C_=s-lim C,. For any x<H, by Lemma 1.3 (i), {p(x|{C,)} is
norm bounded. Hence for any subsequence {p(x|C,)} of {p(x|C,)} there exists
a subsequence {p(x|C,.)} which weakly converges to some x'eH. Then x'ew-
limsup C,=C,,. On the other hand, for any yeC_, since y=s-lim p(y|C,), we
have

Ix—x'| =lim |x —p(x| C, )l £lim [|x —p(y] C,. )l = [ x = yll,

where the first inequality follows from weak lower semicontinuity of norm || - |.
Thus x'=p(x|C_) and we have (ii).

(ii) = (iii): Any xeH is fixed. Since {p(p(x|C_)|C,)} weakly converges to
p(x|C,), by Lemma1.3(ii), we have p(x|C_)=s-limp(p(x|C)IC,). Hence by
Lemma 1.1 (i)

limsup [|p(x|C,)|> <limsup ||p(x| C,)||*

+liminf x —p(x] C,)Ip(x] C,) = p(p(x] C,) | C,)>
=lpxIC I

On the other hand, because of weak lower semicontinuity of norm |- ||, we
have liminf | p(x| C,)|| = [p(x| C)lI. Thus lim ||p(x| C,)|| = Ip(x| C,)[, and by one
of the convex properties of Hilbert space norm (see, for example, Day [5]) we
have p(x|C_)=s-lim p(x|C,).

(iti) = (i): We put C_={s-limp(x|C,): xeH}. It is clear that C_cs-
liminf C,. Now assume that x is an element such that there exist a subsequence
{C,} of {C} and x_€C,, for every n’ with x,. —x (weakly) as n'— co. Let y=s-
limp(x|C,). From Lemma 1.1 we have

Re (x—p(x| C,)Ip(x] €)= %, > 20

for every n'. Tending n' to o, Re{x—y|y—x)>=0. Therefore x=yeC_. Thus
C_ =s-liminf C,=w-limsup C,. [l
If {C,} is increasing (resp. decreasing and if [)C,+0), then by

Proposition 1.2 (iii) and the above theorem it follows that {p(x|C,)} converges

top (x U Cn> (resp. p (x ﬂ Cn>) for every xeH. See Brunk [3].
n=1 n=1
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2. The Limit of a Sequence of Subspaces

Let {H,} be a sequence of subspaces (i.c., closed linear manifolds) of H. Then
we can easily see that both s-liminf H, and w-limsup H, are subspaces of H.
Proposition2.1. Let {H,} be a sequence of subspaces of H. Then

(i) s-liminf H; =(w-limsup H,)*;

(i) w-limsup H;} =(s-liminf H )*.
Proof. For the simplicity we denote p(-|H,) by P, which is the orthogonal
projection onto H,, for every n. Suppose that xes-liminfH}. Then {P x}

converges to 0. Let y be any element such that there exists a subsequence {H,.}
and y,.€H, for every n’ with y,.—y (weakly) as n’— co. Then

[KxIyp|=lim [Kx|y, >|=lim [<E, x|y, >|
<lim B, x| -y, | =O.
Therefore xe(s-liminf H,)*. Conversely suppose that xe(w-limsup H,)*. It suf-
fices to prove that {P.x} converges to 0. Since {E x} is norm bounded, for any

subsequence {P, x} of {P,x} there exists a subsubsequence {E..x} which weakly
converges to some yeH. Then yew-limsup H,. Hence we have

1By x |2 =<8y x]|xy = {ylxy =0,
as n” — oo. Therefore {P,. x} converges to 0, and {P, x} does. Thus (i) is proved.
(i1) follows from (i). U
Theorem 2.2. Let {H,} be a sequence of subspaces of H. Then
(1) s-liminf H, is the maximum subspace among subspaces H' of H with
liminf {|p(x[H )l 2 lp(x| H)], 1)
for all xeH,

(i) w-limsup H, is the minimum subspace among subspaces H' of H with

limsup [ip(x|H,)|| = llp(x|H)|, 2)
for all xeH.

Proof. We denote p(-|H') (vesp. p(-|H,)) by P’ (resp. B).
(1) We first show that H'=s-liminf H, satisfies (1). Since Px—x as n— co
for every xeH’,

|Bx| =B P x+B(1—P)x]|?
—(BP'x|P'xy+(B P x|(1—P) x>
+{(L—P)x|B P x) +|B(1—P)x|?
(B P x| P xy+(B P x|(1—P)x)
+{(1—P)x|B P xy— | P'x|?,

as n—oo for any xeH. Conversely we shall show that any subspace H' of H
satisfying (1) is contained in s-liminfIl,. It suffices to prove that {P P’x}
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converges to P’'x for any xeH. From (1) it follows that
|P"x||* <liminf | B, P' x> <limsup | B, P’ x| > < | P x||?,
and that lim ||B, P" x| = || P’ x||. Hence

|P'x—B P x| 2=||P' x| 2= (P'x|P P’ x> —(B.P' x|P' x5 +{P P' x| P' x>
=|P'x|*—[B P x|* -0,
as n— oo.
(ii): Now suppose that H'=w-limsup H,. Then H'*=s-liminf H} and from
(1) we have
liminf (1 —-B) x>z |I(1-P)x|?,
for any xeH. Hence

