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Summary. If {X,, n=1} is an iid. sequence of continuously distributed
random variables, and if n, is for k=1,2,... the index of the k-th upper
outstanding value of the sequence, the record times sequence is defined as
{n,, k=1}, whereas the inter-record times sequence is defined as {4,=n,
—m,_q, k=1}. We give here for 0, =n, or A, a complete characterization of
the sequences {a,} and {f,} such that P(6,<p, i.0.) or P(§, =, i.0.)=0 or
L

1. Introduction
Let X, X,,... be a sequence of independent and identifically distributed ran-

dom variables with a continuous distribution. We define the sequence {n,,
k=1} of record times of {X,, n=1} by

n=1, m=Min{nzl; X,>X 1}, k=23,
and the sequence {4,, k=1} of inter-record times by

A,=n,, Ay=n-—-n_, k=23 ...

The following Theorem is due to Rényi (1962):

L —k L -
LimSup =22% =% 1 Limmme 208K _ 4 . (1)
ko 1/2kLog, k ko 1/2kLog,k
In 1970, Strawderman and Holmes obtained that
. LogAd,—k ) Logd, —k
Lim Sup 08 Tk =1, Lim Inf—22k=% _ as., 2

ko 1/2kLog,k ko 1/2kLog,k
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precising a result of Neuts (1967), who had shown that

Logdi=k w nNo.1),  koroo. 3)
Vk

The exact distribution of A, (see Neuts 1967, Tata 1969) is given by

P
A¥—se, and

+ooxk

P4, zr= | »k—’e*"(l—e"‘)’dx, r=1, k=2, @
o k!

from where it follows that E(4})< o if 0<a<1, and E(4,)=c0.

Further results were described by Shorrock (1972, a, 1972, b) who proved
that the sequence {n,, ,/n,, k=n} converges in law to the iid. process {W,,,
m=1} with P(W,>u)=1/u, u21, and that there could not exist constants {g,
k>=1} such that {n,/a,, k=1} has a non degenerate limit distribution as k- co.

We shall, in the following, precise these results by proving:

Theorem 1. For any p=4,

P(Logd,—k=1/2k{Log, k+(3/2) Logs k+Log, k+... +(1 +¢) Log,k} i.0.)
=P(Logd,—k= —1/2k{Log, k+(3/2) Logs k+Log, k+...+(1+¢) Log,k} i.0.)

=0 or 1 according as ¢>0 or ¢<0. (5)

Theorem 2. For any p=4,

P(Logn, —k=1/2k{Log, k+(3/2) Logs k+Log, k+... +(1+¢) Log,k} i0.)

=P(Logn,—k< —1/2k{Log, k+(3/2) Logs k+Log, k+... +(1+¢) Log, k} i0.)

=0 or 1 according as £>0 or £=0. (6

In the proof, we shall make use of strong approximation techniques, enabl-
ing us to precise the bounds (5), (6) up to a complete characterization (Theo-
rems 4 and 6). It is to be noted that the remarkable symmetry between upper
and lower bounds of (5) and (6) could not be intuitively expected from (4).
because of the dissymetry of the distributions of 4, and n, for finite k.

2. Complete Characterization of the Limiting Bounds

It can be remarked that the record times {n,, k=1} can be defined in an
equivalent way for maxima and minima, and this, independently of the (con-
tinyous) distribution of the sequence’s terms.
Accordingly, for sake of simplicity, put U,, U,, ... to be an iid. sequence of
uniformly distributed on (0, 1) random variables, and define n, by
n=1, m=Min{nz1; U,<U, .}, k=23, ..,
and
Ad,=n, A=n—n_,, k=23 ...
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The following result was proved in Deheuvels (1981):

Lemma 1. Without loss of generality, there exists an iid. sequence {w,,
+ o0 <k< 4 o0} of exponentially E(1) distributed random variables, and a normal-
ized Poisson process {N(t), —oo <t< + o0}, independent of {w,}, with times of
arrivals ... <z_,<z,<0<z,<z,<..., such that N(u)y=k when z,<u=z, ,, and
such that

[49]

—HZ([W]H)’ k=1,2,..., (7

(where [u] denotes the integer part of u).

