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Summary. If {X~, n > l }  is an i.i.d, sequence of continuously distributed 
random variables, and if n k is for k=  1, 2,... the index of the k-th upper 
outstanding value of the sequence, the record times sequence is defined as 
{nk, k> l} ,  whereas the inter-record times sequence is defined as {Ak=n k 
--nk 1, k> l} .  We give here for Ok=n k or A k a complete characterization of 
the sequences {c~k} and {ilk} such that P(Ok<=fik i.o.) or P(Ok>~ k i.o.)=0 or 
1. 

1. Introduction 

Let X1, X 2 . . . .  be a sequence of independent and identifically distributed ran- 
dom variables with a continuous distribution. We define the sequence {nk, 
k > l }  of record times of {Xn, n > l }  by 

n l = l ,  nk=Min{n-->l; Xn>Xnk 1}' k=2 ,3 , . . . ,  

and the sequence {Ak, k>  1} of inter-record times by 

Al=nl ,  Ak=nk--nk 1, k=2 ,3  . . . . .  

The following Theorem is due to R6nyi (1962)' 

LimSup L ~  - 1 ,  L imInf  L ~  - - 1  a.s.. (1) 
k~ ]/2k Log 2 k k~ ]/2k Log 2 k 

In 1970, Strawderman and Holmes obtained that 

LimSup L ~  - 1 ,  L imInf  L ~  
k~ 1/2k Log 2 k k~ ]/2k Log 2 k -  1 a.s., (2) 
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precising a result of Neuts 

A~/k  P > e ,  

The exact distribution 

P. D e h e u v e l s  

(1967), who had shown that 

and L o g A k - k  W>N(0, 1), k--+oo. (3) 

of A k (see Neuts 1967, Tata 1969) is given by 

+co X k 

P ( A k > r ) =  ~ -cr, e x ( 1 - e - ' ) r d x ,  r_>l, k>2 ,  (4) 
0 k~" - -  : -  

f r o m  where it follows that E(A~) < oo if 0 < c~ < 1, and E(Ak) = oo. 
Further results were described by Shorrock (1972, a, 1972, b) who proved 

that the sequence {n ,+ i /G ,  k > n }  converges in law to the i.i.d, process {W~, 
m> 1} with P(W, > u ) = l / u ,  u > l ,  and that there could not exist constants {G, 
k__> 1} such that { G / G ,  k >  1} has a non degenerate limit distribution as k-+oo. 

We shall, in the following, precise these results by proving" 

Theorem 1. For any p > 4, 

P(Log  A k - k > ] /  2 k { Log  2 k + ( 3 /2 ) Log  3 k + Log4 k + . . . + ( l + O Logp k } i.o.) 

= P ( L o g A k - k  ~ - ] / 2 k { L o g  2 k +(3/2) Log 3 k+Log4 k +  ... +(1 + 0  Logp k} i.o.) 

= 0 or 1 according as ~ > 0 or ~ G O. (5) 

Theorem 2. For any p > 4, 

P(Log n k - k > ] / 2 k { L o g  2 k + (3/2) Log 3 k + L o g  4 k+  ... +(1 +e) Logp k} i.o.) 

= P(Log G - k ~ - ]/2 k {Log 2 k + (3/2) Log s k + Log 4 k + . . .  + (1 + e) Logp k} i.o.) 

= 0 or 1 according as ~ > 0 or ~ G O. (6) 

In the proof, we shall make use of strong approximation techniques, enabl- 
ing us to precise the bounds (5), (6) up to a complete characterization (Theo- 
rems 4 and 6). It is to be noted that the remarkable symmetry between upper 
and lower bounds of (5) and (6) could not be intuitively expected from (4). 
because of the dissymetry of the distributions of A k and n k for finite k. 

2. Complete Characterization of the Limiting Bounds 

It can be remarked that the record times {rtk,  k > l }  can be defined in an 
equivalent way for maxima and minima, and this, independently of the (con- 
tinuous) distribution of the sequence's terms. 

Accordingly, for sake of simplicity, put U 1, U2,... to be an i.i.d, sequence of 
uniformly distributed on (0, 1) random variables, and define n k by 

and 
l'l 1 =1, G = M i n { n >  1; U,<U,k_~}, k--- 2, 3 . . . . .  