[x[)* —limsup | B, x|1* 2 x| 2 — | P x]%,

and we have limsup |P x| <| P’ x| for any xeH. Conversely let H be a sub-
space of H with (2). Then by the converse calculation above we have H o>w-
limsupH,. O

3. The Limit of a Sequence of s-fields

Let (@2, 2, ) be a probability measure space. For the simplicity we assume that
2 and every o-subfield of X considered in this section are u-complete (ie., all
y-null sets are contained). Given a g-subfield 2’, we denote by IP(X) the
Banach space of p-th integrable X'-measurable functions, and by E(-|2’) the
conditional expectation with respect to 2. The norm on I?(X) is denoted by
=1l

iet {Z,} be a sequence of o-subfields. Kudo [6] defined a lower limit -
liminfX, and an upper limit y-limsup X, as follows:

(i) p-liminfX, is the o-subfield X, such that if 2'=2,, then for every
bounded measurable function f

liminf |E(f|Z )], Z |1 E(f1Z)]],. @

and that any o-subfield X' satisfying (1) is contained in X,;
(i) p-limsup X, is the o-subfield X, such that if X’=X, then for every
bounded measurable function f :

limsup |E(f1Z)], S IE(F1Z)] 1, 2)

and that any o-subfield X’ satisfying (2) contains X,.
Theorem 3.1 (Kudd [6]). Let {Z,} be a sequence of o-subfields. Then

pliminf ¥ ={AeX: there exist A,eX, for every n with
u(d, AA)—0 as n— w0},
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On the other hand, since {[*(X))} is a sequence of subspace of Hilbert
space [*(X), we can define s-liminfI?(Z,) and w-limsup I?(Z,) as is defined in
the previous section.

Theorem 3.2. Let {X,} be a sequence of g-subfields. Then s-liminfI?(2,)=I?(u-
liminf ).

Proof. We first show that there exists a o-subfield X’ such that I?(Z)=s-
liminfI?(X). Tt suffices to prove that s-liminfI*(X,) is a lattice and has
constant functions (see Schaefer [10, Proposition 11.2]). Let f and g belong to
s-liminfI?(X,). Then there exist f,, g,e[*(£,) for every n such that f,—f and
g, g as n— oo in the square mean. Since (av b—cvd)?> <(a—c)*+(b—d)* for
any a,b,c,deR, where av b (resp. ¢ vd) is the maximum of {a,b} (resp. {c,d}),
we have that ||f,vg,—fvel3s|fi—f13+]g,—¢gl%—0 as n—oco. Hence we
have fv ges-liminfI?*(X)), because f,v g,e[?(X,) for every n. It is clear that s-
liminf I*(X,) has constant functions. Hence we define X’ as the o-subfield such
as I*(Z)=s-liminf[*(Z,). If ¥'= p-liminf X is shown, the theorem is proved.

Let A belong to X'. Then there exist f,eI*(Z,) for every n such that f, —>1,
as n— o0 in the square mean and hence in measure. For each n we define 4,
={weQ: f(w)=1/2}. Then u(A,AA)—0 as n— 0, because A, AAd={weQ:
(1w)=0 and f(0)=1/2) or (1, (w)=1 and f(w)<1/2)}<{weQ: |1 (w)
— (@) 21/2} for every n. Since A,eX, for every n, by Theorem3.1 we have
Aep-liminfX .

Conversely let Acp-liminfX,. Then by Theorem3.1 there exist A,€X, for
every n such that u(4,AA)—0 as n— oo, Hence

11y,
as n— oo. Thus 1, es-liminf [*(X ) and 4eX’. [

Theorem3.3. Let {X} be a sequence of o-subfields. Then p-liminfX, is the
maximum o-subfield among c-subfields X' of X with

’“IA”%:j |1An_1Alzdﬂ:jIA"AAdﬂzﬂ(AnAA)_’O:

liminf | E(f|Z)]|, 2 |E(f12)] 5 Q)
for every fel?(%).

Proof. Since E(-]|X,) is the orthogonal projection onto I*(Z) for every n and
from Theorem3.2 E(-|u-liminfX)) is the one onto s-liminf[*(X)), it follows
from Theorem 2.2 (i) that ' = u-liminf X, satisfies (3).

Conversely let X' be a g-subfield satisfying (3). Then by Theorem 2.2(i) and
Theorem 3.2 we have I*(u-liminfX,) 5 I*(£'). Hence p-liminf2 >%'. [J

Theorem34. Let {2} be a sequence of c-subfields. Then for any feL!(Z) the
Jollowing assertions are equivalent:

(1) fis p-liminf X -measurable;

(i) [E(f1Z,)—fl;—0asn—co.