If we remark that, by (7),

Wy
=|— =1,2,...
i [—Log(l—e*zi)] tLook=12. ®

and also that (see Barndorff-Nielsen 1961, Deheuvels 1974):

Lemma 2. For any p=1 and ¢>0, there exists almost surely a k, such that for
k=k,,

1
k(Logk)...(Log, k)' ¢~

Sw,=<Logk+Log,k+...+(1 +¢) Log, k.

Then, since by (8), we have
4y =0 —F0,+0(1) as.  as k—oo, )

the law of the iterated logarithm applied to {z,} enables to obtain (2) in a
direct way. Such an argument was worked out by M. Berkane, who derived a
new proof of the results of Strawderman and Holmes (1970). We intend here to
precise this argument.

It will be necessary to use a Theorem of Komlds, Major, and Tusnady
(1975, 1976), which we state in the following:

Lemma 3. If {y,, k=1} is an iid. sequence of random variables such that E(e')
exists in a neighborhood of t=0, then, without loss of generality, there exists a

Wiener process {W(t), t=0} such that, if S,=n,+...+n,, E(n,)=0, E?})=1,
then

IS, —W(m)|=0(Logn) as. as n—>o0. (10)

Taking here n,=z,—z,_,—1, S, =z, —k, we get easily from (8)-(10):
Theorem 3. Without loss of generality, there exists a Wiener process W such that
A, =explk+ W(k)+O0(Logk)) as. as k—oo. (11)

It may be remarked that, since W(k)—W(k—1)=0(}/Logk), (11) can be

written without modification with 4, in place of 4, ;.
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We shall now use a result of Erdés (1942), who proved that, if p>4, and if
h, (=1/2t{Log,t+(3/2) Log, t+Log, i +.. +(1+s) Log,t}, then, if &>0,
there exists a.s. a t, such that, for any t>¢,, — ne DS W()Z +h, (1), whereas

a.s. for any t,, there exists a ' =t, such that W(t)< h, o(t), and a t” =ty such
that W(t")Z +h,, o(t").

Lemma 4. prg4,

£1/1(Log, )
1V 2Log,t

We are now ready to prove Theorem 1. By (11), if £>0,

h, ()—h, o ()~ as t— .

Proof. Straightforward.

A Zexplk+h, (k) +O(Logk) Zexp(k+h, ,,(k) as. as k—oo,

making use of the fact (Lemma 4) that Logk=o(h ».2:(k)—h, (k). Hence, ¢>0
being arbitrary, and using the same argument for — W(k), we get (5) for >0.
For ¢=0, we may note that Sup Sup |W(k)— W(k+1)]=0(Logn) a.s., and

1<k=n 011
that Logk=o0(h, ; o(k)—h, o(h)). This finishes the proof.
We shall now precise (5) by the use of Kolmogorov’s test (see Ito- McKean
1965, p. 33):

Lemma 5. If H(t) is a positive function defined for 0<t<e, such that H1 and
t~Y2H|, then, as. t H(1/t) belongs to the upper or lower class of W(t), t— oo,
according as

I= | 1732 H(t)exp(— H?(t)/2t) dt

converges or diverges.

Theorem 4. If H(t) is a positive function defined for 0<t<e, such that Ht and
=2 H|, then

P(Log A, —k=k H(1/k) i.0)=
P(Log 4, —k< —k H(1/k) 1.0)=0 or 1, 12)

according as U= | t=32 H(t) exp(— H?*(t)/2t) dt converges or diverges.