A l = n l ,  A k = n k - - G _ l ,  k = 2 , 3 , . . . .  
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The following result was proved in Deheuvels (1981): 

L e m m a l .  Without loss o f  generality, there exists  an i.i.d, sequence {Ok, 
+ O0 < k < + 00} o f  exponentially E(1) distributed random variables, and a normal- 
ized Poisson process {N(t), - oo < t <  + oo}, independent o f  {COg}, with times o f  

arrivals ... < z_ 1 < Zo < 0 < z 1 < z 2 < . . . ,  such that N(u) = k when z k < u <= Zk+ 1, and 
such that 

k l([ ])  
n k = 1 + i=1 ~ - Log( i - -  e-  z,) + 1 , k = 1, 2 . . . . .  (7) 

(where [u] denotes the integer part o f  u). 

If we remark that, by (7), 

A k + l =  _ L o g ~ - _ e _ Z , ) + 1 ,  k = l , 2 , . . . ,  (8) 

and also that (see Barndorff-Nielsen 1961, Deheuvels 1974): 

Lemma 2. For any p > 1 and e > 0, there exists  almost surely a k o such that for  

k > k  o, 

1 
k(Log k)... (Logp k) 1 +~ < COk =< Log k + Log 2 k + . . .  + (1 + 0 Logp k. 

Then, since by (8), we have 

Ak~l  . . . . .  z k _ ! , , ,  +O(1) a.s. as k ~ ,  (9) 
, - - ~ k  ~ 2~k  

the law of the iterated logarithm applied to {Zk} enables to obtain (2) in a 
direct way. Such an argument was worked out by M. Berkane, who derived a 
new proof of the results of Strawderman and Holmes (1970). We intend here to 
precise this argument. 

It will be necessary to use a Theorem of Koml6s, Major, and TusnAdy 
(1975, 1976), which we state in the following: 

Lemma 3. I f  {rik' k ~  1} is an i.i.d, sequence o f  random variables such that E(e t"l) 
exists  in a neighborhood o f  t = O, then, without loss o f  generality, there exists a 

Wiener process {W(t), t>=0} such that, i f  S =r i l+ . . .+ r in ,  E(ri1)=0 , E(ri2)=l,  
then 

] S , - W ( n ) I = O ( L o g n )  a.s. as n ~ o o .  (10) 

Taking here rlk =Z k -- Z k_ 1 -  1, S k = z  k - k ,  we get easily from (8)-(10): 

Theorem 3. Without loss o f  generality, there exists  a Wiener process W such that 

A k + a = e x p ( k + W ( k ) + O ( L o g k ) )  a.s. as k ~ o o .  (11) 

It may be remarked that, since W ( k ) - W ( k - 1 ) = O ( 1 / L o g k ) ,  (11) can be 
written without modification with A k in place of Ak+ r 
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We shall now use a result of  Erd6s  (1942), who proved  that, if p > 4 ,  and if 

hp,,(t)=]/2t{Log2t+(3/2)Log3t+Log4t+...+(l+e)Logpt}, then, if e > 0 ,  
there exists a.s. a t~ such that, for any t>t~, -hp,~(t)<W(t)< +hp,~(t), whereas 
a.s. for any  to, there exists a t '>t o such that  W(t')< -hp, o(t'), and a t '> t  o such 
that  W(t")> +hv, o(t" ). 

Lemma 4. If  p >= 4, 

hp, ~(t) - hv, o(t) 

Proof. Straightforward.  

] / t ( L o g  v t) 

2]/~2 t 
a s  t - - coO.  

We are now ready to p rove  T h e o r e m  1. By (11), if 5>0 ,  

Ak<exp(k+hp,~(k)+O(Logk))<=exp(k+hp,2~(k)) a.s. as k-*oo,  

mak ing  use of  the fact ( L e m m a  4) that  Logk=o(hp,2e(k)-hp,~(k)). Hence,  e > 0  
being arbi t rary,  and using the same a rgumen t  for - W(k), we get (5) for e > 0. 

For  5=0 ,  we m a y  note that  Sup Sup IW(k)-W(k+t)l=O(Logn) a.s., and 
l <k<=n O < t < l  

that  Log  k = o(hp+ 1, o(k) - hp, o(h)). This finishes the proof. 
We shall now precise (5) by the use of  K o l m o g o r o v ' s  test (see I t o - M c K e a n ,  

1965, p. 33): 

LemmaS.  I f  H(t) is a positive function defined for O<t<e, such that H$ and 
t-1/2H+, then, a.s. tH(1/t) belongs to the upper or lower class of W(t), t~oo, 
according as 

I= j t-3/2H(t) exp(-H2(t)/2t) dt 
O+ 

converges or diverges. 