Proof. (i) = (ii): Since feL'(u-liminfX), for any >0 there exists f,eL?(u-
liminf2 ) with | f—f,l, <e¢/3. By Theorem3.2 and Proposition 1.2(i) we have
that |E(f,1Z,)— foll, =0 as n— co. Therefore there exists n, such that for any
nzn,
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IE(f12,)— fll SIE(f12,)—E(fol 21
+IESolZ) = foll i + 11 fo—fll4
S2-1/ = folli HIE(fol ) — foll . <e.
Thus |E(f|Z)—fll; =0 as n— co.
(i) = (i): We define M={fel'(2): |E(f|Z)—fll,=0 as n—w}. Let f

geM. Then in the same way of the proof of Theorem3.2 we have
|E(fIZ) v E(g|X)—fvegl;—0 as n—co. Therefore

IE(fvglZ)—fvel, SIE(f vglz,)—E(f1Z) v E@IZ)I,
+IE(fI1Z,) v E@glZ,)—fvel,
=|E(f vg—E(fIZ,) v E@IZ)IZ)I,
+IE(f12,) v E@lZ,)—f v gl
<2-|fvg—E(f1Z,)vEQgIZ)I,~0,
as n— oo. Thus fvgeM. It can be easily seen that M is closed linear and has

constant functions. Hence there exists a ¢-subfield X’ such that M =L'(2"). For
any fel®(2")
IECIZ)=FIZSIEf1Z) =l IESIZ) =11l
S2- Sl NECSIZ,) = f1 =0,
as n—oo. Therefore fel’(u-liminfX ). Thus I[X(X)c[*(u-liminfX,). Taking
here the closure in I!-norm for both sides, we have M < [*(p-liminfX ).

Let {,} be a sequence of g-subfields of Z. We define (Z), as the family of
o-subfields X’ of ¥ with

limsup |E(f1Z )], = 1EC/12),,
for every bounded measurable function f (p=1,2).

Lemma3.5. If 2'e(X), u(Z),, then
limsup [ E(E(f]2)|2)I,=limsup |E(f|Z ),

for every bounded measurable function f and p=1,2.
Proof. Let 2'€(2),. Then for every bounded measurable function f we have
limsup [|E(E(f]2) = f1Z )] = [E(E(f12) = f12)], =0.

Hence
limsup |E(E(f|Z)Z )] —limsup [E(f|2)]

<limsup |E(E(f]2")|2,)—E(f1Z)],=0.
On the other hand, for every bounded measurable function f
limsup |E(E(f1Z)— f1Z)]3

<limsup [E(E(f12) = f1Z ) - [EE(S12) =12,
S [E(f12) = [l - limsup [ E(E(f|Z) = f12)Il, =0.
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Hence
llimsup [ E(E(f12)|Z,)] , —limsup [[E(f|Z )],
Slimsup [|E(E(f]2)|2,)—E(f]1Z)],=0.

The lemma is proved for 2'e(2), similarly. [J
Lemma 3.6. If 2'e(X), and 2" e(X),, then ' X" e(X), n(Y),.

Proof. We denote E(-]|2") and E(-|X”) by E' and E” respectively. Let f be a
bounded measurable function. We show that limsup |E(f|Z)|, S I(E"E"Y" 1},
for every melN. This is true for m=1. We assume that it is true for m=k. Then
using Lemma 3.5 twice, we have that

(E'E"Y*Ufl = (E"E"Y E'E" f ||, 2 limsup |E(E"E" f|2,)|,
=limsup || E(f]2))] .

Hence it is true for m=k+1. Tending here m— oo, we have
limsup [E(|1Z,)[ S |E(f12"n2")l,

(see [6, Lemma3.2]). We can prove this inequality for norm ||+, in the same
way. Thus we have the lemma. [J

Theorem 3.7. Let {X} be a sequence of c-subfields. Then p-limsupZX, is the
minimum o-subfield among g-subfields X’ of X with

limsup |E(f1Z)] , < IE(f1Z)l,, 4
Jor every fel?(2).

Proof. We can easily see that (4) is satisfied for every feI?(X) if and only if it is
so for every bounded measurable function f. On the other hand, by Lemma 3.6
we have (2), =(2),. Hence the theorem is proved. [

Theorem 3.8. Let {Z,} be a sequence of o-subfields. Then the closed linear lattice
generated by w-limsup I*(Z,) is equal to I*(u-limsup 2 ).

Proof. It is the direct consequence of Theorem 2.2(ii) and Theorem3.7. []

We discuss in [13] the relations between the results of Sect. 1 and 2 and
the geometrical properties of Banach space norms. On the other hand, a
referee pointed out in the light of his unpublished works that the theorems in
Sect.3 hold on general IF spaces (1 <p< o). The author would like to express
his gratitude to this referee for his very useful comments and also to Professor
H. Umegaki for his valuable advice and constant encouragement.
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