0+
11 1 /2
Proof. Put H(t)=(2t Log2?+§Log3;+Logq§(t) ) . Then, I converges or

dt
diverges according as J= |

ot t(LOg(l/t))¢(1/)2
more, if we put «(£)= (1) (Log %) <L0g2 %) , then H? and t~ Y2 H| is equiva-

converges or diverges. Further-

lent to «(f)? and ¢?a(f)] as t]0. Let us assume that these conditions are
satisfied, and let us consider first the case where a(f)Too and Y2 a() |0 as 0.
2

1/
Put H ()= (Zt{Logzé—i—;Logs%—i—Log o +q(t))}) , and chose g(f)—0 as
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dt
t— 0. Then K=0§+ t(Log(1/1)) (1) (1 + q(1))

— 1 1
the same happens for J. Put now g()=C(t)}/2t (Log?) (Log2 ;); since

converges or diverges according as

a(t)Too and t'%a(1)|0, as t|0, it is possible to chose C(f) such that simul-

taneously: a(t)(1+q(t)Too, t12a()(1+q()]0, g(t)—~0 as t|0, and either

Lim Sup C(t)< A, either Lim Inf C(t)= A, where A is any given constant. This
toa

too

implies that H, satisfies the conditions of Lemma 5. If we make also the
1 1
assumption that Log¢(f)=o0 (Log2?>, t{0, then H (t)=H(t)+tC(t) (Log?)

(I+o(1)). Now, by (10), Lemma5, and the preceding argument, if
LimSup C(t)<A4, and if I converges, then Log4,—k+O(Logk)<kH(1/k)

toa
+ALogk as. as k—oco. By a convenient choice of 4, it gives Log 4,
—k=<kH(1/k). A similar argument gives (12) by discussing the different possibi-
lities. It remains to treat the case where a()7L<co, or t*2u(t)| M >0, or

1
Log¢(t)+o (Log2 E)' It can be seen that any of this cases can be described by
(5) so that (12) is valid in all cases. The proof of Theorem 4 is achieved.

In the proof of Theorem 2, we use the following results: Let, for =0,

N(Logt) k—1
Y()= ) o, andput, for k=1, v,= Y ;e
Then (see [4, 5]) Y is the inverse of an extremal process, and:

Lemma 9. The sequence {Logv,—Logv, ;,k=1} is an iid. sequence of expo-
nentially E(1) distributed random variables. Furthermore,

[ve—n]=0(k) a.s. as k—oo.

Proof. The first assertion (see Deheuvels, 1982) follows from Dwass, 1964,
Theorem 4.1; the second was proved in Deheuvels, 1981.

Theorem 5. Without loss of generality, there exists a Wiener process W such that

n,=exp(k+W(k)+0(Logk)) as. as k—co. (13)
Proof. By Lemma 3 and Lemma 9, it is clear that we can put Logv, =k+ W(k)
+0(Logk) a.s.. Since Logn,=Logv,+Log (1 —I—{@}) =Logyv,
+O(ke ¥ =) (13) follows readily. ‘

It may now be remarked that the whole proof of Theorem1 and of
Theorem S relies entirely in (11). Hence, we can derive from (13) the same
conclusions for #, as those we obtained from (11). This proves Theorem 2, and:

Theorem 6. If H(t) is a positive function defined for 0<t<g, such that H 1 and
t~Y2H|, then
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P(Logn,—kz=kH(1/k) i.0.)
=P(Logn,—k=kH(1/k) 1.0.)=0 or 1, (14)

according as I= | t=3/2 H(t)exp(— H*(1)/2t) dt converges or diverges.
0+

3. Conclusion and Comments

The logical explanation for the similarities in behavior of n, and 4, is that
both sequences are of the form exp(k+ W(k)+O(Logk)), where W is a Wiener
process. The optimality of the bound in the Theorem of Komlos, Major, and
Tusnady (Lemma 3) shows clearly that no improvement of (11) and (13) can be
hoped for.

Most results which were previously proved on these sequences can be
obtained as direct corollaries of Theorem 3 and Theorem 6.
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