Theorem4 .  I f  H(t) is a positive function defined for 0 < t < e ,  such that HT and 
t- U2 H ~, then 

P(LogAk-k>kH(1/k)  i.o.) = 

P ( L o g A k - k < - k H ( 1 / k )  i .o . )=0  or 1, (12) 

according as U= S t-3/2H(t)exp(-H2(t)/2t)dt converges or diverges. 
O+ 

Proof Put  H ( t ) =  2t  Log  2 + Log 3 +Log~b(t )  . Then, I converges or 

dt 
diverges according as J =  S converges or diverges. Fur ther -  

o+ t(Log(1/t)) O(t) 

more,  if we put  ~(t)=qS(t) Log L o g z t  ] , then H r and t-1/ZH~ is equiva- 

lent to cfft)$ and tl/ze(t)j, as t,L0. Let  us assume that  these condit ions are 
satisfied, and let us consider first the case where ~(t)Toe and t ~/2 c~(t),L0 as t$0. 

Put  Hq(t)= 2t Log 2 + Log  3 +Log(o(t)(l+q(t)) , and chose q ( t ) ~ 0  as 
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dt 
t ~  oo. Then K =  S converges or diverges according as 

0+ t(Log(1/t)) ~b(t)(1 +q(t)) 

the s m~ f o r ,  (Lo  lt; s nce 

cfft)Too and tl/2c~(t)J,O, as t+0, it is possible to chose C(t) such that simul- 
taneously: cfft)(l+q(t))Too , tl/2cfft)(l+q(t)),LO, q(t)~O as t,L0, and either 
Lira Sup C(t)<A, either Lira Inf C(t)>A, where A is any given constant. This 

tO4) ~OO 

implies that Hq satisfies the conditions of Lemma5. If we make also the 

assumption that Log ~b(t)=o (Log 2-1t), t j,0, then Hq(t)=H(t)+t C(t)(Log 1) 

(1+o(1)). Now, by (10), Lemma5, and the preceding argument, if 
LimSupC(t)<=A, and if I converges, then LogAk-k+O(Logk)<kH(1 /k  ) 

tOO 

+ A L o g k  a.s. as k~oo.  By a convenient choice of A, it gives LogA k 
-k<kH(1/k) .  A similar argument gives (12) by discussing the different possibi- 
lities. It remains to treat the case where ~(t)TL<oo , or tl/2cfft)$M>O, or 

Log ~(t)+o (Log 2 t )"  It can be seen that any of this cases can be described by 
/ 

(5) so that (12) is valid in all cases. The proof of Theorem 4 is achieved. 

In the proof of Theorem 2, we use the following results: Let, for t > 0, 

N ( L o g  t) k - 1 

Y(t)= ~ o ke ~k, and put, f o r k > l ,  v k= ~co  ie z~. 
- o o  Oo 

Then (see [4, 5]) Y is the inverse of an extremal process, and: 

Lemma 9. 7-he sequence {LOg vk-- Log vk_ l , k > l }  is an i.i.d, sequence of expo- 
nentially E(1) distributed random variables. Furthermore, 

Ivk--nkr=O(k ) a.s. as k---,oo. 

Proof. The first assertion (see Deheuvels, 1982) follows from Dwass, 1964, 
Theorem 4.1; the second was proved in Deheuvels, 1981. 

Theorem 5. Without loss of generality, there exists a Wiener process 17V such that 

G=exp(k+lTV(k)+O(Logk)) a.s. as k~oo.  (13) 

Proof. By Lemma 3 and Lemma 9, it is clear that we can put Log v k = k + 12V(k) 

+O(Logk) a.s.. Since C o g n k = C O g v a + L o g ( l + ~ ) = L o g v  k 
\ ~ Vk ) /  

+O(ke k(1-~)), (13) follows readily. 

It may now be remarked that the whole proof of Theorem 1 and of 
Theorem5 relies entirely in (11). Hence, we can derive from (13) the same 
conclusions for n k as those we obtained from (11). This proves Theorem 2, and: 

Theoremd. I f  H(t) is a positive function defined for 0 < t < e ,  such that H~ and 
t 1/2H~, then 
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P(Lognk-k  >kH(1/k ) i.o.) 

=P(Lognk-k<kH(1/k  ) i .o.)=0 or 1, 

according as I= ~ t-3/2 H( 0 exp(_H2(t)/2t)dt converges or diverges. 
o+ 

P. Deheuvels 

(14) 

3. Conclusion and Comments 

The logical explanation for the similarities in behavior of n k and A k is that 
both sequences are of the form exp(k+ W(k)+O(Logk)), where lY~ is a Wiener 
process. The optimality of the bound in the Theorem of Komlds, Major, and 
Tusnfidy (Lemma 3) shows clearly that no improvement of (11) and (13) can be 
hoped for. 

Most results which were previously proved on these sequences can be 
obtained as direct corollaries of Theorem 3 and Theorem 6. 
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